亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

3月21日晚,英偉達召開2023年開發者大會。正如英偉達CEO黃仁勛所言,我們正處于AI的“iPhone時刻”。ChatGPT帶給我們的巨大驚喜只是AI能力圈的冰山一隅, 我們基于當下時點,探尋AI的能力圈,發現AI的潛在場景。

**①AI+計算機 =“程序員”。生成式 AI 是一種新型計算機,一種基于人類自然語言編程的計算機。ChatGPT可以根據精確或模糊的自然語言,了解用戶的意圖,并生成本文,寫備忘錄和詩歌,改寫研究論文,解決數學問題,甚至編寫軟件。借助Debuild,用戶只需說明自己想要的內容即可設計和部署Web應用;Tabnine可幫助開發者編寫代碼;AI將整合百萬級程序員的智慧,幫助我們構建虛擬世界。AI可以建立強大的搜索機制,在海量內容中完成精細化的搜索。

②AI+醫療 =“藥物研發”。醫療設備將由軟件定義,由AI賦能。目前醫療行業正轉向利用生成式 AI 來發現疾病靶因,設計新型分子或蛋白質類藥物,以及預測藥物對機體的作用。Medtronic搭建醫療設備AI平臺,覆蓋手術導航到機器人輔助手術的應用場景,今年年底推出的GI Genius系統將利用AI實現早期結腸癌檢測。Insilico利用AI加速藥物設計;Absci使用AI預測治療抗體。

③AI+傳媒=“設計師”。**生成式AI正逐漸轉向多模態,圖像、視頻和3D等生成式AI正在悄然變化。Kore.ai可以實現虛擬客服;Jasper可以生成營銷材料,目前已經完成50萬億字的編寫,將初稿生成時間縮短80%;Omneky可生成定制化廣告和文案;Stable Diffusion 致力于文本轉圖像;Runway借力AI賦能視頻生成和編輯,并已經在奧斯卡提名的好萊塢電影中的得到應用;此外,AI可以通過快照構建3D建模,應用于房屋設計、服裝設計等方面;AI將虛擬形象提升至更高的現實水平。同時,在音樂領域,AI將文字賦予生命力,譜寫旋律。

**④AI+制造=“數字生產”+“工藝突破”。**AI可以成為虛擬世界與物理實體之間的橋梁。 “數字孿生工廠”可以在實體工廠建成之前整合所有資源,實現降本增效。“數字孿生產品”可以將汽車零部件在虛擬環境中完成組裝。“數字場景”可以將駕駛路線、環境場景重構為3D,用于訓練機器人和自動駕駛。

**AI加速技術引領工藝突破,**NVIDIA推出的計算光刻庫——cuLitho,與臺積電、ASML和Synopsys密切合作,將計算光刻加速40倍以上。計算光刻是芯片設計和制造領域中最大的計算工作負載,H100的生產需要89塊掩模版在CPU上處理兩周,如果在GPU上運行cuLitho將時間縮短至8小時。cuLitho將有助于晶圓廠縮短原型周期時間、提高產量、減少碳排放,為2nm及更先進的工藝奠定基礎。

**⑤AI+科研=“科學家”。**將AI應用在大型對撞機中以解釋宇宙等議題;讓人類以全新視角了解太陽,來建立風險預警機制。生成式 AI 將重塑幾乎所有行業。許多公司都可以使用某個即將上市的生成式 AI API,一些專業領域的公司需要使用其專有數據來構建定制模型。繼PC時代的“Macintosh時刻”、移動設備的“iPhone時刻”,AIGC時代的“ChatGPT時刻”已經掀起第三次科技浪潮,看好AIGC下游應用市場、算法和底層算力。轉編機器之心機器之心編輯部

在今年的 GTC 上,NVIDIA 創始人兼首席執行官黃仁勛與 OpenAI 聯合創始人、首席科學家 Ilya Sutskever 進行了一場深度對話,討論了 GPT-4、ChatGPT 背后的故事,也聊了下深度學習的未來。

如今,OpenAI 可以說是整個 AI 領域最火的研究機構。憑借強大的 GPT-4 以及與微軟必應、Office 等產品的融合,這家公司似乎要掀起一場生產力革命。這一成就是由多方面的力量來驅動的,包括聰明的頭腦和強大的基礎設施。在「聰明的頭腦」里,Ilya Sutskever 頗具代表性。2012 年,他和他的導師 Geoffrey Hinton 以及同學 Alex Krizhevsky 一起,用深度神經網絡刷新了 ImageNet 的歷史記錄,拉開了卷積神經網絡統治計算機視覺的序幕,標志著新一波人工智能浪潮的開始。2021 年,這個名為 AlexNet 的論文被引量突破 10 萬。「為了加速訓練,我們用到了非飽和神經元和一個非常高效的 GPU 卷積操作實現。」Ilya Sutskever 等人在 AlexNet 的相關介紹中提到了這樣一條關鍵信息。他們還詳細說明了如何將他們的網絡映射到多個 GPU 上。從這時起,GPU 和神經網絡緊緊地綁定在一起。黃仁勛領導的英偉達自然也成了這波 AI 浪潮中不可或缺的一環。2015 年,Ilya Sutskever 參與創辦了 OpenAI,并帶領這家公司一路向著 AI 大模型的方向前進。但隨著模型變得越來越大,訓練它們所需的算力也急劇增長。「加速計算并非易事,2012 年,計算機視覺模型 AlexNet 動用了 GeForce GTX 580,每秒可處理 262 PetaFLOPS。該模型引發了 AI 技術的爆炸。十年之后,Transformer 出現了,GPT-3 動用了 323 ZettaFLOPS 的算力,是 AlexNet 的 100 萬倍,創造了 ChatGPT 這個震驚全世界的 AI。嶄新的計算平臺出現了,AI 的 iPhone 時代已經來臨。」黃仁勛在 GPT 大會的 Keynote 中說道。在這次大會上,英偉達發布了 ChatGPT 專用的 GPU,推理速度提升了 10 倍。一路走來,Ilya Sutskever 和黃仁勛都是這波 AI 浪潮的見證者和重要推動者。在即將到來的「AI iPhone 時代」,兩人也必將扮演重要的領導者角色。在這場對話中,兩人談到了深度神經網絡的能力、限制和內部工作方式,并勾勒了一些未來的圖景。在打造 GPT-4 的過程中,Ilya Sutskever 堅信「(模型)越大越好,擴大規模是 OpenAI 的目標之一」。這自然是黃仁勛喜聞樂見的。 I had a very strong belief that bigger is better, and a goal at OpenAI was to scale. ——Ilya Sutskever兩人的談話進行了大約 1 個小時,就像老朋友邊喝咖啡邊聊天一樣。以下是這次談話的完整視頻(帶中文字幕),大家可以在其中感受時代的脈搏。

英偉達博客://blogs.nvidia.com/blog/2023/03/22/sutskever-openai-gtc/ 視頻鏈接:

付費5元查看完整內容

相關內容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美國OpenAI 研發的聊天機器人程序 [1] ,于2022年11月30日發布 。ChatGPT是人工智能技術驅動的自然語言處理工具,它能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼,寫論文任務。 [1] //openai.com/blog/chatgpt/

Open AI推出Plugin(插件),成功鏈接互聯網。我們認為此舉意味著Open AI已經成功鏈接互聯網,且正處于蘋果“App Store”時刻。APP Store商業模式在互聯網時代大放異彩,我們認為Plugin在“AI+”的時代具有異曲同工之妙,APP Store極此舉在“互聯網+”的時代極大的推動了應用軟件的生態繁榮,而Plugin正處于“AI+”時代的這一時刻。Plugin功能強大,Open AI本身具備開發插件,網絡瀏覽器幫助Open AI接入互聯網成功彌補自身短板,代碼解釋器引領“編程變革”。

  ChatGPT plugin生態伙伴正在愈發繁榮,已知插件的功能包括制定旅游計算、收集財政票據、網上訂購、預定餐廳、數學計算等各個方面,包括人們日常應用等各個部分。Plugin已經具備“AI助手”的能力:1、ChatGPT Plugin可以及時更新實時信息;2、ChatGPT Plugin更具有服務化的意識;3、辦公領域中,扮演更加類似“助手”的作用,此外Plugin調用極其便捷,我們認為功能類似微信的“小程序”;此外,Plugin創建第三方插件同樣方便快速。     我們認為Plugin意義非凡,打開海量應用空間。Plguin的出現正式成為引爆“AI+”的關鍵導火索,各類應用有望快速接入“大模型”,從而使“AI+”賦能千行百業,使用者可以通過插件的方式讓客戶通過簡單自然語言的對話,就可以完成復雜的任務,比如文檔操作、編程、預定參訂、食材等操作;此外,我們認為Plugin的商業模式與蘋果APPStore有異曲同工之妙,Plugin的出現即為AI時代的流量和客戶的入口。我們認為AI加速賦能應用的時代已經到來,目前來看,大模型的賦能應用的場景只限于自然語言處理,我們認為未來計算機視覺、多模態、生物計算同樣有望引爆應用市場,同時,我們認為未來5-10年內,所有的科技應用有望在大模型的加持下大放異彩,包括醫療、教育、辦公、工業等多方面。   高于操作系統戰略的地位 Plugin。 通過多插件的相互協同構建私人定制的   人工智能管家將是 OpenAI 的未來形態。通過 ChatGPT 釋放出的第一批第三方插件中,基本全方位覆蓋衣食住行、情感交互、工作以及學習等日常所需。而相關插件的能力將通過 ChatGPT Plugins 的三大基礎套件: Browsing(聯網插件)、Code Interpreter(代碼編程器)以及 Retrieval(知識檢索插件) 目前通過多類插件的協作,可以實現多應用的協同,其本質上類似于 24x7 的私人助理。   不可忽視的戰略意義:復制蘋果生態的偉大歷程。 OpenAI 正沿著類蘋果模式的“終端+平臺+生態”,邁向高于操作系統的戰略地位。引入插件 Plugin 標志 ChatGPT 走在創建生態系統的偉大道路上,統一平臺+插件的模式有望構建與蘋果+App Store 相似的繁榮生態。復盤蘋果生態模式發展進程,我們發現ChatGPT 已經具備全部的先決條件:     通過 ChatGPT 劃時代的交互方式搶占終端的制高點,對標 iPhone 4 發布;發布 Plugin 并推出“交互+編程+個人助手”三大套件,對標 APP Store 模式,打造蘋果式的手機體驗; 宣布接入海量應用插件,在統一平臺上形成功能相互協同=App Store 通過排行榜、搜索等方式幫助 iPhone 用戶快速找到想要的應用程序的 “蘋果平臺”商業模式。   ChatGPT 自身的三大套件是構建海量插件相互協同的核心抓手,其目的是通過將多插件形成對用戶的全方位覆蓋,最終形成專屬個人的 AI 管家。 從ChatGPT 的首批接入的插件廠商即可看出 OpenAI 的目標是覆蓋人類生活的全維度。通過調節和協作相關插件, ChatGPT 從本質上轉變為每個人的私人助理。當個人可以通過同一平臺同時安排衣食住行、工作、娛樂乃至教育的任務部署,將構建不可打破的高粘性,并反哺于 GPT 模型的優化,最終進一步擴展ChatGPT-PlugIn 的戰略宏圖。  

付費5元查看完整內容

ChatGPT快速滲透, AI產業迎發展新機   ChatGPT是由OpenAI公司開發的人工智能聊天機器人程序, 于2022年11月發布, 推出不久便在全球范圍內爆火。根據World of Engineering數據顯示, ChatGPT達到1億用戶量用時僅2個月, 成為史上用戶增長速度最快的消費級應用程序。與之相比, TikTok達到1億用戶用了9個月, Instagram則花了2年半的時間。從用戶體驗來看, ChatGPT不僅能實現流暢的文字聊天, 還可以勝任翻譯、 作詩、 寫新聞、 做報表、 編代碼等相對復雜的語言工作。   ChatGPT爆火的背后是人工智能算法的迭代升級。ChatGPT是基于GPT-3.5微調得到的新版本模型, 能夠借助人類反饋的強化學習(RLHF) 技術來指導模型訓練, 實現模型輸出與人類預期的需求, 使對話內容更加人性化和富有邏輯性。從2008年第一代生成式預訓練模型GPT-1誕生以來, GPT系列模型幾乎按照每年一代的速度進行迭代升級, 未來隨著大語言模型(LLM) 技術的不斷突破, AI相關應用有望加速落地, AI產業或將迎來新一輪發展機遇。   ChatGPT激起AI浪潮,大算力芯片迎來產業機遇   ChatGPT是生成式人工智能技術(AIGC) 的一種, 與傳統的決策/分析式AI相比, 生成式AI并非通過簡單分析已有數據來進行分析與決策, 而是在學習歸納已有數據后進行演技創造, 基于歷史進行模仿式、 縫合式創作, 生成全新的內容。AIGC的應用非常廣泛, 包括自然語言生成、 圖像生成、 視頻生成、 音樂生成、 藝術創作等領域。   AIGC產業鏈主要分為上游算力硬件層、 中游數據/算法軟件層和下游行業應用層。硬件層依靠高性能AI芯片、 服務器和數據中心為AIGC模型的訓練提供算力支持, 是承載行業發展的基礎設施;數據/算法層軟件層主要負責AI數據的采集、 清洗、 標注及模型的開發與訓練, 多方廠商入局自然語言處理、 計算機視覺、 多模態模型等領域;行業應用層目前主要涉及搜索、 對話、推薦等場景, 未來有望在多個行業呈現井噴式革新。   多模態賦能下游行業智慧化升級   多模態大模型有望成為AI主流, 賦能下游行業智能升級。生成式AI主要依賴于人工智能大模型, 如Transformer、 BERT、GPT系列等。這些模型通常包含數十億至數萬億個參數, 需要龐大的數據集進行訓練, 致使AI算力的需求也呈現出指數級的增長。多模態是一種全新的交互、 生成模式, 集合了圖像、 語音、 文本等方式, 因其可以結合多種數據類型和模態的學習,將有望徹底改變我們與機器互動的方式, 快速占據人工智能主導地位。我們認為多模態大模型長期來看不僅可以從成本端降本增效, 需求端也將通過快速滲透推廣為下游行業帶來持續增長需求, 從而快速推動下游行業智慧化應用升級。   模型更新升級帶動下游行業不斷發展   從GPT-1到ChatGPT, 模型參數與訓練數據量不斷增加, 所需算力資源不斷提升:   GPT-1:最早的GPT模型之一, 包含了1.17億個參數, 預訓練數據量約為5GB。   GPT-2:參數數量達到了1.5億個, 預訓練數據量達40GB。   GPT-3:是目前為止最大的語言模型之一, 包含了1750億個參數, 預訓練數據量為45TB。   ChatGPT:基于GPT-3模型的變種之一, 參數量預計與GPT-3相近。   GPT-4性能提升顯著, AIGC應用市場空間廣闊   多模態模型是實現人工智能應用的關鍵。3月14日OpenAI發布GPT-4多模態大模型, 擁有1) 強大的識圖能力;2) 文字輸入限制提升至2.5萬字;3) 回答準確性顯著提高;4) 能夠生成歌詞、 創意文本、 實現風格變化。在各種專業和學術基準上,GPT-4已具備與人類水平相當表現。如在模擬律師考試中, 其分數在應試者前10%, 相比下GPT-3.5在倒數10%左右。多模態大模型在整體復雜度及交互性上已有較大提升, 模型升級有望加速細分垂直應用成熟, 賦能下游智慧化升級, 帶動需求快速增長。   AIGC下游市場滲透率低, 增長空間廣闊。根據 Gartner數據, 目前由人工智能生成的數據占所有數據的 1%以下, 預計2023年將有 20%的內容被生成式AI 所創建, 2025 年人工智能生成數據占比將達到 10%。根據前瞻產業研究院數據, 2025年中國生成式商業AI應用規模將達2070億元, CAGR(2020-2025) 為84.06%。

付費5元查看完整內容

百度于2023年3月16日召開關于“文心一言”的主題發布會,“文心一言”作為國內首款正式發布的生成式語言大模型,擁有文學創作、商業文案創作、數理邏輯推算、中文理解、多模態生成等功能。文心平臺依托于百度自研的產業級深度學習平臺飛槳(PaddlePaddle)打造,致力于為用戶提供一站式AI開發服務:   AI大模型與行業大模型:文心平臺提供NLP、CV、跨模態、生物計算四大主流AI研究領域的多個基礎大模型,多個模型在技術層面實現突破創新,處于世界領先水平。其中,NLP領域的ERNIE3.0Zeus采用自回歸網絡和自編碼網絡,能夠兼顧自然語言理解和生成功能;CV領域的VIMER-UFO2.0使用超網絡結構,推理時僅需激活總參數量的1/30;ERNIE-ViLG2.0引入基于語言和圖像的知識增強算法,在文本圖像生成任務中的表現已經超越了OpenAI旗下的DALLE-2。文心平臺與各行業企業聯手打造行業大模型,目前已覆蓋能源、金融、航天、制造、傳媒、城市、社科、電影等8個領域。目前已有650余家知名企業宣布接入“文心一言”,涵蓋企業服務、金融IT、汽車、傳媒、教育、家電、金融等10余個行業。     一站式開發平臺與開發工具:開發平臺方面,文心面向專業知識有限的AI應用開發者提供零門檻平臺EasyDL,面向專業開發者提供全功能平臺BML。目前這兩個平臺均僅支持使用百度文心的云端算力,可采用公有云、私有化離線、軟硬一體等部署方式。開發工具方面,文心提供ERNIEKit自然語言處理開發工具及PaddleFleetX全流程開發套件。此外,現階段文心平臺還向開發者免費提供大模型API。     產品與社區:百度文心通過構建產品與社區經營,對外展示生成式模型的強大性能,以此吸引愛好者投入創作,進而構筑成熟的AIGC社區,可在實踐中探索AI商業化模式。目前除“文心一言”外,文心平臺提供產業級搜索系統“文心百中”、藝術創意輔助平臺“文心一格”,以及采用眾創模式的旸谷社區。     目前百度文心生成式語言大模型在參數規模、技術創新、應用落地方面均在國內同業中處于領先水平。3月16日起,“文心一言”首批用戶可通過邀請測試碼接入體驗,同時百度智能云將面向企業客戶開放“文心一言”API調用接口,有望進一步豐富百度AI生態,賦能更多行業伙伴。  

付費5元查看完整內容

 1、ChatGPT火爆的背后:算法革新+算力支持+數據共振   ChatGPT引起全球熱烈反響,上線僅五天用戶突破百萬,ChatGPT在文本交互和語言理解方面能力的顯著進步或為通用人工智能的實現帶來曙光。究其先進性根本,ChatGPT在以往基礎上推進算法革新優化,輔以強大算力支持,并以大規模數據共振,協同助推這一劃時代產品誕生。OpenAI以B端提供API接口流量+C端訂閱收費模式,探索ChatGPT商業化路徑。展望未來AI將橫縱向并行,結合技術深化與能力邊界拓展,進一步鋪開應用面。   2、數字內容生產新方式——AIGC   AIGC的興起推動人類叩響強人工智能之門,可應用于文本、音頻、圖片、視頻、跨模態、策略生成等,有望開啟新一輪內容生產力革命。隨著Transformer、DiffusionModel等算力模型的迭代,推動AIGC在設計、內容創作、游戲智能、機器交互等領域實現降本增效。   3、新時代生產力工具,AIGC賦能內容生產   基于AI生成內容技術,AIGC已在游戲、廣告營銷、影視、媒體、互聯網、娛樂等領域初顯成效,并展現出較大的潛力。   AIGC將推動游戲生產范式升級,并豐富游戲資產生成,高效輔助游戲測試,使制作成本顯著降低,全流程賦能游戲買量;   AIGC貫穿廣告營銷全流程,將優化案頭工作環節,提供更專業的個性化營銷方案,并充實廣告素材,實現廣告自動化生成;   AIGC提升影視行業全管線效率。影視劇本創作已初見成效,多AI技術將助力電影中期拍攝,后期制作將更快完成;   AIGC帶給媒體行業人機協作方案。新聞寫作編排效率提升,傳媒向智媒轉向開啟新篇章;   AIGC提供互聯網行業豐富內容,和更便捷的服務。ChatGPT賦能智慧搜索,互為供給加速發展內容平臺發展,虛擬結合激發電商沉浸式體驗;   AIGC為娛樂行業提供了更多樣的體驗。人際交互娛樂邁入新臺階,AIGC或成元宇宙之匙。

付費5元查看完整內容

數據、算法、算力共振推動AIGC發展,模型開源及商業化帶來的產品化浪潮及通用人工智能領域的初探推動AIGC破圈。AIGC傳媒相關應用有望超千億。   復盤AIGC算法迭代:競爭中發展,模型開源及商業化推動應用破圈。2017年推出的Transformer架構的并行訓練優勢奠定了大模型訓練的基礎,以GPT為代表的預訓練模型,通過使用無標注數據預訓練及微調,緩解了標注數據不足的問題,并不斷提升參數量級及模型通用性,ChatGPT在此基礎上加入了利用人類反饋強化學習的訓練方法。擴散模型取代GAN成為圖像生成領域的主流模型,CLIP模型推動跨模態生成技術的發展。GPT3的商業化及CLIP及Stable Diffusion模型的開源推動文本生成、文生圖產品化的浪潮。谷歌、Meta持續探索文字生成視頻領域模型。   國內傳媒領域應用有望超千億。Gartner預測至2023年將有20%的內容被生成式AI所創建;至2025年生成式AI產生的數據將占所有數據的10%(目前不到1%)。紅杉預測生成式ai將產生數萬億美元經濟價值。2025年,國內生成式ai應用規模有望突破2000億,我們預測國內傳媒領域應用空間超1000億。   AIGC應用于文本、音頻、跨模態、策略生成,在設計、內容創作、廣告營銷、游戲、企業服務等領域開啟商業化,有望開啟新一輪內容生產力革命。   文本生成:應用于輔助寫作、營銷、社交、瀏覽器、企業級服務、心理咨詢等領域。代表公司Jasper.ai,通過SaaS訂閱收費模式,獲得B端客戶認可,率先實現規模化收入;OpenAI旗下ChatGPT由于其通用性被集成至瀏覽器、辦公自動化軟件、企業級服務產品中,作為增值服務項目。   音頻生成:應用于智能客服、有聲讀物制作、配音、導航、虛擬歌手、作曲等領域。代表公司喜馬拉雅、倒映有聲、標貝科技、StarXMusicXLab等。   跨模態生成:包括文生圖、文生視頻,圖片視頻生成文字等應用。AI繪畫代表產品Midjourney、DALL-E2、Dreamstudio、文心一格,主要按生成次數收費。   策略生成:應用于游戲、自動駕駛、機器人控制、智能交互數字人等領域。游戲領域代表性公司騰訊AILab、網易伏羲、啟元世界、rct.ai、超參數等。

付費5元查看完整內容

主要觀點:   ChatGPT帶來大模型時代變革,數據要素重要性提升   ChatGPT是由OpenAI研發的一種語言AI模型,其特點在于使用海量語料庫來生成與人類相似的反應。初代GPT模型參數1.17億,GPT2模型、GPT3模型參數分別達到15億、1750億。不斷提升的參數量級,使得ChatGPT3當前已經能夠應用在商業、研究和開發活動中。   當前此類參數體量龐大的模型,成為各大科技廠商研發重點。大模型的基礎為高質量大數據。ChatGPT的前身GPT-3就使用了3,000億單詞、超過40T的數據。此類大數據基礎的前提為三部分1)有效場景下的采集數據;2)大數據的存儲、清洗和標注;3)數據質量檢驗。   大模型發展之下,算力與網絡設施建設成為剛需   算力:ChatGPT類人工智能需要更充足的算力支持其處理數據,帶來更多高性能的算力芯片需求。英偉達表示,GPT-3需要512顆V100顯卡訓練7個月,或者1024顆A100芯片訓練一個月。2012年以來,AI訓練任務中的算力增長(所需算力每3.5月翻一倍)已經超越摩爾定律(晶體管數量每18月翻一倍)。   網絡設施:以微軟Azure為例,其AI基礎設施由互聯的英偉達AmpereA100TensorCoreGPU組成,并由QuantuminfiniBand交換機提供橫向擴展能力。服務器節點多、跨服務器通信需求巨大,網絡帶寬性能成為GPU集群系統的瓶頸,解決方式包括增加單節點通信帶寬與降低網絡收斂比,帶來光模塊、交換機等需求。   下游應用場景豐富,多行業落地可期   1)“生成式AI(generativeAI)”在互聯網及元宇宙領域市場化空間較為廣闊。基于現行的NLP算法發展程度及數據集規模。在不久的將來,生成式AI有較大可能在“智能客服”和“搜索引擎”進行增值,并有希望以“插件”的形式賦能現有的“生產力工具鏈(工程軟件/音視頻制作工具等)”。   2)AI在制造業的應用可分為三方面:a)智能裝備:指具有感知、分析、推理、決策、控制功能的制造裝備,典型代表有工業機器人、協作機器人、數控機床等;b)智能工廠:重點在于實現工廠的辦公、管理及生產自動化,典型的代表場景有協作機器人、智能倉儲物流系統等;c)智能服務:指個性化定制、遠程運維及預測性維護等。   3)人工智能在智能汽車領域的應用包括:a)智能駕駛依托AI,將從駕駛輔助發展至自動駕駛;b)智能座艙在AI支持下,從出行工具演變為出行管家。

付費5元查看完整內容

**刷爆的ChatGPT什么算法這么強!臺大李宏毅老師國語講解《ChatGPT (可能)是怎么煉成的 》! **

** **

** **

 AIGC多模態跨模態應用逐漸成熟,市場空間廣闊。   廣義的AIGC指具備生成創造能力的AI技術,即生成式AI。可以基于訓練數據和生成算法模型,自主生成創造新的文本、圖像、音樂、視頻等內容。2022年被稱為AIGC元年,未來兼具大模型和多模態模型的AIGC模型有望成為新的技術平臺。據《中國AI數字商業產業展望2021-2025》報告,預測AI數字商業內容的市場規模將從2020年的40億元,增加到2025年的495億元。   ChatGPT產品歷經多代技術演進,產品與商業模式逐漸成熟。   ChatGPT是文本生成式AI,過去的傳統AI偏向于分析能力,主要基于已有內容;現在文本生成式AI基于底層Transformer模型,不斷訓練數據和迭代生成算法模型,歷經GPT-1、GPT-2、GPT-3,模型不斷升級,到ChatGPT的GPT3.5模型,已可以自主生成各種形式的內容。近期收費版ChatGPTPlus版本發布,AI商業化序幕逐漸拉開。   AI商業化落地在即,行業算法側和算力側投資機會有望超預期。   根據數據顯示,ChatGPT總算力消耗約為3640PF-Days,按國內的數據中心算力測算,需要7-8個數據中心才能支持其運行。各模態AI數據訓練到應用均需要算法和算力的加持,未來要想大規模應用,算法訓練和算力部署均需先行。

付費5元查看完整內容

**刷爆的ChatGPT什么算法這么強!臺大李宏毅老師國語講解《ChatGPT (可能)是怎么煉成的 》! **

** **

** **

ChatGPT是OpenAI推出的聊天機器人模型,月度用戶已破億,正在逐步探索商業化途徑。ChatGPT能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼等任務。根據UBS統計數據顯示,ChatGPT上線2個月后月度用戶數量破1億。   OpenAI的商業模式為,會員收費、開放API以及與微軟的戰略合作。會員服務:2023年2月1日,OpenAI推出付費訂閱項目ChatGPTPlus,價格為$20/月,目前面向美國用戶。API服務:ChatGPT將在未來加入OpenAI的API,目前已在包括游戲虛擬人等泛娛樂內容產業和互聯網的多方面進行應用。1)辦公軟件:微軟計劃將包括ChatGPT等AI工具整合進旗下的所有產品中。ChatGPT已加入瀏覽器擴展程序,集成了ChatGPT-4的BING短暫上線。2)泛娛樂:AI或將不斷趨近人類思維敘事,AIGC是踏入元宇宙的重要一步,且已有公司在直播場景、游戲場景等泛娛樂中應用ChatGPT。   谷歌、百度等眾多公司推出自有AI產品,百度文心一言(ERNIEBot)預計三月份完成內測。百度擁有飛槳(深度學習開源框架)、百度AI大底座(全棧AI基礎設施)和文心大模型(AI應用場景全覆蓋)。ERNIE是百度開創性提出的基于知識增強的持續學習語義理解框架。ERNIE3.0參數量增大到了10B,訓練數據集為4TB。產品應用或可期待。  

付費5元查看完整內容
北京阿比特科技有限公司