亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主要觀點:   ChatGPT帶來大模型時代變革,數據要素重要性提升   ChatGPT是由OpenAI研發的一種語言AI模型,其特點在于使用海量語料庫來生成與人類相似的反應。初代GPT模型參數1.17億,GPT2模型、GPT3模型參數分別達到15億、1750億。不斷提升的參數量級,使得ChatGPT3當前已經能夠應用在商業、研究和開發活動中。   當前此類參數體量龐大的模型,成為各大科技廠商研發重點。大模型的基礎為高質量大數據。ChatGPT的前身GPT-3就使用了3,000億單詞、超過40T的數據。此類大數據基礎的前提為三部分1)有效場景下的采集數據;2)大數據的存儲、清洗和標注;3)數據質量檢驗。   大模型發展之下,算力與網絡設施建設成為剛需   算力:ChatGPT類人工智能需要更充足的算力支持其處理數據,帶來更多高性能的算力芯片需求。英偉達表示,GPT-3需要512顆V100顯卡訓練7個月,或者1024顆A100芯片訓練一個月。2012年以來,AI訓練任務中的算力增長(所需算力每3.5月翻一倍)已經超越摩爾定律(晶體管數量每18月翻一倍)。   網絡設施:以微軟Azure為例,其AI基礎設施由互聯的英偉達AmpereA100TensorCoreGPU組成,并由QuantuminfiniBand交換機提供橫向擴展能力。服務器節點多、跨服務器通信需求巨大,網絡帶寬性能成為GPU集群系統的瓶頸,解決方式包括增加單節點通信帶寬與降低網絡收斂比,帶來光模塊、交換機等需求。   下游應用場景豐富,多行業落地可期   1)“生成式AI(generativeAI)”在互聯網及元宇宙領域市場化空間較為廣闊。基于現行的NLP算法發展程度及數據集規模。在不久的將來,生成式AI有較大可能在“智能客服”和“搜索引擎”進行增值,并有希望以“插件”的形式賦能現有的“生產力工具鏈(工程軟件/音視頻制作工具等)”。   2)AI在制造業的應用可分為三方面:a)智能裝備:指具有感知、分析、推理、決策、控制功能的制造裝備,典型代表有工業機器人、協作機器人、數控機床等;b)智能工廠:重點在于實現工廠的辦公、管理及生產自動化,典型的代表場景有協作機器人、智能倉儲物流系統等;c)智能服務:指個性化定制、遠程運維及預測性維護等。   3)人工智能在智能汽車領域的應用包括:a)智能駕駛依托AI,將從駕駛輔助發展至自動駕駛;b)智能座艙在AI支持下,從出行工具演變為出行管家。

付費5元查看完整內容

相關內容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美國OpenAI 研發的聊天機器人程序 [1] ,于2022年11月30日發布 。ChatGPT是人工智能技術驅動的自然語言處理工具,它能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼,寫論文任務。 [1] //openai.com/blog/chatgpt/

ChatGPT開啟大模型“軍備賽”,存儲作為計算機重要組成部分明顯受益: ChatGPT開啟算力軍備賽,大模型參數呈現指數規模,引爆海量算力需求,模型計算量增長速度遠超人工智能硬件算力增長速度,同時也對數據傳輸速度提出了更高的要求。XPU、內存、硬盤組成完整的馮諾依曼體系,以一臺通用服務器為例,芯片組+存儲的成本約占70%以上,芯片組、內部存儲和外部存儲是組成核心部件;存儲是計算機的重要組成結構, “內存” 實為硬盤與CPU之間的中間人,存儲可按照介質分類為ROM和RAM兩部分。   存算一體,后摩爾時代的必然發展: 過去二十年中,算力發展速度遠超存儲, “存儲墻”成為加速學習時代下的一代挑戰,原因是在后摩爾時代,存儲帶寬制約了計算系統的有效帶寬,芯片算力增長步履維艱。因此存算一體有望打破馮諾依曼架構,是后摩時代下的必然選擇,存算一體即數據存儲與計算融合在同一個芯片的同一片區之中,極其適用于大數據量大規模并行的應用場景。存算一體優勢顯著,被譽為AI芯片的“全能戰士”,具有高能耗、低成本、高算力等優勢;存算一體按照計算方式分為數字計算和模擬計算,應用場景較為廣泛, SRAM、RRAM有望成為云端存算一體主流介質。   存算一體前景廣闊、漸入佳境: 存算一體需求旺盛,有望推動下一階段的人工智能發展,原因是我們認為現在存算一體主要AI的算力需求、并行計算、神經網絡計算等;大模型興起,存算一體適用于從云至端各類計算, 端測方面, 人工智能更在意及時響應,即“輸入”即“輸出”,目前存算一體已經可以完成高精度計算;云端方面,隨著大模型的橫空出世,參數方面已經達到上億級別,存算一體有望成為新一代算力因素;存算一體適用于人工智能各個場景,如穿戴設備、移動終端、智能駕駛、數據中心等。我們認為存算一體為下一代技術趨勢并有望廣泛應用于人工智能神經網絡相關應用、感存算一體,多模態的人工智能計算、類腦計算等場景。

付費5元查看完整內容

隨著ChatGPT等語言大模型落地,AIGC技術落地在各行各業中得到發展和推進。根據模型的分類,AIGC的應用可被分為單模態和多模態兩類。單模態模型可以助力各個應用,提升原有的能力和生產力。諸如ChatGPT已與Bing結合,使搜索更智能化。同時,搜索引擎又能很好地彌補語言模型預訓練時不具備的數據實時性。單模態模型與操作系統的連接也能改變傳統的人機交互模式,使系統響應更智能,軟件間的數據流通更廣泛;與游戲應用的結合可以使NPC更鮮活,與玩家的對話更真實;應用于文學作品可以激發創作靈感,提高寫作效率,掀起AI電子書熱潮;應用于客服場景可以提升原智能客服的多輪對話能力,個性化回答能力。   多模態的模型是AIGC的發展趨勢,現有的DALL-E或StableDiffusion已經在文本到圖像的跨模態領域很好地落地,可以更容易地生成高質量海報和提升三維場景重建的效果;與視頻剪輯應用的結合降低視頻制作的門檻,拓展影視領域的空間;Google的多模態模型PaLM-E將豐富機器人操作場景,智能化機器人反饋。最新的GPT4多模態模型與Office辦公軟件的結合將顯著提升生產力,使辦公軟件間的聯動更智能;GPT4可以賦能教育科研領域,緩解教育資源短缺,降低獲取知識的門檻;GPT4可以賦能數字人,使數字人落地場景更豐富,交互更擬人;GPT4還能助力應用開發,簡化發開周期,降低開發的門檻。

付費5元查看完整內容

ChatGPT快速滲透, AI產業迎發展新機   ChatGPT是由OpenAI公司開發的人工智能聊天機器人程序, 于2022年11月發布, 推出不久便在全球范圍內爆火。根據World of Engineering數據顯示, ChatGPT達到1億用戶量用時僅2個月, 成為史上用戶增長速度最快的消費級應用程序。與之相比, TikTok達到1億用戶用了9個月, Instagram則花了2年半的時間。從用戶體驗來看, ChatGPT不僅能實現流暢的文字聊天, 還可以勝任翻譯、 作詩、 寫新聞、 做報表、 編代碼等相對復雜的語言工作。   ChatGPT爆火的背后是人工智能算法的迭代升級。ChatGPT是基于GPT-3.5微調得到的新版本模型, 能夠借助人類反饋的強化學習(RLHF) 技術來指導模型訓練, 實現模型輸出與人類預期的需求, 使對話內容更加人性化和富有邏輯性。從2008年第一代生成式預訓練模型GPT-1誕生以來, GPT系列模型幾乎按照每年一代的速度進行迭代升級, 未來隨著大語言模型(LLM) 技術的不斷突破, AI相關應用有望加速落地, AI產業或將迎來新一輪發展機遇。   ChatGPT激起AI浪潮,大算力芯片迎來產業機遇   ChatGPT是生成式人工智能技術(AIGC) 的一種, 與傳統的決策/分析式AI相比, 生成式AI并非通過簡單分析已有數據來進行分析與決策, 而是在學習歸納已有數據后進行演技創造, 基于歷史進行模仿式、 縫合式創作, 生成全新的內容。AIGC的應用非常廣泛, 包括自然語言生成、 圖像生成、 視頻生成、 音樂生成、 藝術創作等領域。   AIGC產業鏈主要分為上游算力硬件層、 中游數據/算法軟件層和下游行業應用層。硬件層依靠高性能AI芯片、 服務器和數據中心為AIGC模型的訓練提供算力支持, 是承載行業發展的基礎設施;數據/算法層軟件層主要負責AI數據的采集、 清洗、 標注及模型的開發與訓練, 多方廠商入局自然語言處理、 計算機視覺、 多模態模型等領域;行業應用層目前主要涉及搜索、 對話、推薦等場景, 未來有望在多個行業呈現井噴式革新。   多模態賦能下游行業智慧化升級   多模態大模型有望成為AI主流, 賦能下游行業智能升級。生成式AI主要依賴于人工智能大模型, 如Transformer、 BERT、GPT系列等。這些模型通常包含數十億至數萬億個參數, 需要龐大的數據集進行訓練, 致使AI算力的需求也呈現出指數級的增長。多模態是一種全新的交互、 生成模式, 集合了圖像、 語音、 文本等方式, 因其可以結合多種數據類型和模態的學習,將有望徹底改變我們與機器互動的方式, 快速占據人工智能主導地位。我們認為多模態大模型長期來看不僅可以從成本端降本增效, 需求端也將通過快速滲透推廣為下游行業帶來持續增長需求, 從而快速推動下游行業智慧化應用升級。   模型更新升級帶動下游行業不斷發展   從GPT-1到ChatGPT, 模型參數與訓練數據量不斷增加, 所需算力資源不斷提升:   GPT-1:最早的GPT模型之一, 包含了1.17億個參數, 預訓練數據量約為5GB。   GPT-2:參數數量達到了1.5億個, 預訓練數據量達40GB。   GPT-3:是目前為止最大的語言模型之一, 包含了1750億個參數, 預訓練數據量為45TB。   ChatGPT:基于GPT-3模型的變種之一, 參數量預計與GPT-3相近。   GPT-4性能提升顯著, AIGC應用市場空間廣闊   多模態模型是實現人工智能應用的關鍵。3月14日OpenAI發布GPT-4多模態大模型, 擁有1) 強大的識圖能力;2) 文字輸入限制提升至2.5萬字;3) 回答準確性顯著提高;4) 能夠生成歌詞、 創意文本、 實現風格變化。在各種專業和學術基準上,GPT-4已具備與人類水平相當表現。如在模擬律師考試中, 其分數在應試者前10%, 相比下GPT-3.5在倒數10%左右。多模態大模型在整體復雜度及交互性上已有較大提升, 模型升級有望加速細分垂直應用成熟, 賦能下游智慧化升級, 帶動需求快速增長。   AIGC下游市場滲透率低, 增長空間廣闊。根據 Gartner數據, 目前由人工智能生成的數據占所有數據的 1%以下, 預計2023年將有 20%的內容被生成式AI 所創建, 2025 年人工智能生成數據占比將達到 10%。根據前瞻產業研究院數據, 2025年中國生成式商業AI應用規模將達2070億元, CAGR(2020-2025) 為84.06%。

付費5元查看完整內容

 1、ChatGPT火爆的背后:算法革新+算力支持+數據共振   ChatGPT引起全球熱烈反響,上線僅五天用戶突破百萬,ChatGPT在文本交互和語言理解方面能力的顯著進步或為通用人工智能的實現帶來曙光。究其先進性根本,ChatGPT在以往基礎上推進算法革新優化,輔以強大算力支持,并以大規模數據共振,協同助推這一劃時代產品誕生。OpenAI以B端提供API接口流量+C端訂閱收費模式,探索ChatGPT商業化路徑。展望未來AI將橫縱向并行,結合技術深化與能力邊界拓展,進一步鋪開應用面。   2、數字內容生產新方式——AIGC   AIGC的興起推動人類叩響強人工智能之門,可應用于文本、音頻、圖片、視頻、跨模態、策略生成等,有望開啟新一輪內容生產力革命。隨著Transformer、DiffusionModel等算力模型的迭代,推動AIGC在設計、內容創作、游戲智能、機器交互等領域實現降本增效。   3、新時代生產力工具,AIGC賦能內容生產   基于AI生成內容技術,AIGC已在游戲、廣告營銷、影視、媒體、互聯網、娛樂等領域初顯成效,并展現出較大的潛力。   AIGC將推動游戲生產范式升級,并豐富游戲資產生成,高效輔助游戲測試,使制作成本顯著降低,全流程賦能游戲買量;   AIGC貫穿廣告營銷全流程,將優化案頭工作環節,提供更專業的個性化營銷方案,并充實廣告素材,實現廣告自動化生成;   AIGC提升影視行業全管線效率。影視劇本創作已初見成效,多AI技術將助力電影中期拍攝,后期制作將更快完成;   AIGC帶給媒體行業人機協作方案。新聞寫作編排效率提升,傳媒向智媒轉向開啟新篇章;   AIGC提供互聯網行業豐富內容,和更便捷的服務。ChatGPT賦能智慧搜索,互為供給加速發展內容平臺發展,虛擬結合激發電商沉浸式體驗;   AIGC為娛樂行業提供了更多樣的體驗。人際交互娛樂邁入新臺階,AIGC或成元宇宙之匙。

付費5元查看完整內容

大模型出現有望帶動AI服務器需求爆發

  我們認為ChatGPT具備跨時代的意義的本質是AI算法大模型,因此科技巨頭已經開始算力“軍備賽”,大模型的出現有望帶動AI服務器需求爆發。服務器架構隨負載量擴張不斷優化,已經經歷傳統單一部署與集群模式,目前正處于分布式模式的轉變階段。CPU、內部存儲和外部存儲是服務器的核心部件。   加速計算是服務器成長的核心驅動力     按照CPU指令集架構的差異,服務器可分為CISC(復雜指令集)、RISC(精簡指令集)、VLIM等架構,代表架構為X86。人工智能應用場景下的加速計算服務器是中國服務器的核心驅動力,AI服務器相較于通用服務器區別在于硬件架構、加速卡數量與設計方面;我們認為AI服務器眾芯片組為服務器的核心,且價值成本占比較高。   算力時代到來,服務器價值再次凸顯     我們認為服務器是“伴科技類”的硬件產品,隨著科技的服務形式和應用方式不斷進步,服務器同樣在不斷迭代升級或更新換代,近年來隨著互聯網+、云計算、AI+、邊緣計算的出現,服務器市場迎來了極大的發展;根據IDC的數據顯示,國家計算力指數與GDP/數字經濟的走勢呈現出了顯著的正相關,而AI服務器作為算力載體為數字經濟時代提供廣闊動力源泉,更加凸顯其重要性。

付費5元查看完整內容

國產“ChatGPT”揚帆啟航。OpenAI的商業模式為API接口收費。我們認為此種商業模式具有“卡脖子”的風險,因此我國需要發展自主可控的“ChatGPT”。國產生態正在逐步繁榮,百度打響國產ChatGPT領域“第一槍”,其在算法、算力、數據、生態、平臺五方面皆有儲備;ChatGPT的競爭本質即大模型儲備競賽,大模型是人工智能發展的必然趨勢,也是輔助式人工智能向通用性人工智能轉變的堅實底座。大模型分為NLP(自然語言處理)、CV(計算機視覺)、多模態和科學計算四類。此外,中美科技巨頭已經開啟大模型儲備“軍備賽”。

  百度文心一言,開啟國產ChatGPT新征程。百度是少有大模型語言訓練能力的公司,模型儲備方面,百度實現了全生態布局。1、NLP(自然語言處理),已經具備智能創作、摘要生成、問答、語義檢索、情感分析、信息抽取等能力,且可以讓機器人像人一樣具有邏輯且自由對話;2、CV(計算機視覺),可用于應用于圖像分類、目標檢測、語義分割等場景,此外還可以應用于文檔、卡證、票據等圖像文字識別和結構化理解;3、跨境大模型,可實現AI作畫、場景融合視覺常識推理、跨模態圖像檢索、跨模態文本檢索等多場景;4、生物計算,應用場景為蛋白結構預測和小分子藥物研發等領域。     百度為國產ChatGPT“領軍企業”,具有算力積累和生態優勢。平臺方面:擁有自主生態的百度百舸·AI異構計算平臺,具備高效率、多密度、高易用性、多場景部署、樂高式拼接等能力。算力方面:百度自身具有建設智能算力中心的實力,技術領先且自主可控,已有典型落地案例;服務器方面擁有自研的昆侖芯云服務器;芯片方面,昆侖芯AI芯片是百度自主研發的芯片,2代芯片已量產,具備算力支撐強、高速互聯等多重優勢。生態:百度大模型賦能千行百業,已有落地應用,合作廠商分別覆蓋科技、金融、航天、影視、汽車、電子制造等諸多產業。此外,我們推測ChatGPT有望成為搜索引擎的流量入口,百度搜索引擎有望借助文心一言大模型的能力重回巔峰。此外,目前國產科技巨頭已經開啟大模型的“軍備競賽”,因此,我們判斷,未來AI+有望賦能千行百業,具有AI+能力的廠商有望呈現“百花齊放”的態勢。  

付費5元查看完整內容

ChatGPT:AIGC現象級應用,商業化落地打開成長空間

  ChatGPT上線后熱度持續提升,已超過TikTok成為活躍用戶增長最快的產品。英偉達CEO黃仁勛表示“ChatGPT相當于AI界的iPhone問世”。目前ChatGPT已開啟商業化探索,面向B端開放接口對外輸出服務(如與微軟Bing的結合);面向C端推出收費的Plus版本,月度費用為20美元/月。根據OpenAI預測,2023年將實現2億美元收入,2024年將超過10億美元,未來成長空間廣闊。

  大模型+大數據+高算力,ChatGPT不斷突破

  (1)預訓練大模型:GPT大模型是ChatGPT的基礎,目前已經過多個版本迭代,GPT-3版本參數量達1750億,訓練效果持續優化。(2)數據:數據是預訓練大模型的原材料。GPT-3數據主要來自CommonCrawl、新聞、帖子、書籍及各種網頁,原始數據規模達45TB,訓練效果大幅提升。(3)算力:微軟AzureAI是OpenAI獨家云計算供應商,所用超算擁有285,000個CPU內核、約10,000個GPU。在大模型、大數據和高算力的支撐下,ChatGPT技術持續突破,表現驚艷。

  巨頭積極布局,產業落地加速

  AIGC在AI技術創新(生成算法、預訓練模型、多模態技術等)、產業生態(三層生態體系雛形已現)和政策支持(北京經信局表示支持頭部企業打造對標ChatGPT的大模型)共振下,有望步入發展快車道,根據騰訊研究院發布的AIGC發展趨勢報告,預計2030年AIGC市場規模將達1100億美元,前景廣闊。

  (1)微軟:微軟自2019年與OpenAI展開合作,并表示未來所有產品將全線整合ChatGPT。目前已推出引入ChatGPT技術的搜索引擎NewBing,經過測試后,71%的用戶對ChatGPT版Bing滿意,AI與搜索協同效果顯著。

  (2)谷歌:2023年2月谷歌推出對標ChatGPT的對話機器人Bard。Bard基于谷歌LaMDA模型,參數量最高達1370億,LaMDA已經在多個維度接近人類水平。谷歌表示未來會將AI技術率先應用于搜索領域,或將與微軟展開正面競爭。

  (3)百度:百度在AI領域深耕數十年,在芯片、深度學習框架、大模型以及應用已形成全棧布局,已有文心一格(AI作畫)、文心百中(產業搜索)產品落地。2023年2月,百度推出聊天機器人“文心一言”,目前生態合作伙伴近300家,未來可期。

付費5元查看完整內容

生成式 AI 對搜索引擎是否存在威脅?

  類似 ChatGPT 的生成式 AI 在搜索領域實現替代仍然面臨諸多挑戰,生成式 AI 技術需要先達到一定程度的 “規模優勢(包括預訓練數據集規模,用戶反饋量)”之后才有機會威脅到搜索引擎的生存地位。這種“規模優勢”既意味著模型可以解決問題的領域在數量上足夠龐大,又意味著同一個領域中模型可交付出的解決路徑數量最夠龐大。

  這種“規模效應”的達成有 2 個制約因素:1)用戶習慣的顛覆。基于當前技術迭代路徑的“搜索引擎(包括 Google,Baidu,和 Bing等)”已經教育了市場將近 25 年以上的時間,顛覆用戶習慣需要極大的動能,這種動能一定是基于“替代方案”的效率要比“現存方案”優越數倍以上;2)生成式 AI 的模型進化的本質是依賴于對龐大的數據集的訓練和微調,其背后的算力支撐是重要的技術驅動因素,而算力支撐取決于芯片技術(材料、設計、生產工藝)及“異構計算技術”的發展進程(包括計算開銷的下降和計算交付結果精確程度的提高)。

  生成式 AI 的算力需求

  根據 Next Platform 對前期訓練(不含微調)的估算, GPT-3 175B 的模型的每次訓練成本在 875 萬 – 1093.75 萬美元之間,對應花費時間在 110.5 天-27.6 天,每 1 百萬參數的訓練價格是 50 美元-62.5美元之間。根據 Cerebras AI model studio 的 GPT-3 模型訓練服務(基于 4-node CS-2 cluster)的報價信息, GPT 70B (700 億參數,14000 億 Tokens,85 天訓練時間)的訓練價格在 250 萬美元每次。

  生成式 AI 的商業化潛力

  類似 ChatGPT 的生成式 AI,在不久的將來,生成式 AI 有較大可能在“智能客服”和“搜索引擎”進行增值,并有較大可能以“插件”的形式賦能現有的“生產力工具鏈(工程軟件/音視頻制作工具等)” 。

  微軟和谷歌共同和分別面臨的挑戰

  無論對于微軟還是谷歌而言,由于“生成式 AI”所帶來的行業變革處于爆發的早期,行業的天花板較高,并且 AI 技術的上游硬件廠商也會微軟等模型層和技術層廠商產生溢價,所以“贏者通吃”或“強者恒強”的局面并不會出現。

  其共同面臨的挑戰包括: 1) 面臨細分領域(電商,社交,游戲)的威脅或直接競爭,威脅包括細分領域數據集獲得難度增大,競爭包括細分領域巨頭直接下場競爭并更易于滿足細分領域用戶需求。2)算力開銷驅動營業成本增加,生成式 AI 在發展早期的商業化績效目標需要被理性的界定清楚。早期的發展,需要有持續的現金牛業務支撐AI明星業務的研發及運維開支,同時也要避免業務間存在內部不配合和摩擦。3)如全球通脹及供應鏈擾動持續,生成式AI模型層和應用層等下游環節廠商所創造的價值不斷轉移到上游的硬件或者能源廠商。比如,高端GPU/FPGA的廠商較為集中,而可替代品有限,上游廠商有較強溢價權。

  微軟面臨的挑戰包括:1)因為是引領GPT技術發展的領先企業,所以在面臨政府或公益組織對其生成式AI生產內容的法律及道德問題時也是首當其沖;2)在智能手機操作系統、娛樂、文化、快消、電商等領域的數據積累有限,在這些領域進行模型訓練的學習曲線依然很陡峭;3)如果微軟同時掌握了用戶接入操作系統,辦公軟件,和生成式AI搜索引擎的入口,則將需要面臨更多“反壟斷”相關的問題。

  谷歌面臨的挑戰包括:1)對話式AI的搜索方式如果走向普及,將威脅現有的點擊付費的廣告商業模式;2)對現有的搜索引擎技術有一定路徑依賴,模型過于龐大和復雜,將生成式AI技術整合入搜索引擎需要更長時間的試錯;3)缺少先發優勢,OpenAI和微軟合作更早更深遠,而谷歌一直缺少對生成式AI技術落地的驗證(Bard并未達到預期)。

付費5元查看完整內容

ChatGPT系列報告:

**刷爆的ChatGPT什么算法這么強!臺大李宏毅老師國語講解《ChatGPT (可能)是怎么煉成的 》! **

** **

** **

【芯片算力】▲芯片需求=量↑x價↑,AIGC拉動芯片產業量價齊升。1)量:AIGC帶來的全新場景+原場景流量大幅提高;2)價:對高端芯片的需求將拉動芯片均價。ChatGPT的“背后英雄”:芯片,看好國內GPU、CPU、FPGA、AI芯片及光模塊產業鏈。   相關標的:海光信息、景嘉微、龍芯中科、中國長城、安路科技、復旦微電、紫光國微、寒武紀、瀾起科技、德科立、天孚通信、中際旭創。   【深度學習框架】深度學習框架是人工智能算法的底層開發工具,是人工智能時代的操作系統,當前深度學習框架發展趨勢是趨于大模型訓練,對深度學習框架的分布式訓練能力提出了要求,國產深度學習框架迎來發展機遇。   相關標的:百度、海天瑞聲、商湯科技、微軟、谷歌、Meta。   【深度學習大模型】ChatGPT是基于OpenAI公司開發的InstructGPT模型的對話系統,GPT系列模型源自2017年誕生的Transformer模型,此后大模型數量激增,參數量進入千億時代,國內百度也發布了ERNIE系列模型并有望運用于即將發布的文心一言(ERNIEBot)對話系統,未來國內廠商有望在模型算法領域持續發力。   相關標的:百度、科大訊飛、商湯科技、谷歌、微軟。   【應用】ChatGPT火爆全球的背后,可以窺見伴隨人工智能技術的發展,數字內容的生產方式向著更加高效邁進。ChatGPT及AIGC未來有望在包括游戲、廣告營銷、影視、媒體、互聯網、娛樂等各領域應用,優化內容生產的效率與創意,加速數實融合與產業升級。   相關標的:百度、騰訊、阿里巴巴、網易、昆侖萬維、閱文集團、捷成股份、視覺中國、風語筑、中文在線、三七互娛、吉比特、天娛數科。   【通信】AIGC類產品未來有望成為5G時代新的流量入口,率先受益的有望是AIGC帶來的底層基礎算力爆發式增長。   相關標的:包括算力調度(運營商)、算力供給(運營商、奧飛數據、數據港)、算力設備(浪潮信息、聯想集團、紫光股份、中興通訊、銳捷網絡、天孚通信、光庫科技、中際旭創、新易盛)、算力散熱(英維克、高瀾股份)。

付費5元查看完整內容

ChatGPT引領AI技術新一輪熱潮,預示著NLP技術有望迅速進入平民化應用時代。2022年11月30日,OpenAI公司上線了聊天機器人模型ChatGPT,迅速引發了全球的熱潮。ChatGPT是一種預訓練的語言大模型,采用大量的參數和大量的數據進行訓練,基于人類反饋的強化學習算法,將NLP技術和機器學習結合,極大地提升了模型算法的效率和能力。隨著ChatGPT的熱度不斷攀升,多家科技公司都開始布局ChatGPT相關技術領域,NLP技術有望迅速進入平民化應用時代。

  ChatGPT具有良好的商業價值,未來應用空間廣闊。ChatGPT相關技術不僅對眾多的C端應用帶來革新,同時也將對B端應用產生重大影響,企業數字化轉型有望真正從數字化走向智能化,ChatGPT在企業辦公中的應用,具備很大的想象空間。我們認為,協同辦公類應用作為企業各類應用的入口,同時具備知識管理、流程引擎等功能,具備很強卡位價值,在把ChatGPT技術引入后,可以極大提升產品的功能與應用體驗。員工僅需給出想要辦理的流程,由ChatGPT進行智能化辦理,從而改變過去員工需要自行在OA、ERP及業務系統中完成信息錄入、功能查找、業務辦理的現狀,將極大地提升辦公效率和使用體驗。目前微軟已經將ChatGPT應用到了Dynamics365、Teams等產品線,未來將要應用到Bing搜索中,未來的商業價值空間十分可觀。     AIGC有望成為未來人工智能的重要方向,商業化模式仍需摸索。AIGC即人工智能內容生成,ChatGPT就是典型的文本生成式的AIGC,其目前的成功也有望帶動AIGC在圖像、音樂、視頻等其他領域落地。Gartner曾多次將生成式AI列為未來的重要技術趨勢,是當下最引人注目的人工智能技術之一。據Gartner預計,到2025年,生成式人工智能將占所有生成數據的10%,而目前這一比例還不到1%。隨著ChatGPT開啟付費訂閱試點,AIGC的商業化進程正式拉開帷幕。據量子位報告統計,到2030年,AIGC的市場規模將超過萬億人民幣,但由于AIGC目前產業化程度有限,大量業務場景尚未成功變現,商業模式也還處于探索階段。我們認為,在當下時點,AIGC基于其出色的降本增效能力,在企業級市場的應用前景較為明朗和穩定,在C端消費市場的商業模式仍需進一步摸索。  

付費5元查看完整內容
北京阿比特科技有限公司