最近,機器學習和人工智能的快速發展為改進美國防部(DOD)兵棋推演創造了越來越多的機會。本研究旨在利用現代框架、算法和云硬件來提高美國防部的兵棋推演能力,具體重點是縮短訓練時間、提高部署靈活性,并展示經過訓練的神經網絡如何為推薦行動提供一定程度的確定性。這項工作利用開源并行化框架來訓練神經網絡并將其部署到 Azure 云平臺。為了衡量訓練有素的網絡選擇行動的確定性,采用了貝葉斯變異推理技術。應用開源框架后,訓練時間縮短了十倍以上,而性能卻沒有任何下降。此外,將訓練好的模型部署到 Azure 云平臺可有效緩解基礎設施的限制,貝葉斯方法也成功提供了訓練模型確定性的衡量標準。美國防部可以利用機器學習和云計算方面的這些進步,大大加強未來的兵棋推演工作。
圖 4.1. 未來兵棋推演開發者與用戶在云和本地實例中的關系
人工智能(AI)在過去幾十年中取得了顯著進步。最近在深度學習和強化學習(RL)方面取得的進步使人工智能模型在各種視頻游戲中的表現超過了人類。隨著美國國防部(DOD)繼續投資開發用于兵棋推演和戰爭規劃應用的人工智能模型,許多方面都有了改進。
本研究調查了現代機器學習(ML)技術的應用,以提高兵棋推演的功效。這項研究表明,即使在沒有圖形處理器(GPU)的情況下,并行化也能大幅縮短 RL 問題的訓練時間,而且對平均得分的影響微乎其微。這一發現強調了并行處理框架對未來 RL 訓練工作的重要性。本研究利用 Ray 框架來協調 RL 訓練的并行化,并評估了兩種算法:近端策略優化(PPO)和重要性加權行為者學習者架構(IMPALA),包括使用和不使用 GPU 加速的情況。這項研究成功地表明,在保持總體平均性能的同時,訓練時間可以減少一到兩個數量級。
本研究的第二部分探討了將本地訓練的模型與本地環境解耦的實用方法,展示了將這些模型部署到云環境的可行性。采用的模型是利用開源框架開發的,并部署在微軟 Azure 云平臺上。這項研究成功地將訓練有素的 RL 模型部署到云環境中,并集成到本地訓練和評估中。
最后,本論文證明了貝葉斯技術可以集成到 RL 模型中,從而有可能提高人機協作的價值。這是通過將貝葉斯方法納入模型架構,并在運行時利用這些實施層的獨特屬性來實現的。這項研究取得了成功,并展示了如何將人工智能移動選擇的確定性措施合成并呈現給人類。
總之,這項研究強調了并行化的重要性,為基于云環境的訓練模型提供了概念驗證,并證明了將貝葉斯方法納入人工智能模型以改善人機協作的可行性,從而為推進 ML 和兵棋推演技術做出了貢獻。
受赭石藻啟發的微電子機械系統(MEMS)傳感器可按一定配置排列,以探測入射聲波的到達方向(DoA)。先前的研究結果表明,可以確定方位角 360 度范圍內的明確到達方向。迄今為止,一直使用實驗室儀器進行模擬讀數。本研究的目標是開發、構建和測試一種電路配置,包括 MEMS 傳感器的外殼和電源,以及設計一種圖形用戶界面(GUI),以便從傳感器陣列中讀取 DoA,并利用 GPS 定位數據對多旋翼小型無人機的位置進行三角測量。測試場使用兩個節點的配置來探測小型旋翼無人機。操作場景顯示在地圖上。這種新配置可以探測到來自任何可探測來源的聲音,并提供聲音來源的坐標。
本論文提出開發一種彈性機器學習算法,可對海軍圖像進行分類,以便在廣闊的沿海地區開展監視、搜索和探測行動。然而,現實世界的數據集可能會受到標簽噪聲的影響,標簽噪聲可能是通過隨機的不準確性或蓄意的對抗性攻擊引入的,這兩種情況都會對機器學習模型的準確性產生負面影響。我們的創新方法采用 洛克菲勒風險最小化(RRM)來對抗標簽噪聲污染。與依賴廣泛清理數據集的現有方法不同,我們的兩步流程包括調整神經網絡權重和操縱數據點標稱概率,以有效隔離潛在的數據損壞。這項技術減少了對細致數據清理的依賴,從而提高了數據處理的效率和時間效益。為了驗證所提模型的有效性和可靠性,我們在海軍環境數據集上應用了多種參數配置的 RRM,并評估了其與傳統方法相比的分類準確性。通過利用所提出的模型,我們旨在增強艦船探測模型的魯棒性,為改進自動海上監視系統的新型可靠工具鋪平道路。
藍色亞馬遜管理系統
機器學習(ML)發展迅速,使機器能夠根據數據分析做出決策。計算機視覺(CV)是這一領域的一個專業部門,它使用先進的算法來解釋視覺信息,通過創造創新機會來改變汽車、醫療、安全和軍事等行業。在軍事領域,這些工具已被證明在改進決策、態勢感知、監視能力、支持行動以及促進在復雜環境中有效使用自主系統等方面大有裨益。
我們的研究主要集中在將 CV 原理應用于海軍領域,特別是解決二元分類問題,以顯示船只的存在與否。這構成了更廣泛的監視工具的重要組成部分,并采用了一種名為 "Rockafellian 風險最小化"(RRM)[1] 的新策略。RRM 方法旨在應對海上監控等復雜多變環境中固有的數據集標簽損壞所帶來的挑戰。我們方法的核心是交替方向啟發式(ADH),這是一種雙管齊下的策略,可依次優化不同的變量集。這種兩步迭代的過程可調整神經網絡權重并操縱數據點概率,從而有效隔離潛在的數據損壞。其結果是建立了一個更強大、更準確的海上監視和探測系統,從而增強了海軍行動中的決策和態勢感知能力。
我們的評估使用了兩個不同的數據集,即空中客車船舶探測(AIRBUS)[2] 和海事衛星圖像(MASATI)[3]。為了測試我們方法的魯棒性,我們逐步提高了這些數據集的標簽損壞水平,并觀察了這對模型性能的影響。
我們的研究在 ADH 流程中采用了兩種策略:w-優化和 u-優化。在 w 優化階段,我們試用了兩種不同的神經網絡(NN)優化器 Adam [4] 和 Stochastic Gradient Descent (SGD) [5, Section 3G],以調整神經網絡權重。u優化階段包括實施 ADH-LP(線性規劃)或 ADH-SUB(子梯度)算法,以修改每個數據點的概率,并有效隔離潛在的數據損壞。
ADH-LP 利用線性規劃進行計算優化,可提供全局最優解,但需要更多處理時間。另一方面,ADH-SUB 采用更快的子梯度方法,更適合較大的數據集或有限的計算資源。主要目的不是通過架構調整來提高性能,而是展示 RRM 方法如何提供優于傳統 ERM 方法的優勢,特別是在處理數據損壞和提高模型性能方面。
無論使用何種數據集(MASATI 或 AIRBUS),我們的研究采用 RRM 方法訓練 NN 始終優于或匹配 ERM 方法。RRM下的ADHLP和ADH-SUB算法在保持高性能水平的同時,對數據損壞表現出了顯著的適應能力,其中ADH-LP一直表現優異。總之,我們的研究結果表明,RRM 是一種穩健而有彈性的方法,可用于處理一定程度的數據損壞。
總之,我們利用 RRM 的創新方法為減少對標簽正確數據的依賴提供了一種有前途的解決方案,從而能夠開發出更強大的船舶檢測模型。這項研究在改進船舶自動檢測和整體海事安全方面邁出了一大步。通過有效處理數據損壞和測試創新方法,我們提高了海事監控系統有效監控沿海和劃界海域的能力。
在美國海軍及其盟國海洋行動中,最重要的是在海軍交戰中制定有效的戰略。盡管人們寄予厚望,但諸如 "約翰-麥凱恩 "號和 "菲茨杰拉德 "號這樣的事例表明,在每一次互動中確定有利的行動都具有挑戰性。本研究利用機器學習(ML)和人工智能(AI)的進步,開發了一個基于模擬的程序,將強化學習(RL)應用于海軍場景。該程序是對現有陸基兵棋推演模擬程序 Atlatl 的改編,旨在識別六種場景中己方兵力的高效行動。對深度 Q 網絡(DQN)、蒙特卡洛樹搜索(MCTS)和 AlphaStar 人工智能體在不同場景中的表現進行評估后發現,DQN 和 MCTS 能夠識別出更優越的策略,其中 DQN 一直表現出較高的得分,在某些場景中甚至超過了人類玩家。AlphaStar 顯示出的結果較少,但提供了如何改變它以在未來取得更好結果的見解。這些發現強調了人工智能作為海軍作戰決策輔助工具的潛力,有助于增強美國海軍的決策能力。建議今后開展研究,進一步挖掘這一潛力。
本論文旨在利用深度學習技術提高從二維目標圖像中估計目標姿態的能力。為此,我們采用了一種名為高分辨率網絡(High-Resolution Net)的尖端卷積神經網絡來訓練關鍵點檢測模型并評估其性能。實驗使用了兩個不同的數據集,包括 600,000 張合成圖像和 77,077 張高能激光束控制研究試驗臺(HBCRT)圖像。這些圖像來自六種不同的無人駕駛飛行器,用于訓練和評估目的,高分辨率網在 80% 的圖像上進行訓練,在其余 20% 的圖像上進行測試。運行高分辨率網絡時使用了 MMPose 框架,這是一個 Python 庫,其中包含多種卷積神經網絡選項。研究結果表明,High-Resolution Net 在姿勢估計方面表現良好,但由于目標形狀的對稱性,在左右反轉方面仍存在明顯差距。這項研究為今后利用高分辨率網絡進行目標姿態估計研究奠定了基礎。進一步的研究將集中式提高圖書館中左右分辨的準確性,以增強這些成果。
本論文分為五章。第一章是引言,介紹了本課題的概況及其相關性,以及如何進行實驗。第二章是文獻綜述,通過相關的學術和行業資料更詳細地介紹了這一研究領域。第三章是問題的提出和方法,介紹了將要解決的問題和解決問題的方法。第四章是模擬結果和深度學習性能評估,對結果進行評估,看是否取得了有意義的進展。第五章是結論,從更廣闊的視角看待結果,并討論未來工作的可能性。
本文提出了一個海軍作戰管理系統(CMS)架構,考慮到電子戰(EW)與人工智能(AI),以應對現代高超音速和低觀測能力的威脅,其中反應時間可能很短,需要自動化。它使用一個反制措施案例研究作為數據要求,拍賣傳感器任務,人工智能過程,以及認知復合感應的數據融合。該文件還強調了已經公布的關鍵認知電子戰能力,以證明該架構的合理性。該架構的方向是用高反應時間的自動化人工智能驅動的認知DM來取代人類決策者(DM)。
當把人工智能(AI)應用于電子戰(EW)時,它不僅要幫助決策者(DM)進行態勢感知(SA),還要滿足點、區域和區域防御以及反目標活動的需要。電磁波譜是密集的,有許多通信和雷達發射器。因此,挑戰在于如何將人工智能應用于能夠滿足管理部門需求的EW系統。因此,它必須能夠整理出感興趣的信號(SoI)[1],如部隊的信號和與指定任務無關的信號。這項工作的基礎是 "常規戰爭 "中的反導彈反應,以便與傳統的交戰進行更直接的比較。影響反艦導彈(ASM)成功的一些主要因素是雷達橫截面(RCS)、紅外橫截面(IRCS)、視覺和紫外線(UV)特征。因此,目標艦的特征是決定被動軟殺傷[2]反措施(也叫伎倆)性能的一個基本因素。然而,反坦克導彈也可以使用主動雷達尋的方式進行瞄準和跟蹤。因此,射頻(RF)和微波(MW)的截面特征是重要的,同時還有光輻射量子(或光子)、方位角和機動中的方位率,以及它們的戰術影響。因此,現代操作環境在處理電磁波譜方面存在挑戰,人工智能的自動化和自主性是解決這一挑戰的理想選擇。
本文描述了一個架構,其中包括用糠和干擾器進行軟殺傷;用導彈、火炮和火控系統進行硬殺傷;以及一個跟蹤目標并協調軟殺傷和硬殺傷反應的指揮和控制系統。本文僅限于假設反坦克導彈是使用射頻主動雷達尋的目標和跟蹤的海上滑行。因此,這項工作的中心是簽名管理、大型目標船的規避動作、船上被動型誘餌系統(如金屬箔片和反射器)的操作性能,涉及反坦克導彈的跟蹤方案和交戰環境,包括風速和風向。擊敗導彈威脅的一個基本因素是反應時間;隨著高超音速的出現,時間因素成為反應殺傷鏈的決定性因素。潛在導彈平臺的識別標準是最基本的;它們將允許更精確的SA,迅速讓DM消除發射平臺。鑒于反導鏈反應的時間很短,人的頭腦無法計算巨大的信息量,并在短時間內決定反應的類型,要么是硬殺傷,要么是軟殺傷,要么是兩者兼而有之;那么人工智能就成為反導系統中的基礎[3] [4]。因此,人類的DM理論不能用于遙遠的未來,因為它要求對形勢的分析速度、識別能力、對威脅的立即反應,以及在人類思維的指揮鏈中進行計算和決定,因此不能提供所需的反應時間。本文的最后部分介紹了幫助平臺保護速度的架構,朝著定義CMS中的設備連接方向發展,同時還介紹了一些已經發表的關鍵技術。
第1節是介紹、動機、方法和論文結構。第2節提供了一個常規條令性例子戰術和反擊方法,用于在架構中需要支持的硬殺和軟殺。同時,在第2節中,還介紹了軟殺傷反擊方法的主動、被動和綜合方法。此外,第3節是一個使用飛毛腿和機動性的交戰例子,展示了所需的關鍵數據。第4節介紹了所提出的AI/EW技術的架構。最后,第5節是結論。
人工智能應用于電子戰時,不僅要保證DM(決策者)的SA(態勢感知),而且還必須滿足點和區防御以及反目標活動的需要。電磁波譜因無線電和雷達發射器而加劇,一個挑戰是將人工智能應用于能夠滿足DM需求的EW系統,因此它必須能夠分出感興趣的信號,例如其海軍部隊的信號。另外,哪些信號對指定的任務沒有影響。
一個陸軍師的基本 "有機 "通信和電子設備,在一個典型的70公里乘45公里的地區作戰,是超過10,700個單獨的發射器。一個支持性的空中遠征部隊(AEF)會帶來另外1400個,而一個典型的海軍航母戰斗群會帶來另外2400個發射器[20]。比如說: 在沙漠盾牌/沙漠風暴中,六個陸軍師和一個海軍陸戰隊師都占據了相同的地理和電磁波譜空間,還有許多其他聯軍和指揮控制網絡[21]。鑒于這種信息密度,認知型EW也必須與人工智能概念和認知循環階段的相關挑戰相一致。
為幫助EW和AI的受眾,我們提供了一個AI和EW術語的表格,在表1中,這些術語有一些對應關系。
表1 等效AI和EW術語
電子戰被正式定義為三個部分:
在圖10中,Haigh和Andrusenko[15]提出了一個EW和AI的組合架構,它跨越了殺傷鏈階段,將AI的特征和分類輸入一個融合引擎,以建立一個意圖,這個意圖是由因果關系和異常檢測階段推斷出來的。
圖10 與EW功能相關的EW和AI能力[15]。
Haigh和Andrusenko的論文與EA之前的ES的數據融合觀點一致,同時保持EP。因此,人工智能方法被應用于特定發射器的分析、特征描述和分類,作為數據融合之前的模式匹配工作。然后,這些方法被用于異常檢測和因果關系搜索,以實現意圖識別。這是一個信息漏斗,在EA/EP方面,這些方法更多的是優化適應性,而不是智能,這貫穿于整個殺傷鏈,并應用于任務管理的決策援助和與電子戰令(EOB)和網絡管理有關的人為因素。不難看出,AI態勢評估、DM和機器學習(ML)能力與所有EW功能相關。每個認知型EW系統的第一步是電子支持(ES),以了解射頻頻譜。在人工智能界被稱為情況評估,ES確定誰在使用頻譜,他們在哪里和何時使用,以及是否有可以 "利用 "的模式。AI/ML技術可以使用特征估計、發射器特征和分類、數據融合、異常檢測和意圖識別。圖11顯示了任務前準備和任務后分析與任務中需求的重疊。
圖11 任務中、任務前和任務后的重疊部分
ES對環境進行分析,并創造出驅動決策者(DM)的觀測數據。日益復雜的情況將頻譜態勢感知(SSA)定義為 "收集有關頻譜使用的不同信息并處理這些信息以產生一個融合的頻譜圖"[15]。SSA收集、組織和處理EW所需的頻譜數據。SSA必須以近實時(NRT)的方式進行,以滿足任務中的決策者的需要,SSA必須結合各種支持技術,包括傳統的和認知的。然而,一個挑戰在于相關技術的整合和展示,其中只有少數是認知的,以減少脆性和處理新的發射器。人工智能和ML能力可以在每個層面上改善SSA,這是在其他相關SSA技術背景下對這些AI/ML技術的看法。一個完整的EW系統必須有多層面的SSA。未來的SSA系統可以用深度學習模型來生成潛在的特征,用經典的ML模型來進行任務中的更新,以及用混合模型來抵消有限的數據。此外,SSA不一定要完全依賴射頻數據: 它可以與非射頻數據融合,如視頻和靜態圖像、自由空間光學、或開源、戰術或作戰情報。跨越多個異質來源的分布式數據融合必須創建一個在空間、時間和頻率上都準確的連貫的戰地頻譜共同作戰圖。異常檢測、因果推理和意圖推理使作戰圖更加完整,以了解事件的影響并支持管理部門。
Rudd-Orthner等人[14]用圖12中的 "影響范圍 "概念[18]擴展了這一概念,并增加了一個 "保護洋蔥 "框架,以根據數據需要選擇對策。
圖12 影響范圍
他們指出,威脅武器系統有變得更加復雜的趨勢,這種復雜性的增加至少可以部分歸因于:戰術的演變、技術發展的速度和數字化的現代化,但也有一種趨勢,即隨著人類決策和反應時間的減少,威脅的作用也在擴大;隨著自主系統的效力和使用的增加,這種情況也許更加明顯。自主系統的崛起在所有領域都在發展: 陸地、空中、海上、太空和網絡。自主系統的規模各不相同,從無人值守的槍支系統到自主空中平臺。這些自主平臺運作的作用也在不斷擴大,因此在打擊它們時,可能需要在綜合防御輔助系統中匹配復雜性,作為打擊復雜威脅系統的戰略。這些復雜平臺的作用和能力的增加,可能導致單一平臺的作用不大,并為其他平臺提供 "保護投射 "的要求。與此相結合,利益相關者群體也更加多樣化,科學家/工程師、機組人員和任務生產程序員之間的溝通機制也是挑戰,這樣他們都可能做出有意義的貢獻,并與他們的利益相關者群體的價值互補,正如Rudd-Orthner等人所說。
圖12中的維恩圖顯示了數據可用性的 "影響范圍":保護平臺/部隊、威脅或武器系統和防御限制與反措施設計考慮相疊加。Rudd-Orthner等人指出,這些不同的反措施考慮加上不同的可用數據,可能對反措施戰術設計形成影響范圍。
Rudd-Orthner等人在[14]和[19]中應用了多視角威脅分析圖解技術,該技術基于判別器、操作視角、系統視角以及對策設計考慮和影響范圍的維恩圖,適用于保護的洋蔥。他們在維恩圖中描述了反措施的設計考慮,將反措施的設計意圖描繪成一種規范,而不是ECM干擾器技術設施。在這種情況下,反措施設計考慮表示戰術的反意圖。論文[14]和[19]還建立了一個保護洋蔥的概念,利用反措施設計的影響因素和組織成洋蔥層的數據源,將揭示的數據分層管理。其中這些層級建議的對策方法也是與該威脅殺傷鏈階段的威脅意圖直接相反的,使得它也是一個測量的反應和保護數據模型在所揭示的數據。表2顯示的是保護洋蔥的層級(第1層是最外層)和反措施設計考慮,影響范圍與威脅系統的殺傷鏈意圖的映射。表2提供了保護洋蔥的六個層次。
表2 保護洋蔥
洋蔥層/影響范圍/CM設計考慮因素 | 注釋 |
---|---|
第1層發現/受保護的平臺/減少的可探測性 | 對抗早期預警、空中搜索或地面控制攔截雷達的探測或行為,使被保護平臺脫穎而出。該戰術針對的是殺傷鏈的意圖,并不顯眼,是利用對自身平臺數據的了解。 |
第2層定位/受保護的平臺/降低可探測性 誘餌和欺騙 | 具有欺騙性和誘騙性的反目標獲取或高度查找雷達可用于降低信息或反擊某個范圍或高度。 |
第三層識別/保護平臺 武器系統/降低可探測性 誘餌和欺騙 分散注意力 拒絕破壞 | 用旨在造成混亂的措施來對抗識別,以延遲對你的分類或身份的評估,識別可以基于行為或使用特殊雷達模式,如NCI。 |
第4層跟蹤/保護平臺武器系統/降低可探測性 誘餌和欺騙性分散注意力 | 用干擾、分散注意力和拒絕的方式來對抗威脅,可以是目標獲取雷達或更高數據率的搜索模式,如窄掃描軌道,同時掃描模式。 |
第5層 交戰/防御限制 武器系統保護平臺/降低可探測性 誘餌和欺騙 分散注意力 拒絕 破壞 破壞 | 使用所有可用的能力擊敗威脅,硬殺和軟殺取決于ROE,是傳統的平臺自我保護。可以使用破鎖和信號處理以及跟蹤目標的戰術。 |
第6層 處置和效應/防御性限制 武器系統保護平臺/減少可探測性 誘餌和欺騙 分散注意力 拒絕 破壞 毀滅 | 使用所有可用的軟硬殺傷能力擊敗威脅,是傳統的平臺自我保護。可能使用破鎖和信號與跟蹤處理的目標戰術,并可能同時采用針對尋的器和雷達的技術。 |
認知型電子戰系統的設計必須提供態勢感知、決策和學習能力。一般來說,系統要求推動了一系列關于哪些問題和它可能需要回答的問題的決定。決策可能是反復的,要么是集中的,要么是隨部隊效應范圍分布的。他們將一個問題表示為規格,并受制于AI代理的拍賣。就我們如何定義和調整優化函數而言,利用領域的物理學與參與的進展可能會減少狀態和交易空間。問題來自于像干擾這樣的設計結果所需的緊迫性和缺失的數據。因此,選擇對策和感覺的C4L參數、'while'或'if'條款都是數據要求,可能形成問題對話鏈或問題樹,在殺傷鏈的不同處置路線中需要。因此,這些對話鏈或問題樹就像專家系統的規則庫格式。因此,所需的數據就以拍賣的方式給投標的傳感器。這樣一來,邏輯路線總是有目的性的結果,而DM和傳感器的使用也是如此。另外,隨機森林[22]可以減少熵,增加信息增益。
雖然具有高度的適應性,但先進的雷達和軟件定義無線電(SDR)架構通常依賴于定制的API,單獨暴露每個參數。這種方法不適合EW系統中的近實時認知控制,因為緊密的耦合意味著人工智能不能做出全局性的決定。組成模塊必須是高度模塊化和可組合的,以消除這一障礙。通用接口允許模塊暴露其參數和依賴關系,從而實現全局優化和跨多個處理器的計算負載平衡。通常,由RESM(雷達電子支持措施)攔截的發射物是通過發射物數據庫識別的。發射者被識別出來,并在本地認可的海上圖像(LRMP)中得到體現。當通過數據庫確認為一種威脅時,它可以接受DM的詢問和拍賣:
為此,我們需要一個中間代理,提供一個模塊化的結構組件,允許不同的技術提供不同的服務,并確保信息/控制的一致流動,與John Boyd的OODA循環[23]一致,但適用于數據處理和DM。
圖13 模塊化架構
軟件架構的一個例子是ADROIT。自適應動態無線電開源智能團隊(ADROIT):用中間代理認知控制SDR節點之間的協作。ADROIT項目正在建立一個開源的軟件定義的數據無線電,旨在由認知應用程序控制。模塊暴露了它的參數和它們的屬性(特別是讀/寫)。當一個模塊發生變化時(例如,增加一個新的參數),它只需揭示新的參數,并在一個發布-訂閱機制中公開參數(名稱、屬性),而不是為該新參數增加一個新的API函數;這也可以擴展為一個組播目的地,給后來仍需要定義的模塊。ADROIT用圖14所示的模塊實例化了中間代理。
圖14 ADROIT體系結構支持認知代理
處理不同的或變化的傳感器的一種可擴展的方式是,如果所有的設備可以減少不確定性或提供額外的數據來回答一個殺戮鏈階段的問題,就將它們定義為傳感器。因此,這些傳感器可以成為拍賣算法的參與者,以其回答問題的能力來競標。在不同的操作環境下,拍賣算法中的分數可以改變,因此,不同的傳感器選擇提供較低的可觀察性或與當前的ROE、受限的EMCON或當前的傳感器利用相一致。通過這種方式,形成了一個問答循環,完善了對情況的理解,同時在提問的基礎上做出增量決定,并使環境情況有利于他們的部隊使用保護洋蔥的一個版本。此外,同樣的拍賣優化可以與反措施一起執行,其概念是,如果一切都能影響當地的殺戮鏈決策或導致結論或問題發生在受害者身上,那么它就是一個影響者。由此可見,C4L提供了一種以標準形式指定反措施行動和傳感規格的方法;這些規格可以一起拍賣,以便在一個可適應的模型中獲得最佳效果和傳感,然后該模型將優化殺戮鏈的進展,為跟蹤的對手的殺戮鏈進展提供優勢。在圖15中,本文展示了EW系統如何在拍賣優化的基礎上與具有認知DM的作戰管理系統(CMS)集成。威脅的檢測/識別/鑒定/分類被轉移到不同的數據庫中,但這些過程和數據庫的不確定性導致了傳感器的重新任務。這些都是拍賣,根據傳感器解決情況的不確定性的能力來分配任務,并根據緊急程度來確定優先次序;這使用了從保護的角度預測威脅的殺傷鏈意圖。這些過程越可靠,立即識別和反應的概率就越高。為了進一步提高這一結果,管理部門必須考慮機器學習中的其他參數,以適應當地環境的傳感任務和對策效果的拍賣。
圖15 數據布局EWS與CMS集成
有些參數可能不為人所知,也可能沒有方法或傳感器來提供這些參數;因此,Rudd-Orthner等人[24]的專家系統的神經網絡形式作為數據庫的疊加,在這些情況下提供一個估計值。它還可以提供一個由貝葉斯網絡進一步引導的值,該網絡可以將從環境中收集的傳感器事實與來自其規則的知識結合起來,使其不容易被收集的事實所欺騙。此外,在圖16中,也是在人工智能的背景下,所提出的架構將EW系統與CMS結合起來。它通過一個反饋回路支持 "態勢感知",根據威脅殺傷鏈的位置重新安排傳感器的任務,以快速解決識別和確認的不確定性,更新跟蹤的準確性,并為CMS和EW系統資源提供戰術清單作為選擇。
圖16 ID標準交互模型
在圖16中,DM能力因此積極主動地利用感知能力直接處置威脅,并為反制措施/部署制定了時間表。這些反措施/部署應按照RuddOrthner等人的保護理念,利用推斷出的威脅的殺傷鏈位置階段,直接對抗威脅的意圖。因此,傳感要求可以在拍賣算法中與可供選擇的策略/反措施交錯安排。同樣,在威脅分析和處置的關鍵時刻,一些所需信息可能無法在DM中獲得,但可以使用RuddOrthner論文中提出的神經符號-AI專家系統方法的代數專家系統部分進行估計。可控的可觀察數據可能來自人工智能環境中的數學或認知學習發展過程。我們可以認為這些有助于識別目標的元素是可觀察的,這些元素在DM中是可控的。
圖17 CMS和EW CM系統中的威脅數據路徑
在圖17中,本文展示了一個威脅發射器從EW系統進入CMS部分的順序。從EW系統的庫或數據庫中識別截獲的發射器;該數據庫包含物理雷達特征: PRI、頻率、PW、振幅、掃描類型、掃描周期平臺等級和威脅名稱;采集類型的特征,ECCM,如原點干擾(HOJ)Chaffs辨別,紅外,雙導射頻和紅外。如果發射物未被識別為威脅,則在本地識別的海上圖像中直接代表發行者。如果被確認為威脅,它將遵循不同的路徑,如前所述。導彈的獲取和ECCM的類型在反應鏈中具有巨大的價值。如果它有HOJ能力,最好是通過C4L中捕獲的特定計算直接干預硬殺傷和誘餌發射;該選定的C4L規格是由保護的洋蔥頭選擇的,它與頻譜中的感應計劃一起安排。該規格將誘餌定位在C4L所確定的與發射船的一定距離和特定的β值。除了在CMS上表示威脅的到達方向外,EW系統還將C4L搜索數據和傳感規范發送到多功能雷達(MFR)和火控雷達(FCR)作為即時硬殺傷系統。本文在圖18中畫出了由人工智能支持的戰斗管理系統(CMS)的架構基礎。在標準環境塊中,還有四個相互關聯的組件:
1.傳感器管理,提供設備監視器(資源管理器)的管理,傳感器信息的收集和軌道管理;在這個塊中,所有的相關數據都匯聚到機載傳感器,如雷達、聲納、ESM雷達、通信ESM、導航輔助設備和氣象數據。在這個架構中,一個傳感器的任務和它的優先權來自于它的成熟度和殺傷鏈。在這方面,關于Rudd-Orthner等人,威脅意圖的成熟度被評估為使用保護洋蔥的反意圖對策,并嵌入到Haigh和Andrusenko的殺傷鏈階段,其中的整合是通過ADROIT架構的發布和訂閱機制,這允許快速和靈活的整合和擴展。
2.在架構的第二塊,有信息管理,其中本地軌道與來自鏈接網絡的軌道相關聯,根據識別標準識別目標的追蹤,管理技術決策輔助工具和信息,共享共同的操作畫面,該畫面中的不確定性和異常情況引起了傳感器的任務。
3.第三塊代表戰斗管理,它提供了對威脅的評估計劃和武器優先權的分配--演習的計算和艦隊內與戰斗有關的信息交流。
4.最后一個區塊是資產管理,使用C4L規范和序列,允許艦艇同時協調幾個進攻和確定的目標。
圖18 AI應用于CMS結構
在DM處理環境之外,人工智能也同樣適用于智能處理環境,類似的技術疊加數據庫和ML提取,走向專家系統規則捕獲[25]。在人工智能輔助的CMS中,數據流入信息管理數據融合,使計算機系統在沒有明確編程的情況下利用歷史數據進行預測或做出一些決定。機器學習使用從IMDF(信息管理數據融合)獲得的大量結構化和半結構化的數據,這樣機器學習模型就能產生準確的結果,或根據這些數據提供預測。
這項研究對攻擊者-防御者的蜂群交戰進行了權衡分析,以比較制約蜂群行為因素的相對效率,即目標算法和單個無人機參數。特別是,我們研究了為 "服務學院蜂群挑戰賽"(SASC)開發的算法,這是一項蜂群對蜂群交戰的實戰演習。我們用動態蜂群模擬進行了分析,允許蜂群組成和行為發生變化。這使我們能夠確認SASC中關于蜂群性能的定性結果。此外,使用比例分析方法進行定量權衡分析,并開發了評估防御性蜂群適應性的函數形式。我們的結果為后續研究更復雜的蜂群行為提供了一個框架。
無人機蜂群是由自主飛行器組成的群體,它們通過協調和溝通來實現目標[1]。無人機蜂群的規模可以根據蜂群的能力和后勤支持而任意擴大。在軍事上,大型蜂群對高價值單位(HVU)(如航空母艦)構成高風險,因為蜂群有能力壓倒現有的HVU點防御[2] 。
無人機蜂群的實戰能力在歷史上一直受到計算機處理、無人機與無人機之間的通信以及能量存儲密度的限制[3]。然而,這些領域的發展已經導致了蜂群的發展和可行性的提高。這導致無人機蜂群的風險急劇增加。大型蜂群已變得越來越有可能,中國早在2017年就測試了超過1000架無人機的蜂群[3]。使得無人機蜂群更加實用的技術改進預計將繼續下去。
對高價值單位來說,最大的無人機風險是空中無人機在利用機載炸藥執行自殺式任務。蜂群的目標是,通過數量,使HVU的防御達到飽和,并摧毀或使HVU失效。目前的HVU防御系統,如導彈或近距離武器系統,不足以對付大型無人機蜂群[2],也不經濟。這些旨在對付飛機和導彈的防御系統沒有能力對付無人機及其威脅狀況。蜂群的低成本和大規模使HVU有可能耗盡其有限的防御彈藥,而只能摧毀蜂群的一小部分[2]。在這種情況下,HVU將很容易受到蜂群殘余物或其他單位利用其疲憊的防御系統的攻擊。
HVU的戰略效用和經濟價值也會導致對手以整個無人機蜂群的代價從HVU的破壞中獲益。有能力的無人機可以以低至每架500,000美元的價格投入使用[2]。這個估計包括無人機、發射器和后勤支持的費用。因此,一個600架無人機蜂群,能夠削弱現有的HVU防御系統,將總共花費3億美元[2]。這與一艘航空母艦120億美元的成本相比更有優勢[4]。這種差距使得蜂群可以被用作力量倍增器,以盡量減少美國目前從昂貴的HVU中獲得的優勢[5]。
擬議的反無人機蜂群的方法包括激光和電磁武器以及無人機反集群。激光和電磁武器在技術上比現有的點狀防御系統更適合于反擊無人機蜂群,因為它們能夠耗費幾乎無限的射擊次數。然而,這兩種武器系統目前都沒有被廣泛使用。事實上,激光和電磁武器都面臨著巨大的技術困難,需要相當大的技術進步來提供可靠的反無人機防御[6]。
無人機反集群包括使用防御性無人機群來打擊進攻性的、敵對的無人機群。與進攻性無人機群相比,這種蜂群反制措施的研究相對較少。然而,與其他反制措施相比,防御性無人機群的優勢在于利用了刺激進攻性無人機群發展的相同技術進步。隨著進攻性無人機群的能力越來越強,防御性無人機群也是如此。事實上,防御性無人機群可能比進攻性無人機群更容易實施,因為防御性無人機群在受控空域的友軍中行動[7]。反蜂群還允許防御者破壞進攻型無人機群最重要的優勢,即其規模。防御性無人機群可以有足夠大的規模來減輕進攻性無人機群飽和防御的能力。
美海軍研究生院的研究人員以前的工作重點是將反集群作為一個最優控制問題進行研究[8]-[12]。此前的工作利用了基于潛力的模型、遠程武器和防御者集群戰略。本論文通過實施不同的蜂群合作規則和應用新的分析技術,在這些先前工作的基礎上進行研究。例如,以前的研究集中在遠程武器上,在這種情況下,攻擊蜂群是作為一個整體參與的。本論文著重于使用短程武器的模擬,其中防御者與單個攻擊者交戰。此外,本論文研究的是權衡分析,而不是優化,但這里描述的工具可以在未來的工作中與優化相結合。
發展防御性無人機群需要回答一系列問題。首先,防御型蜂群的最佳戰術是什么,以最好地對抗攻擊型蜂群?第二,什么樣的平臺規格,如速度或武器范圍,將是最有效的?第三,與這些平臺規格相關的成本或技術限制可能會影響到部署最佳蜂群的可行性?這三個分類問題包括許多其他問題。例如,給定一個算法和一套平臺規格,增加更多的機器人有什么好處?是否有一個點,在這個點上增加更多的無人機不再有好處?平臺規格的改進與增加無人機相比有何不同;例如,是速度翻倍還是無人機的數量更有利?
為了回答這些問題,任務規劃者和設計者必須對無人機群參數進行全面的權衡分析,以確定如何在最小化群組成本的同時最大限度地提高群組能力。對諸如蜂群行為、蜂群規模和單個無人機性能(包括其速度和武器射程)等因素進行徹底的提煉,可以使任務規劃人員能夠派出最能勝任、最經濟的無人機群來反制對手的蜂群。如果沒有這種分析,任務規劃者就有可能制造一個不足以擊敗進攻性蜂群的蜂群,從而使HVU處于危險之中。反之,任務規劃者也可能建立一個無人機群,它可以很好地擊敗進攻性機群,但卻是一種低效的資源分配。目前,適合執行這些規劃任務的分析工具很少。本論文的目標是開始填補這一知識空白。
受自然界中蜂群的啟發,蜂群機器人技術已被開發出來,用于執行各種具有挑戰性的任務,如環境監測、災難恢復、物流,甚至軍事行動。盡管蜂群對社會有重大的潛在影響,但對針對蜂群機器人技術的對抗性情景的關注相對較少。
在本文中,我們探索了一種系統化的方法,以找到對手可以利用的蜂群機器人算法的邏輯缺陷。具體來說,我們為蜂群算法開發了一個自動測試系統,蜂群缺陷探測器(SWARMFLAWFINDER)。我們確定并克服了在理解和推理蜂群算法執行方面的各種挑戰。特別是,我們提出了一個新的機器人行為抽象,我們稱之為因果貢獻度(DCC),基于反事實的因果關系的想法。然后,我們建立了一個名為SWARMFLAWFINDER的反饋指導的灰盒模糊測試系統,利用DCC作為反饋指標。我們用四個進行導航、搜索和救援任務的蜂群算法來評估SWARMFLAWFINDER。SWARMFLAWFINDER在蜂群算法中發現了42個邏輯缺陷(并且所有這些缺陷都得到了開發者的承認)。我們對這些缺陷的分析表明,蜂群算法存在關鍵的邏輯錯誤/漏洞,或者存在不完整的實現,可以被對手利用。
通過這項美海軍的頂點研究,人工智能(AI)三人小組利用系統工程(SE)的方法來研究人工智能輔助的多任務資源分配(MMRA)如何使所有軍種的任務規劃者受益。這項研究的動力來自于優化我們武裝部隊中的MMRA問題集,對于戰術領導人有效管理現有資源至關重要。存在著一個將人類決策者與人工智能支持的MMRA規劃工具相結合的機會。在計算速度、數據存儲和商業應用中的整體公眾接受度方面的快速技術進步促進了這一點。
該團隊從三個任務集著手處理MMRA問題:車隊保護、航空支援和航母打擊群(CSG)行動。車隊保護用例探討了利用定向能(DE)的移動式地基防空系統。航空用例探討了美國陸軍的未來垂直遠程攻擊機(FLRAA)的能力組合,這是一個未來垂直升降機(FVL)的前里程碑B計劃。最后,CSG用例從高度復雜的系統(SoS)角度探討了MMRA。
盡管這些用例各不相同,但團隊探討了這些觀點之間的相似性和矛盾性。每個用例都應用了一般的MMRA流程架構。然而,每個用例的輸入和輸出都是單獨評估的。圖A描述了MMRA的總體流程架構。
如圖A所示,MMRA被設想為在確定的決策點由人在回路中激活。在這些事件中,MMRA系統用實時輸入進行一次循環。由黑盒MMRA系統確定的輸出被顯示給人在回路中的人,以進行標準決策程序。雖然這項研究僅限于問題的分解,但未來的研究領域是開發一個由人類系統集成(HSI)驅動的產品實現。MMRA通過對日益復雜和相互依賴的資源分配問題進行客觀評估,加強了指揮系統的決策。圖B描述了MMRA人工智能系統過程的行動圖。
MMRA決策已經超出了傳統決策過程的復雜程度。這種復雜性適用于任務規劃的各個層面。戰術層面是在士兵個人的直接指揮系統或單位層面進行的。行動和戰略層面則是在梯隊或總部層面進行。所有這些都需要對現有資源進行準確和有效的分配。
圖C中的圖形,"戰術評估過程。圖C "戰術評估過程:MMRA決策的復雜性 "描述了MMRA是如何在一個作戰場景的決策點上隨時間推移而進行的。初始規劃是在??0進行的,與 "MMRA過程結構 "中的 "初始 "黃色活動塊相關。之后的某個時間,??1, ??2, ??3, ..., ????決策點與 "MMRA過程流 "中的 "決策點重新規劃 "黃色活動相關。"初始 "和"決策點重新規劃 "這兩個黃色活動塊啟動了一個完整的 MMRA 過程流,它包含了 "初始 "和 "決策點重新規劃 "連續體中描述的所有活動。
決策點在三個MMRA用例中被普遍定義。然而,為了解情況,對設想中的場景采用了獨特的故事情節。雖然這里不能列出所有的案例,但CSG獨特決策點的一個例子是CSG內部、CSG外部或自然災害援助的應急反應。通常,所有的決策點都發生在出現新的任務、提供不同的任務優先級、資源耗盡、資源被破壞或任務無法繼續完成時。
為了更好地理解MMRA問題集的范圍,該團隊對所有三個用例進行了可擴展性和復雜性分析。可擴展性分析抓住了靜態MMRA問題集的范圍,與該用例的歷史背景相比較。因此,可擴展性分析為最初的MMRA規劃問題集提供了一個從傳統系統到現在用例方案的背景。在DE Convoy Protection和CSG用例中,可擴展性都有不可量化的增加。對于DE車隊保護來說,由于精確攻擊的技術進步,紅色部隊的能力增加。此外,CSG的藍軍能力增加了,在某些地方是三倍,因為反措施能力、導彈類型的可用性和不同級別驅逐艦之間的數量擴大了。作為補充,航空用例產生了15%的可擴展性,從傳統的實用級直升機到FVL FLRAA。
復雜性分析抓住了動態MMRA問題集的范圍,與各自用例的歷史背景相比較。這些復雜性分析提供了進一步的MMRA背景,因為當MMRA在交戰中被重新規劃時,戰術決策發生在多個決策點。所有三個用例的復雜性分析都構建了故事情節,展示了無形的、越來越具有挑戰性的MMRA考慮。隨著MMRA的可擴展性和復雜性的增加,未來對人工智能輔助的MMRA決策的關鍵需求變得清晰。
繼續分解人工智能輔助的MMRA問題集可能會引起美國武裝部隊的興趣。在所有的使用案例中,在初始和重新規劃的作戰場景中,戰術決策的復雜性都顯示出隨著時間的推移而增加。我們強烈建議對人工智能支持的MMRA問題集進行進一步研究。確定的未來研究領域有:工具的倍數、硬件/軟件部署戰略、戰術與作戰與戰略層面的資源配置、連續與離散的重新規劃節奏、人工智能機器學習的考慮,如數據的數量/質量、人類在環路中對人工智能的接受程度、人工智能輸出儀表板的顯示以及人工智能的倫理。
在本文中,我們討論了如何將人工智能(AI)用于政治-軍事建模、仿真和兵棋推演,針對與擁有大規模殺傷性武器和其他高端能力(包括太空、網絡空間和遠程精確武器)國家之間的沖突。人工智能應該幫助兵棋推演的參與者和仿真中的智能體,理解對手在不確定性和錯誤印象中行動的可能視角、感知和計算。人工智能應該認識到升級導致無贏家的災難的風險,也應該認識到產生有意義的贏家和輸家的結果可能性。我們將討論使用幾種類型的AI功能對建模、仿真和兵棋的設計和開發的影響。 我們在使用或沒有使用AI的情況下,根據理論和使用仿真、歷史和早期兵棋推演的探索工作,討論了基于兵棋推演的決策輔助。
在本文中,我們認為(1)建模、仿真和兵棋推演(MSG)是相關的調查方法,應該一起使用;(2)人工智能(AI)可以為每個方法做出貢獻;(3)兵棋推演中的AI應該由建模和仿真(M&S)提供信息,而M&S的AI應該由兵棋推演提供信息。我們概述了一種方法,為簡潔起見,重點是涉及擁有大規模毀滅性武器(WMD)和其他高端武器的國家的政治-軍事MSG。第2節提供了我們對MSG和分析如何相互聯系的看法。第3節通過討論20世紀80年代的系統來說明這一點是可行的。第4節指出今天的挑戰和機遇。第5節簡述了結構的各個方面。第6節強調了在開發人工智能模型和決策輔助工具方面的一些挑戰。第7節得出了結論。在本文中,我們用 "模型"來涵蓋從簡單的數學公式或邏輯表到復雜的計算模型的范圍;我們用"兵棋"來包括從小型的研討會練習(例如Day-After練習)到大型的多天、多團隊的兵棋推演。
MSG可以用于廣泛的功能,如表1所示。每種功能都可以由每個MSG元素來解決,盡管相對簡單的人類活動,如研討會兵棋和Day-After練習已被證明對后兩個主題具有獨特的價值。
通常形式的M&S和兵棋推演有不同的優勢和劣勢,如表2前三欄中的定型。M&S被認為是定量的、嚴格的和 "權威的",但由于未能反映人的因素而受到嚴重的限制。M&S的批評者走得更遠,認為M&S的 "嚴格 "轉化為產生的結果可能是精確的,但卻是錯誤的。在他們看來,兵棋推演糾正了M&S的缺點。M&S的倡導者則有不同的看法。
我們確實認識到并長期批評了正常建模的缺點。我們也從兵棋推演中受益匪淺,部分是通過與赫爾曼-卡恩(P.B.)、蘭德公司和安德魯-馬歇爾的長期合作,但兵棋推演的質量從浪費時間甚至起反作用到成為豐富的洞察力來源。雖然這種見解在沒有后續研究的情況下是不可信的,但來自建模的見解也是如此。
我們本文的一個論點是,這種刻板印象不一定是正確的,我們的愿望(不加掩飾的崇高)應該是表的最后一欄--"擁有一切",將建模、仿真和推演整合在一起。圖1顯示了一個相應的愿景。
這種理想化的活動隨著時間的推移,從研究、兵棋推演、軍事和外交經驗、人類歷史、人類學等方面開始(第1項),匯集關于某個領域(例如印度-太平洋地區的國際安全問題)的知識。這就是對棋盤、行動者、潛在戰略和規則書的定性。
兩項工作的進行是不同步的。如圖1的上半部分,兵棋推演在進行中,為某種目的而結構化。無論圖中的其他部分是否成功執行,這都可能獨立發生。同時,M&S以游戲結構化模擬的形式進行。隨著時間的推移,從M&S和兵棋推演中獲得的經驗被吸收,使用人工智能從M&S實驗中挖掘數據(第4項),以便為后續周期完善理論和數據(第5項)。在任何時候,根據問題定制的MSG都會解決現實世界的問題(第7項)。如同在淺灰色的氣泡中,人類團隊的決策輔助工具(項目6a)和智能體的啟發式規則(項目6b)被生成和更新。有些是直接構建的,但其他的是從分析實驗和兵棋推演中提煉出來的知識。有些智能體直接加入了人工智能,有些是間接的,有些則根本沒有。圖1鼓勵MSG活動之間的協調,盡管這種協調有時可能是非正式的,可能只是偶爾發生。
圖1的意圖可以在一個單一的組織中完成(例如,敏感的政府內工作)和/或在智囊團、實驗室、私營企業、學術界和政府中更開放的持續努力計劃中完成,就像圖2中的DARPA研究稱為社會行為建模實驗室(SBML)。在任何一種情況下,這種方法都會鼓勵多樣性、辯論和競爭。它也會鼓勵使用社區模塊來組成專門的MSG組件。這與專注于一個或幾個得天獨厚的單一模型形成鮮明對比。直截了當地說,這個愿景是革命性的。
圖1的愿景的一個靈感是20世紀80年代的蘭德公司戰略評估系統(RSAS)(附錄1指出了文件)。為了回應美國防部關于更好地利用兵棋推演進行戰略分析的要求,由卡爾-鮑爾領導的蘭德公司團隊提出了自動化兵棋推演,它將利用那個時代的人工智能、專家系統,但它將允許可互換的人工智能模型和人類團隊。這導致了一個多年的項目,我們中的一個人(P.K.D.)在1981年加入蘭德公司后領導這個項目。
該項目從深入設計開始,保留了可互換團隊和人工智能智能體的開創性想法,但也包括一個靈活的全球軍事模型;與人工智能有關的新概念,如替代的紅方和藍方智能體,每個都有彼此的模型;代表其他各方的綠方智能體,有簡單的參數化規則子模型;紅方和藍方智能體在做決定前做 "前瞻 "的能力;以及 "分析性戰爭計劃"--代表軍事指揮官的自適應插槽式腳本人工智能模型。該設計還預計:多情景分析,納入 "軟因素",如定性的戰斗力,以及人工智能模型的解釋能力。圖3勾勒出高級RSAS架構。整個80年代都在實施。蘭德公司將RSAS用于國防部的研究,例如,歐洲的常規平衡和常規軍備控制的建議,并將其出口到各政府機構和戰爭學院。聯合參謀部收到了RSAS,但事實證明連續性是不切實際的,因為一旦有適當才能的官員學會使用它,他們就會被提升到其他任務。
盡管RSAS在技術上取得了成功,但它在某些方面還是領先于時代。一方面,其創新的全球作戰模型被廣泛接受并用于分析和聯合兵棋推演。它成為聯合綜合作戰模型(JICM),在過去的30年中不斷發展,現在仍在使用。另一方面,RSAS的人工智能部分除了用于演示外,很少在蘭德公司之外使用。大多數指導RSAS工作的政府辦公室對政治層面的問題沒有興趣,如危機決策、戰爭路徑或升級。少數人有興趣,這導致了蘭德公司的研究,但在大多數情況下,他們的需求可以通過相對簡單的兵棋推演來解決,包括事后演習(Roger Molander,Peter Wilson)。此外,完整的RSAS是昂貴、復雜和苛刻的。更為普遍的是,隨著蘇聯的解體,美國防部對兵棋推演的興趣驟然下降。
幸運的是,事實證明有可能實現 "去粗取精":用人工智能智能體進行類似RSAS的模擬,可以通過非常簡單的模型和游戲獲得一些重要的見解,正如最近未發表的用對手的替代形象進行核戰爭的工作中所說明的。
RSAS在某種程度上納入了表2最后一欄的大部分想法,所以它顯示了可行性。也就是說,它可以作為某種存在的證明。然而,那是在冷戰時期,采用1980年代的技術。今天能做什么?
今天的國際安全挑戰遠遠超出了冷戰時期的范圍。它們呼喚著新的兵棋推演和新的M&S。新的挑戰包括以下內容。
現在的世界有多個決策中心,他們的行動是相互依賴的。從概念上講,這將我們置于n人博弈論的世界中。不幸的是,盡管諸如公地悲劇和食客困境等現象可以用n人博弈論的語言來描述,而且平均場理論有時也可以作為一種近似的方法來使用,但似乎n人博弈的復雜的解決方案概念還沒有被證明是非常有用的。由于種種原因,這種解決方案并沒有被廣泛采用。商學院的戰略課程很少使用這些技術,國防部的智囊團也很少將這些技術納入他們的M&S中。可能是現實世界的多極化太過復雜,難以建模,盡管在戰略穩定方面已經做出了一些努力。就像物理學中的三體問題一樣,n方系統的行為甚至可能是混亂的。我們還注意到,隨機混合策略在n人博弈中通常發揮的作用很小。同樣,在計算其他玩家的行動時,可能有很多內在的復雜性,以至于隨機化產生的一層額外的不確定性對我們理解未來的危機動態沒有什么貢獻。
與1980年代相比,有更多的國家擁有大規模殺傷性武器(即印度、巴基斯坦、朝鮮),甚至更多的國家擁有大規模破壞性武器。網絡作為一種戰略武器的加入,使問題進一步復雜化。在這里,人工智能可能有助于理解事件。作為一個例子,假設一支核力量受到攻擊,使其用于電子控制的電力系統癱瘓(由于分散和防御,這可能并不容易)。一支導彈部隊只能在短時間內依靠備用電力系統執行任務。大國肯定意識到自己和對手的這種脆弱性。在商業電力領域,人工智能對于在電力中斷后向需求節點快速重新分配電力資源變得非常重要,例如2021年發生在德克薩斯州的全州范圍內的冰凍溫度。
武器裝備的變化擴大了高端危機和沖突的維度,如遠程精確打擊和新形式的網絡戰、信息戰和太空戰。這意味著卡恩很久以前提出的44級升級階梯現在必須被更復雜的東西所取代,正如后面6.3節中所討論的。
一個推論被低估了,那就是現在的世界比以前更加成熟,可以進行有限的高端戰爭--盡管更熱衷于威懾理論的人有相反的斷言--其中可能存在有意義的贏家和輸家。在考慮俄羅斯入侵波羅的海國家、朝鮮入侵韓國等可能性時,這一點變得很明顯。出現的一些問題包括俄羅斯對 "升級-降級 "戰略(北約冷戰戰略的俄羅斯版本)的依賴,以及網絡戰爭和攻擊空間系統的前景。因此,觀察到更多國家部署跨洋范圍的精確打擊武器也是麻煩的。即使是曠日持久的“有限”戰略戰爭現在也可能發生,盡管如第6.3節所討論的那樣,升級很容易發生。
今天的美國安全伙伴有著不同的重要利益和看法。北約在整個冷戰期間表現出的非凡的團結,在現代危機或沖突中可能無法重現。在亞太地區,朝鮮和韓國、中國、日本、臺灣、印度和巴基斯坦之間的矛盾關系是危機中困難的預兆。所有這些國家都有通過使用太空、網絡空間或區域范圍內的精確武器進行升級的選擇。
這里的總體問題是,聯盟仍然非常重要,但今天的聯盟可能與冷戰時期緊繃的街區不同。我們可能正在進入一個類似于20世紀初的多極化階段。第一次世界大戰爆發的一個因素是,柏林認為倫敦不會與法國一起發動戰爭,在歐洲阻擊德國。這導致人們相信,戰爭將類似于1871年的普法戰爭--有限、短暫,而且沒有特別的破壞性。甚至法國在1914年8月之前也不確定英國是否會加入戰爭。這種對自己的盟友會做什么的計算,對穩定至關重要。這里的不確定性確實是一個具有巨大意義的戰略問題。
在考慮現代分析性兵棋推演的前景時,新的技術機會比比皆是。下面的章節列出了一些。
基于智能體的建模(ABM)已經取得了很大的進展,對生成性建模尤其重要,它提供了對現象如何展開的因果關系的理解。這種生成性建模是現代科學的革命性發展。與早期專家系統的智能體不同,今天的智能體在本質上通常是追求目標或提高地位的,這可能使它們更具有適應性。
當然,更普遍的人工智能研究比ABM要廣泛得多。它提供了無限的可能性,正如現代文本中所描述的那樣。我們在本文中沒有多加討論,但是在考慮M&S的未來,以及兵棋推演的決策輔助工具時,最好能有長篇大論的章節來論述有時被確認的每一種人工智能類型,即反應式機器、有限記憶的機器、有限自動機、有自己的思維理論的機器,以及有自我意識的機器。這在這里是不可能的,這一限制也許會被后來的作者所彌補。
聯網現在是現代生活的一個核心特征,人與人之間、組織與組織之間都有全球聯系。數據是無處不在的。這方面的一個方面是分布式兵棋推演和練習。另一個方面是在線游戲,甚至到了大規模并行娛樂游戲的程度,對這些游戲的研究可能產生國家安全方面的見解。這類游戲并不"嚴肅",但在其中觀察到的行為可能暗示了在更多的學術研究中無法認識到的可能性和傾向性。
現在,建立獨立有用的模型(即模塊)并根據手頭問題的需要組成更復雜的結構是有意義的。這種組合與國防部歷史上對標準化的大型綜合單體模型的偏愛形成鮮明對比。在不確定因素和分歧普遍存在的情況下,這種標準化的吸引力要小得多,比如在更高層次的M&S或兵棋推演中。模塊化設計允許帶著對被建模的東西的不同概念。這可以打開思路,這對預見性是很有用的,就像避免驚訝或準備適應一樣。也有可能將替代模型與數據進行常規比較,部分用于圖2中建議的常規更新。另外,模塊化開發有利于為一個特定的問題插入專業性,這是2000年中期國防部研討會上建模人員和分析人員社區推薦的方法。
今天,AI一詞通常被用來指機器學習(ML),這只是AI的一個版本。ML已經有了很大的進步,ML模型通常可以準確地擬合過去的數據,并找到其他未被認識到的關系。一篇評論描述了進展,但也指出了局限性--提出了有理論依據的ML版本,在面向未來的工作中會更加有效,并強調了所謂的對抗性人工智能,包括擊敗對手的深度學習算法的戰術。
規劃的概念和技術取得了根本性的進展,在深度不確定性下的決策(DMDU)的標題下討論。這從 "優化 "最佳估計假設的努力,轉向預期在廣泛的可能未來,也就是在許多不確定的假設中表現良好的戰略。在過去,解決不確定性問題往往是癱瘓的,而今天則不需要這樣。這些見解和方法在國防規劃和社會政策分析中有著悠久的歷史,應該被納入人工智能和決策輔助工具中。
設計"永遠在線"的系統,并不斷提高智能。從技術上講,大多數國防部的MSG都是人工智能界所謂的"轉型"。該模型或游戲有一個起點;它運行后會報告贏家和輸家。可以進行多次運行,并將結果匯總,以捕捉復雜動態中固有的差異。較新的人工智能模型的設計是不同的,它所模擬的系統是 "永遠在線的"。這被稱為反應式編程,與轉化式編程不同。這些系統永遠不會停止,并且不只是將輸入數據轉化為輸出數據。例子包括電梯系統和計算機操作系統。國防方面的例子包括網絡預警系統,導彈預警系統,或作戰中心。這些都不會"關閉"。防御系統正變得更加反應靈敏,所以必須用模型來表示它們。這一點在1980年代RSAS的更高級別的紅方和藍方智能體的設計中已經預見到了,它們會在事件發生后'醒來',并對局勢和選項進行新的評估,而不是繼續按照腳本行事。
在轉換型模型中,環境中的事件可能會觸發程序按順序采取某種行動。反應式模型則不同。程序在環境中同時做出改變。他們一起改變,或幾乎一起改變。國防工作的一個有趣的例子涉及自主武器。人類和機器決策之間的界限已經模糊了,因為在一個反應式系統中人和機器之間的互動可能是連續和交織的。反應式系統是美國、中國和俄羅斯國防投資的一個主旨。無人機群和網絡預警系統將如何在M&S和兵棋推演中得到體現?除非表述恰當,否則相關人工智能模型在模擬中的價值可能會適得其反。
然而,這僅僅是個開始。隨著機器擁有更好的記憶和利用它們所學到的東西,以及它們納入世界理論,包括對手的思想理論,人工智能將如何變化?一個令人擔憂的問題是,正如Yuna Wong及其同事所討論的那樣,對人工智能的更多使用將增加快速升級的前景。這方面的風險對于專注于最大化某些相對量化措施,而不是更多的絕對結果及其定性評價的人工智能來說尤其高。以冷戰時期的經驗為例,執著于誰會在全球核戰爭中以較高的核武器交換后比率 "贏得"的分析是危險的。幸運的是,決策者們明白,結果將是災難性的,沒有真正的勝利者。即使是1983年電影《兵棋》中的計算機約書亞也明智地得出結論:"核戰爭。一個奇怪的游戲。唯一的勝利之舉就是不玩。來一盤漂亮的國際象棋如何?無論約書亞體現的是什么人工智能,它都不只是關于如何通過數字贏得一場娛樂游戲的ML。
為現代分析性兵棋推演開發一個完整的架構超出了本文的范圍,但建議一些方向是可能的。圖4勾勒了一個頂層架構,表3則更詳細地提出了各種特征。圖4認識到,在考慮許多可能的危機和沖突時,需要深入關注至少三個主要的行為者,以解決當前時代的危機和沖突。一個例子可能是朝鮮、韓國、美國和中國。圖4還要求對軍事模擬采取模塊化方法。
如表3所示,1980年代RSAS的一些特征可能會延續到現代化的版本。然而,許多其他特征應該有很大不同。我們認為表3是討論的開端,而不是終點。
由于在我們的討論中,為大規模的場景生成、探索性分析和不確定性下的決策做準備是很突出的,因此需要強調兩個重要問題:
只有當模擬在結構上是有效的(即只有當模型本身是有效的),不同參數值的探索性分析才是有用的。
從探索性分析中得出的結論可能會有問題,當所研究的案例(情景)的可能性不一樣,它們的概率是相關的,但沒有很好的基礎來分配概率分布。
1、模型驗證
正如其他地方所討論的,模型的有效性和數據的有效性應該分別對描述、解釋、后預測、探索和預測進行定性。另外,必須根據特定的問題和背景來判斷它們。參數化方法有很長的路要走,但模型的不確定性常常被忽視,需要更多的關注,正如最近的一篇文章中所討論的那樣。攜帶目標和價值非常不同的對手模型只是這樣做的一個例子。
關于在不知道案件的相對概率的情況下如何使用探索性分析這個令人困擾的問題,我們建議探索性分析至少在表4中說明的目的上很可能有價值,這些目的都不需要概率。對于每一個例子,探索的目的是找到可能性(如脆弱性或機會),促使采取措施來防止它們,預測它們,或準備相關的適應措施。如果存在一個關鍵的漏洞,就應該修復它,無論它被利用的概率 "看起來 "是低還是高(如果它的概率被知道是很小的,那將是另外一回事)。
本節討論了在思考建模和兵棋推演的人工智能和決策輔助工具時出現的一些問題。首先討論了決策輔助功能。接下來討論了在設想使用人工智能的ML版本來利用大規模場景生成時的一個挑戰。最后一節討論了開發 "認知人工智能 "和相關決策輔助工具所涉及的基本挑戰之一。
如果我們根據我們所看到的對玩家的重要性,而不是對人工智能提供者的興奮點來詢問決策輔助工具的主要功能,那么一些關鍵的功能就會如表5所示。
從科幻小說中,我們可能期望現代游戲的決策輔助工具是高度計算機化的,并由人工智能以相對個性化的形式提供信息,就像艾薩克-阿西莫夫的機器人或電影《2001》中不那么邪惡的計算機哈爾9000。然而,作者迄今為止的經驗是,在游戲中 "幫助 "人類的努力往往被證明是適得其反的,阻礙了本質上人類的自由討論。事實上,這些努力有時會因為分散注意力而使玩家生氣。考慮到這一點,我們分別討論了實用的短期決策輔助工具和更具推測性的長期目標。
表6提供了我們對第一欄所示的簡單決策輔助工具的價值的主觀估計,從低到高。這些都不涉及人工智能。相反,最有價值的輔助工具是具有簡潔的檢查表、信息表或圖表的簡單視圖。評估區分了不同類型的游戲或演習,也區分了玩家之前是否接受過決策輔助工具訓練的游戲。這些評價是在蘭德公司與韓國國防分析研究所合作進行的一些兵棋推演實驗后制定的。
關于簡單決策輔助工具的另一個數據點是蘭德公司同事開發的(但尚未出版)的 "奇怪的游戲"。這是一個關于核使用的高效兵棋推演,玩家代表一個戰區指揮官,通過選擇適當的卡片來進行游戲。該游戲建立了決策輔助工具,包括目標類別和評估選擇何種目標的簡單線性算術。
作為近期決策輔助工具的最后一個例子,最近的一個原型研究采用了一種低技術的方法來進行人類演習,考慮如何在危機和沖突中影響對手。該方法涉及一種定性的方法,即不確定性敏感認知模型(UCM),如圖5所概述。這些機制都是定性的,通過真實或虛擬的白板和互動軟件進行展示和討論。它們包括因素樹、表示有限理性的Red替代模型、影響圖以及戰略明顯優缺點的表格比較。沒有一個涉及人工智能。很明顯,人工智能甚至不會有幫助。也許這是一個重要的洞察力,也許這反映了想象力的不足。現在讓我們來看看長期的情況。
從長遠來看,可能會有更多的東西,我們應該從科幻小說、電子娛樂游戲、甚至主要電視網絡對新出現的選舉結果的實時討論中尋找靈感。僅僅舉例說明在不遠的將來可能出現的功能,在每一個功能中,人工智能系統都會對查詢作出反應。
一個團隊口頭命令對 "成功之路 "進行探索性分析,包括是否有某一盟友的堅定合作。
一個小組詢問,鑒于最近發生的事件,對手的哪些替代模型仍然是可信的。人工智能報告反映了依賴于主觀可能性函數的貝葉斯式分析,這些函數已被更新以反映最近的歷史。
一個考慮有限升級的團隊詢問了潛在的反應。人工智能幫助器顯示了在以前的兵棋推演中觀察到的反應,玩家被認為很好地代表了實際的決策人。它還確定了在模擬中反應不好的條件(在下一節中討論),從而強調了條件的哪些方面需要特別注意以避免災難。
這些猜測是最低限度的,只是為了激發人們對人工智能如何在決策輔助方面發揮作用的更多創造性思維。這個領域是開放的,從某些類型的人工智能的名稱中可以看出,從反應型機器到具有有限記憶、內置心智理論和自我意識的機器,這個領域是開放的,甚至更加明顯。一些主要人物,如珀爾和麥肯錫,自信地預計后者將包括意識本身。然而,那是未來的事了。佩爾將目前的機器人描述為 "像鼻涕蟲一樣有意識"。也就是說,蜂群武器很快就會像鳥群、魚群和昆蟲一樣有 "意識"。
讓我們接下來談談涉及人工智能與M&S的一些棘手問題。它們涉及到哪些人工智能決策輔助工具是可行的。
如前所述,機器學習類人工智能(AI/ML)有可能通過挖掘大規模場景生成的結果來尋找洞察力。然而,成功取決于(1)模擬的質量和(2)用于搜索結果的方法。
大量場景生成的成果可能是有用的,也可能是反作用的,這取決于基礎模型是否足夠豐富,結構上是否符合探索的目的。在研究可能的高端危機時,如果基礎模型假設了完美的理性、認知、聯盟關系,并專注于例如核武器的交換后比率作為結果的衡量標準,那么一百萬種情景的數據庫有什么用呢?對于軍事技術目的,如部隊規劃,可能有價值,但對于威懾或預測實際沖突中的問題,甚至是嚴肅的精英兵棋推演,可能沒有價值。
模型建立者所面臨的挑戰的某些方面是眾所周知的,如認識到對決策者(性格、人格、健康)的替代概念的需要,認識到錯誤認知的可能性,以及允許卡尼曼和特沃斯基的前景理論和其他心理現象所描述的那種非理性決策。應對這些挑戰,至少可以說是困難重重,但至少挑戰是被認可的。
相比之下,軍事模擬和社會行為模擬的一個骯臟的小秘密是,工作場所的模型通常不會產生黑天鵝事件、不連續現象或各種突發現象,而這些現象是研究復雜適應性系統的核心要素,在現實世界和一些大型游戲中都會出現,比如20世紀50年代的 "精英 "高級冷戰兵棋推演。原因有很多,但通常是由于模型是 "腳本化的",而不是基于智能體的,或者--即使它們確實有智能體--沒有給智能體足夠的多樣性、自由度和激勵來產生現實的適應性行為,以及不允許有長尾分布的隨機性。在這些問題上做得更好,對社會行為模擬來說是一個巨大的挑戰,特別是對那些打算與現實兵棋推演相聯系的模擬來說。一些成分包含在復雜的兵棋推演中,因此人們可以觀察到,例如,聯盟的解體和新集團的建立,在團隊看來,這更符合他們的國家利益。今天的模擬通常不允許這樣做。從推測上看,我們認為至少有兩條路可以做得更好。如果可以預見感興趣的突發現象(比如上面的聯盟問題),那么就可以建立適當的對象,模擬可能會識別出何時引導它們出現或消失。但是,最重要的突發現象(包括一些在兵棋推演中出現的現象)可能無法被預期。盡管我們并不聲稱知道什么是必要的,但我們從過去的復雜性研究的經驗中觀察到,突發現象的產生往往是因為復雜的自下而上的互動、多樣性和隨機事件。然而,傳統的高層政治軍事模擬并不具備這些特征。它們的價值在很大程度上是由于它們代表了更高層次的實體和過程,大致與系統動力學的模型相類似。我們的結論是,在前進的過程中,重要的是開發多分辨率的模型系列和將它們相互聯系的方法。例如,一個更高分辨率的基于智能體的模型可能有適應性的智能體,用于所有卷入危機或沖突的國家。仿真實驗可能會發現(就像人類游戲一樣)上面提到的那種突發行為,例如聯盟的偶爾解散、側翼切換和新的便利聯盟的出現。這將是''洞察力'',然后可以導致在更高層次的模型中添加新的智能體,根據模擬中的情況激活或停用的智能體。然而,這將需要類似于最近一本關于社會行為建模的書中所討論的 "自我感知的模擬",特別是伊爾馬茲的那一章,他設想的計算可以監測自己的狀態,并在必要時改變自己的結構,還有一章是作者之間關于出現的辯論。
如果模擬足夠豐富,那么有意義的大規模場景生成是可能的。但然后呢?對模擬數據進行探索性分析的一個核心挑戰是了解如何評估不同情況的相對重要性。一種方法是分配主觀的概率分布,但哪里能找到能夠可靠地估計概率的專家,而不在前面加上諸如 "嗯,如果明天像過去一樣 "的評論。現實上,專家并不是預測或概率的好來源,Tetlock及其同事已經深入討論過了。
一種變通的方法是報告結果的頻率(以百分比計算),例如,好或壞。這可以通過全因子設計或使用蒙特卡洛抽樣來完成。不幸的是,存在著滑向討論"可能性"而不是百分比的趨勢,即使案例的可能性不一樣。另外,在MSG的背景下,這種類型的展示掩蓋了這樣一個現實,即行為者不斷尋找他們將獲得重大優勢的情景空間的模糊 "角落"。因此,在模擬中不經常觀察到的情況可能正是發展中的情況。
我們建議的方法是避開明確的概率分配,而是 "尋找問題"或 "尋找成功"。也就是說,當探索性分析產生的大量數據時,人們可能會尋求找到結果非常好、非常壞或其他的條件。這在關于穩健決策(RDM)和DMDU的文獻中被稱為情景發現。
更進一步,我們敦促人工智能以 "聚合片段"的形式得到提示,其動機來自理論、簡單模型和主題領域的專業知識。一個例子可能是 "沖突開始時的準備狀態"。對于戰略預警時間、戰術預警時間、領導層特征、先前的軍事準備狀態和動員率的巨大不同組合,其數值可能是相同的。也就是說,這個變量是許多微觀初始狀態的集合。另一個例子(假設有合適的智能體)可能是危機發生時的心理狀態,其值包括偏執狂、冷靜和理性以及自信的攻擊性。
鑒于足夠豐富的模擬和理論為人工智能在探索性分析中提供了提示,我們懷疑人工智能可以在識別 "完美風暴 "的情況等活動中完成大量工作--不是為了預測它們,而是為了注意要避免的條件,就像在簡單的兵棋推演中以低技術方式完成的那樣。
另一個ML應用可以從關于對手行動的大規模情報收集中為兵棋推演和M&S創建算法,例如那些潛艇或地面移動導彈。曾經需要幾個月或幾年的時間來收集和分析的東西,現在可能在很短的時間內就能得到,產生可用于兵棋推演或M&S的操作程序的算法。作為一個類比,考慮獲得關于駕駛安全的洞察力。今天最深刻的洞察力來自保險公司(Progressive, GEICO),它基于可下載的軟件,跟蹤個人操作者:他們的速度,左轉的數量,加速模式,等等。這些數據可以與信用評分和其他數據整合。其結果可以是個性化的保險費率。這樣的數據分析已經是今天的現實。應該有類似的軍事和MSG影響。當然,有一些必然是分類的,對于本文的政治軍事重點來說,其意義不如MSG的其他應用。
上面的討論集中在ML式的人工智能上,但所需要的豐富的模擬必須有智能體以更像人類的方式進行推理,這種東西可以被描述為認知型人工智能。在這一點上,決策邏輯使用的因素和推理與人類喜歡相信的東西相似,是他們實際行為的基礎。
1980年代RSAS的紅方和藍方智能體是早期的例子。他們利用廣泛接受的升級階梯結構來描述核危機和沖突中的情況、選擇和決策選擇。
今天,我們需要新一代的更高層次的決策模型,但不存在升級階梯的替代品。也許也不會找到替代品。當從兩方博弈到甚至三方博弈時,復雜性大大增加。一個替代的概念必然會更加復雜--更像是一個n維網格而不是一個階梯--因為升級可能不僅涉及核武器及其目標的數量,還涉及與網絡戰爭、太空戰爭和精確射擊的戰略使用有關的數量、強度和目標。
圖6簡單說明了這一概念,結合了幾個維度,以便人為地顯示只有三個維度的結果。它顯示了一個說明性的情景,開始是一場溫和的常規戰爭(第1項),但隨后依次過渡到嚴重的網絡攻擊(第2項),更廣泛地使用精確制導導彈(PGMs)(第3項),有限的核使用(如箭頭所示的核升級)(第4項),甚至更具破壞性的使用PGMs(如針對大壩和發電廠)。 例如,針對水壩和電網)(第5項),也許大規模殺傷性武器的水平略有提高(也許只是為了以牙還牙),以及全面核戰爭(第6項)。然而,今天,對于某種特定的攻擊會出現在某一軸線上,以及行為者是否會有相同的評估,并沒有共同的理解。不僅"客觀"的答案充其量是短暫的,認知很可能取決于路徑,取決于國家,并受到隨機影響。規劃的一個核心問題是核武近鄰國家之間的長期非核戰爭是否可信。由于常規戰爭和核戰爭的指揮和控制系統的糾纏,這些問題變得更加麻煩。似乎預測模型,無論是否基于人工智能,都不在考慮之列,盡管產生值得擔心的合理情況的模型應該在考慮之列。
對于那些尋求建立認知型人工智能模型以代表危機中的國家決策者的人來說,可能還會列出更多的挑戰,但我們希望我們的例子能吸引眼球。
本文的主要建議是推薦一個研究議程,將建模、模擬、游戲和分析視為相關的和相互交織的。在這樣一個綜合的觀點中,兵棋推演的人工智能將通過使用模型的分析來了解,這些模型包括包含了部分由兵棋推演提供的人工智能智能體。例如,這將導致具有類似于兵棋推演決策助手的人工智能智能體,以及更復雜的算法。它將導致基于兵棋推演的決策輔助工具,它將類似于將有理論依據的ML應用于由探索性分析產生的 "數據",這些探索性分析來自于利用決策智能體形式的AI的M&S。
關于人工智能本身,我們對今天的ML中常見的一些做法提出警告。我們注意到缺乏關于未來危機和沖突的可靠的信息性經驗數據。此外,我們強調,在決策輔助工具和模型中使用的智能體中,都需要解釋。這表明我們更傾向于由認知模型構成的人工智能,即使ML被用來填充和調整該結構。
最后,我們敦促對兵棋推演(包括小規模的活動,如事后演習)和模型所提出的問題要非常謹慎。模型、模擬、游戲和分析仍然是不完美的,有時甚至是明顯不完美的,但我們有可能很好地利用它們來解決許多問題,也就是說,提高決策的質量。預測可能性有很大的潛力;可靠的預測則沒有。