生成式 AI 對搜索引擎是否存在威脅?
類似 ChatGPT 的生成式 AI 在搜索領域實現替代仍然面臨諸多挑戰,生成式 AI 技術需要先達到一定程度的 “規模優勢(包括預訓練數據集規模,用戶反饋量)”之后才有機會威脅到搜索引擎的生存地位。這種“規模優勢”既意味著模型可以解決問題的領域在數量上足夠龐大,又意味著同一個領域中模型可交付出的解決路徑數量最夠龐大。
這種“規模效應”的達成有 2 個制約因素:1)用戶習慣的顛覆。基于當前技術迭代路徑的“搜索引擎(包括 Google,Baidu,和 Bing等)”已經教育了市場將近 25 年以上的時間,顛覆用戶習慣需要極大的動能,這種動能一定是基于“替代方案”的效率要比“現存方案”優越數倍以上;2)生成式 AI 的模型進化的本質是依賴于對龐大的數據集的訓練和微調,其背后的算力支撐是重要的技術驅動因素,而算力支撐取決于芯片技術(材料、設計、生產工藝)及“異構計算技術”的發展進程(包括計算開銷的下降和計算交付結果精確程度的提高)。
生成式 AI 的算力需求
根據 Next Platform 對前期訓練(不含微調)的估算, GPT-3 175B 的模型的每次訓練成本在 875 萬 – 1093.75 萬美元之間,對應花費時間在 110.5 天-27.6 天,每 1 百萬參數的訓練價格是 50 美元-62.5美元之間。根據 Cerebras AI model studio 的 GPT-3 模型訓練服務(基于 4-node CS-2 cluster)的報價信息, GPT 70B (700 億參數,14000 億 Tokens,85 天訓練時間)的訓練價格在 250 萬美元每次。
生成式 AI 的商業化潛力
類似 ChatGPT 的生成式 AI,在不久的將來,生成式 AI 有較大可能在“智能客服”和“搜索引擎”進行增值,并有較大可能以“插件”的形式賦能現有的“生產力工具鏈(工程軟件/音視頻制作工具等)” 。
微軟和谷歌共同和分別面臨的挑戰
無論對于微軟還是谷歌而言,由于“生成式 AI”所帶來的行業變革處于爆發的早期,行業的天花板較高,并且 AI 技術的上游硬件廠商也會微軟等模型層和技術層廠商產生溢價,所以“贏者通吃”或“強者恒強”的局面并不會出現。
其共同面臨的挑戰包括: 1) 面臨細分領域(電商,社交,游戲)的威脅或直接競爭,威脅包括細分領域數據集獲得難度增大,競爭包括細分領域巨頭直接下場競爭并更易于滿足細分領域用戶需求。2)算力開銷驅動營業成本增加,生成式 AI 在發展早期的商業化績效目標需要被理性的界定清楚。早期的發展,需要有持續的現金牛業務支撐AI明星業務的研發及運維開支,同時也要避免業務間存在內部不配合和摩擦。3)如全球通脹及供應鏈擾動持續,生成式AI模型層和應用層等下游環節廠商所創造的價值不斷轉移到上游的硬件或者能源廠商。比如,高端GPU/FPGA的廠商較為集中,而可替代品有限,上游廠商有較強溢價權。
微軟面臨的挑戰包括:1)因為是引領GPT技術發展的領先企業,所以在面臨政府或公益組織對其生成式AI生產內容的法律及道德問題時也是首當其沖;2)在智能手機操作系統、娛樂、文化、快消、電商等領域的數據積累有限,在這些領域進行模型訓練的學習曲線依然很陡峭;3)如果微軟同時掌握了用戶接入操作系統,辦公軟件,和生成式AI搜索引擎的入口,則將需要面臨更多“反壟斷”相關的問題。
谷歌面臨的挑戰包括:1)對話式AI的搜索方式如果走向普及,將威脅現有的點擊付費的廣告商業模式;2)對現有的搜索引擎技術有一定路徑依賴,模型過于龐大和復雜,將生成式AI技術整合入搜索引擎需要更長時間的試錯;3)缺少先發優勢,OpenAI和微軟合作更早更深遠,而谷歌一直缺少對生成式AI技術落地的驗證(Bard并未達到預期)。
海外大模型助力用戶活躍度增長,ChatGPT/GPT-4+應用或為最大機會 22 年末以來,海外大模型快速更迭,ChatGPT/GPT-4 向開發者開放 API, 且價格下探,帶動應用層面持續落地,并從單一的文字模態向圖文跨模態拓 展。在技術加持下,應用性能極大提升,助力用戶活躍度增加。我們認為, AI 時代,應用層將擁有巨大發展潛力,其中搜索、電商、社交、游戲、營銷、 教育、辦公、文學創作等領域空間較大。產業鏈相關公司包括:昆侖萬維、 湯姆貓、三七互娛、愷英網絡、藍色光標、易點天下、中文在線、光線傳媒、 捷成股份、風語筑、完美世界、吉比特、巨人網絡、寶通科技、三人行、值 得買、平治信息等。 搜索通過分析總結,直接展示結果; 電商實現個性化推薦 搜索領域代表公司包括微軟 new Bing 等。據微軟官網,自 2023 年 2 月 7 日 new Bing 發布以來,在 GPT-4 的加持下,截至 3 月 8 日,Bing 搜索引 擎日活躍用戶破 1 億;據七麥數據,Bing App 在美國 iOS 效率應用免費榜 排名從 1 月初的 100-140 名提升至 3 月末的 15-20 名。此外,一些海外的 電商平臺也紛紛接入 ChatGPT,形態包括:1)聊天客服:能夠為客戶提供 實時信息,實現降本增效;2)個性化推薦:ChatGPT 能夠根據用戶的興趣 和偏好篩選產品并進行推薦,優化購物體驗提升轉化率。代表公司包括 Shopify、Instacart 等。 龍頭布局社交聊天機器人;游戲賦能 NPC 聊天與代碼生成 社交方面,通過在社交媒體中嵌入聊天機器人,能夠解決用戶的實際問題, 如推薦食譜等;同時部分聊天機器人還具備上下文理解能力,具有聆聽、陪 伴等功能。此外,還有社交軟件將 ChatGPT 用于個性化的簡歷生成,提升 用戶的約會體驗。代表公司包括 Snap、Iris Dating 等。游戲方面, ChatGPT/GPT-4 技術在海外應用包括 NPC 聊天內容、劇情大綱、代碼生成 等,同時我們認為伴隨著多模態技術的發展,相關技術在游戲素材生產等領 域或持續落地。代表公司包括湯姆貓、ElectricNoir、中文在線(Chapters、 My Escape 宣布接入 ChatGPT)等。 **ChatGPT 驅動虛擬人交互與營銷內容生成;教育在學與教方面均快速落地 **
在營銷領域,我們認為 ChatGPT/GPT-4 的主要應用領域包括:1)營銷內 容生成:借助 ChatGPT 進行營銷文本、營銷視頻、音頻廣告、評論區回復、 虛擬物品、虛擬空間等內容生成;2)虛擬人:接入 ChatGPT,使得虛擬人 的回復更加智能,提升交互性能。代表公司包括 Jasper、SOCi、藍色光標、 天娛數科等。教育方面,主要落地方向包括:1)面向學生,作為虛擬導師, 提供一對一、個性化的輔導,營造沉浸化的學習環境,此外還能夠更好地總 結教學內容;2)面向教師,自動編寫教學材料,分析學生課堂表現,及時 了解學生的近況。代表公司包括 Duolingo、可汗學院、Nerdy 等。 辦公領域作為生產力工具,提升工作效率;文學創作不斷探索 辦公方面,3 月 16 日,微軟推出 Microsoft 365 Copilot,一方面將 AI 技術 集合到 Word/Excel/Powerpoint/Outlook/Teams 等日常工具中;另一方面, 推出商務聊天功能,通過將數據匯集,通過簡單的聊天即可隨時獲取工作信 息。此外,一些垂直類生產工具持續涌現,在郵件、新聞內容撰寫等結構化 領域落地。代表公司包括微軟、Salesforce、BlueMail、BuzzFeed 等。文 學創作不斷探索,部分作品已商業化。據韓國經濟新聞,全球首本 ChatGPT 撰寫、AI 翻譯校對插圖的圖書在 2023 年 2 月 22 日上架。
ChatGPT快速滲透, AI產業迎發展新機 ChatGPT是由OpenAI公司開發的人工智能聊天機器人程序, 于2022年11月發布, 推出不久便在全球范圍內爆火。根據World of Engineering數據顯示, ChatGPT達到1億用戶量用時僅2個月, 成為史上用戶增長速度最快的消費級應用程序。與之相比, TikTok達到1億用戶用了9個月, Instagram則花了2年半的時間。從用戶體驗來看, ChatGPT不僅能實現流暢的文字聊天, 還可以勝任翻譯、 作詩、 寫新聞、 做報表、 編代碼等相對復雜的語言工作。 ChatGPT爆火的背后是人工智能算法的迭代升級。ChatGPT是基于GPT-3.5微調得到的新版本模型, 能夠借助人類反饋的強化學習(RLHF) 技術來指導模型訓練, 實現模型輸出與人類預期的需求, 使對話內容更加人性化和富有邏輯性。從2008年第一代生成式預訓練模型GPT-1誕生以來, GPT系列模型幾乎按照每年一代的速度進行迭代升級, 未來隨著大語言模型(LLM) 技術的不斷突破, AI相關應用有望加速落地, AI產業或將迎來新一輪發展機遇。 ChatGPT激起AI浪潮,大算力芯片迎來產業機遇 ChatGPT是生成式人工智能技術(AIGC) 的一種, 與傳統的決策/分析式AI相比, 生成式AI并非通過簡單分析已有數據來進行分析與決策, 而是在學習歸納已有數據后進行演技創造, 基于歷史進行模仿式、 縫合式創作, 生成全新的內容。AIGC的應用非常廣泛, 包括自然語言生成、 圖像生成、 視頻生成、 音樂生成、 藝術創作等領域。 AIGC產業鏈主要分為上游算力硬件層、 中游數據/算法軟件層和下游行業應用層。硬件層依靠高性能AI芯片、 服務器和數據中心為AIGC模型的訓練提供算力支持, 是承載行業發展的基礎設施;數據/算法層軟件層主要負責AI數據的采集、 清洗、 標注及模型的開發與訓練, 多方廠商入局自然語言處理、 計算機視覺、 多模態模型等領域;行業應用層目前主要涉及搜索、 對話、推薦等場景, 未來有望在多個行業呈現井噴式革新。 多模態賦能下游行業智慧化升級 多模態大模型有望成為AI主流, 賦能下游行業智能升級。生成式AI主要依賴于人工智能大模型, 如Transformer、 BERT、GPT系列等。這些模型通常包含數十億至數萬億個參數, 需要龐大的數據集進行訓練, 致使AI算力的需求也呈現出指數級的增長。多模態是一種全新的交互、 生成模式, 集合了圖像、 語音、 文本等方式, 因其可以結合多種數據類型和模態的學習,將有望徹底改變我們與機器互動的方式, 快速占據人工智能主導地位。我們認為多模態大模型長期來看不僅可以從成本端降本增效, 需求端也將通過快速滲透推廣為下游行業帶來持續增長需求, 從而快速推動下游行業智慧化應用升級。 模型更新升級帶動下游行業不斷發展 從GPT-1到ChatGPT, 模型參數與訓練數據量不斷增加, 所需算力資源不斷提升: GPT-1:最早的GPT模型之一, 包含了1.17億個參數, 預訓練數據量約為5GB。 GPT-2:參數數量達到了1.5億個, 預訓練數據量達40GB。 GPT-3:是目前為止最大的語言模型之一, 包含了1750億個參數, 預訓練數據量為45TB。 ChatGPT:基于GPT-3模型的變種之一, 參數量預計與GPT-3相近。 GPT-4性能提升顯著, AIGC應用市場空間廣闊 多模態模型是實現人工智能應用的關鍵。3月14日OpenAI發布GPT-4多模態大模型, 擁有1) 強大的識圖能力;2) 文字輸入限制提升至2.5萬字;3) 回答準確性顯著提高;4) 能夠生成歌詞、 創意文本、 實現風格變化。在各種專業和學術基準上,GPT-4已具備與人類水平相當表現。如在模擬律師考試中, 其分數在應試者前10%, 相比下GPT-3.5在倒數10%左右。多模態大模型在整體復雜度及交互性上已有較大提升, 模型升級有望加速細分垂直應用成熟, 賦能下游智慧化升級, 帶動需求快速增長。 AIGC下游市場滲透率低, 增長空間廣闊。根據 Gartner數據, 目前由人工智能生成的數據占所有數據的 1%以下, 預計2023年將有 20%的內容被生成式AI 所創建, 2025 年人工智能生成數據占比將達到 10%。根據前瞻產業研究院數據, 2025年中國生成式商業AI應用規模將達2070億元, CAGR(2020-2025) 為84.06%。
下游突破:GPT-4能力躍遷打開技術可用性上限
GPT-4突破了僅適配淺層任務處理的定位,將深度參與人類工作流。這基于GPT-4相比GPT-3.5的能力全面提升:1)更可靠,更有創造力,可以理解并處理指令的微妙之處;2)具備更高智能,在學術和專業考試中表現接近人類最好水平;3)接受圖文類模特輸入,可將應用范圍拓展至機器人、智能駕駛等領域;4)利用模型調試、工程補丁、眾包測評等方式減少謬誤性顯示,解決體驗痛點。 上游需求:模型復雜度加大,大幅提升算力需求 我們認為,GPT-4的模型規模或將創新高,在訓練和運行時極可能造成較大的算力壓力。目前,OpenAI未披露具體模型規模參數,但更長的輸入量即更多的token,意味著指數級躍升的關聯性計算需求;而多模態指向更復雜的模型設計和訓練數據集。OpenAI在工程上進行優化緩解算力壓力,但多模態大模型因其特質,計算量激增,我們判斷,行業對算力的需求仍將維持高速增長態勢。 大模型商業化:OpenAI已跑通多條商業化路徑 商業化主要分為自有產品部分直接變現和ToB集成,倚靠行業領先的技術地位,OpenAI在較短時間內進行了較充分地變現嘗試。對于自有產品部分,GPT-4不再進行免費開放,意向用戶都需要直接或者間接參與商業轉化。集成進第三方產品思路上,OpenAI已涉及多個行業領域,并具備服務千萬級月活流量的能力。 大模型國產化:珠玉在前,國內廠商追趕在即 國外的快速進展對國內大模型參與者造成一定壓力。工程量爆發性增長,項目閉源導致國產化難度高企。在此追趕期間,參考辦公軟件領域發展歷程,國內玩家可選本土化思路,即創建合規的基本可用的版本。對于開發垂直小模型進行差異化競爭,因大模型泛化能力不斷增強,小模型市場空間有限。
1、ChatGPT火爆的背后:算法革新+算力支持+數據共振 ChatGPT引起全球熱烈反響,上線僅五天用戶突破百萬,ChatGPT在文本交互和語言理解方面能力的顯著進步或為通用人工智能的實現帶來曙光。究其先進性根本,ChatGPT在以往基礎上推進算法革新優化,輔以強大算力支持,并以大規模數據共振,協同助推這一劃時代產品誕生。OpenAI以B端提供API接口流量+C端訂閱收費模式,探索ChatGPT商業化路徑。展望未來AI將橫縱向并行,結合技術深化與能力邊界拓展,進一步鋪開應用面。 2、數字內容生產新方式——AIGC AIGC的興起推動人類叩響強人工智能之門,可應用于文本、音頻、圖片、視頻、跨模態、策略生成等,有望開啟新一輪內容生產力革命。隨著Transformer、DiffusionModel等算力模型的迭代,推動AIGC在設計、內容創作、游戲智能、機器交互等領域實現降本增效。 3、新時代生產力工具,AIGC賦能內容生產 基于AI生成內容技術,AIGC已在游戲、廣告營銷、影視、媒體、互聯網、娛樂等領域初顯成效,并展現出較大的潛力。 AIGC將推動游戲生產范式升級,并豐富游戲資產生成,高效輔助游戲測試,使制作成本顯著降低,全流程賦能游戲買量; AIGC貫穿廣告營銷全流程,將優化案頭工作環節,提供更專業的個性化營銷方案,并充實廣告素材,實現廣告自動化生成; AIGC提升影視行業全管線效率。影視劇本創作已初見成效,多AI技術將助力電影中期拍攝,后期制作將更快完成; AIGC帶給媒體行業人機協作方案。新聞寫作編排效率提升,傳媒向智媒轉向開啟新篇章; AIGC提供互聯網行業豐富內容,和更便捷的服務。ChatGPT賦能智慧搜索,互為供給加速發展內容平臺發展,虛擬結合激發電商沉浸式體驗; AIGC為娛樂行業提供了更多樣的體驗。人際交互娛樂邁入新臺階,AIGC或成元宇宙之匙。
ChatGPT帶火AIGC,OpenAI引領技術和生態。2022年11月,由OpenAI開發的聊天機器人ChatGPT推出并席卷了整個行業,其引入人類反饋的強化學習和監督學習訓練方法,具備優秀的聊天對話、文案創作、代碼編寫等功能,且得到了微軟的傾力支持,成為史上用戶增長最快的消費應用。聚焦國內,百度在大模型領域積累深厚,總體水平處于行業前端,其創新性引入大規模知識圖譜,模型性能得到大幅提升,公司近期宣布其“文心一言”產品將于2023年3月完成內測并面向公眾開放,下游關注度極高,目前已經得到新聞傳媒、互聯網、金融等多個行業客戶的廣泛支持。
變革:AIGC與人更為神似,模型和數據是主要助力。AIGC實現了從分析內容到創造生成新內容的跨越,而模型、數據集、算力、應用是催生AI技術新范式的重要因素。在模型方面,Transformer預訓練大模型為生成式AI帶來了里程碑式飛躍,其中OPENAI發布的GPT系列大模型掀起AIGC熱潮,尤其是ChatGPT火爆出圈。在數據集方面,數據量、多樣性、數據質量是訓練數據集的關鍵要素。 市場:大模型需要大算力,推動AI服務器市場增長。大模型的實現需要十分強大的算力來支持訓練過程和推理過程,根據OPENAI數據,訓練GPT-3175B的模型,需要的算力高達3640PF-days。ChatGPT的訓練成本和推理成本高昂。我們認為,隨著模型的迭代和AI芯片廠商產品的迭代,ChatGPT的訓練成本和推理成本未來必將呈現下降趨勢。但一次訓練百萬美元量級的訓練成本和每天百萬美元量級的推理成本,隨著全球和中國人工智能廠商布局大模型,大模型將為全球和中國AI芯片和AI服務器市場的增長提供強勁動力。根據我們的估算,大模型將為全球和中國AI服務器市場帶來約910.44億美元和345.50億美元的市場空間。市場空間巨大,相關芯片和服務器廠商將深度受益此次ChatGPT浪潮。 應用:行業將逐步回歸理性,能否突破需要看B端。未來2-3年是行業應用落地的關鍵時段,AIGC在經歷了近期的炒作熱潮結束之后,預計將經歷一段下沉期,市場趨向理性。期間,AIGC需要加快教育和融入市場,培育產品和應用。其中,B端是AIGC含金量最大的市場,AIGC需將技術轉化成工具和解決方案,為企業和行業賦能。其中,文本、圖像生成以及類聊天機器人等產品在B端都有較大應用潛力,游戲、金融和快消等市場有望率先取得進展。
主要觀點: ChatGPT帶來大模型時代變革,數據要素重要性提升 ChatGPT是由OpenAI研發的一種語言AI模型,其特點在于使用海量語料庫來生成與人類相似的反應。初代GPT模型參數1.17億,GPT2模型、GPT3模型參數分別達到15億、1750億。不斷提升的參數量級,使得ChatGPT3當前已經能夠應用在商業、研究和開發活動中。 當前此類參數體量龐大的模型,成為各大科技廠商研發重點。大模型的基礎為高質量大數據。ChatGPT的前身GPT-3就使用了3,000億單詞、超過40T的數據。此類大數據基礎的前提為三部分1)有效場景下的采集數據;2)大數據的存儲、清洗和標注;3)數據質量檢驗。 大模型發展之下,算力與網絡設施建設成為剛需 算力:ChatGPT類人工智能需要更充足的算力支持其處理數據,帶來更多高性能的算力芯片需求。英偉達表示,GPT-3需要512顆V100顯卡訓練7個月,或者1024顆A100芯片訓練一個月。2012年以來,AI訓練任務中的算力增長(所需算力每3.5月翻一倍)已經超越摩爾定律(晶體管數量每18月翻一倍)。 網絡設施:以微軟Azure為例,其AI基礎設施由互聯的英偉達AmpereA100TensorCoreGPU組成,并由QuantuminfiniBand交換機提供橫向擴展能力。服務器節點多、跨服務器通信需求巨大,網絡帶寬性能成為GPU集群系統的瓶頸,解決方式包括增加單節點通信帶寬與降低網絡收斂比,帶來光模塊、交換機等需求。 下游應用場景豐富,多行業落地可期 1)“生成式AI(generativeAI)”在互聯網及元宇宙領域市場化空間較為廣闊。基于現行的NLP算法發展程度及數據集規模。在不久的將來,生成式AI有較大可能在“智能客服”和“搜索引擎”進行增值,并有希望以“插件”的形式賦能現有的“生產力工具鏈(工程軟件/音視頻制作工具等)”。 2)AI在制造業的應用可分為三方面:a)智能裝備:指具有感知、分析、推理、決策、控制功能的制造裝備,典型代表有工業機器人、協作機器人、數控機床等;b)智能工廠:重點在于實現工廠的辦公、管理及生產自動化,典型的代表場景有協作機器人、智能倉儲物流系統等;c)智能服務:指個性化定制、遠程運維及預測性維護等。 3)人工智能在智能汽車領域的應用包括:a)智能駕駛依托AI,將從駕駛輔助發展至自動駕駛;b)智能座艙在AI支持下,從出行工具演變為出行管家。
結論:大模型的出現促進底層技術迭代,衍生出AIGC應用受到關注;大小模型路線分化加劇,傳統深度學習關注下游場景落地情況
回顧:AI傳統領軍全面下跌,行業多方面挑戰,宏觀經濟下行初期需求增量釋放緩慢。
落地場景需探索,人臉等已經紅海,工業、醫療等尚在早期,AI獨角獸IPO后股價表現較弱,與收入-薪酬匹配度仍然較低有關。
行業熱點在大模型:大規模預訓練+無監督,大幅提升AI效率
以GPT-3為代表的大模型,可以從大量未標記的數據中捕獲知識,極大擴展模型的泛化能力。
但仍存在缺陷:對邏輯理解欠缺,訓練成本過高,普通機構難以復現。
大模型應用:AIGC圖像生成、GPTChat、自動駕駛等成為熱點
隨著模型改進和像素提升,DALL-E2、Stable Diffusion等圖像生產AIGC應用爆發;
InstructGPT在GPTChat工具中應用效果提升,做到與人類進行談話般的交互。
重點行業AI落地場景逐一分析:智能制造、智慧倉儲物流、智慧金融、智慧醫療、智能家居等。成熟的AI應用場景正在涌現,領軍AI公司已有大量標桿案例
**刷爆的ChatGPT什么算法這么強!臺大李宏毅老師國語講解《ChatGPT (可能)是怎么煉成的 》! **
** **
** **
AIGC多模態跨模態應用逐漸成熟,市場空間廣闊。 廣義的AIGC指具備生成創造能力的AI技術,即生成式AI。可以基于訓練數據和生成算法模型,自主生成創造新的文本、圖像、音樂、視頻等內容。2022年被稱為AIGC元年,未來兼具大模型和多模態模型的AIGC模型有望成為新的技術平臺。據《中國AI數字商業產業展望2021-2025》報告,預測AI數字商業內容的市場規模將從2020年的40億元,增加到2025年的495億元。 ChatGPT產品歷經多代技術演進,產品與商業模式逐漸成熟。 ChatGPT是文本生成式AI,過去的傳統AI偏向于分析能力,主要基于已有內容;現在文本生成式AI基于底層Transformer模型,不斷訓練數據和迭代生成算法模型,歷經GPT-1、GPT-2、GPT-3,模型不斷升級,到ChatGPT的GPT3.5模型,已可以自主生成各種形式的內容。近期收費版ChatGPTPlus版本發布,AI商業化序幕逐漸拉開。 AI商業化落地在即,行業算法側和算力側投資機會有望超預期。 根據數據顯示,ChatGPT總算力消耗約為3640PF-Days,按國內的數據中心算力測算,需要7-8個數據中心才能支持其運行。各模態AI數據訓練到應用均需要算法和算力的加持,未來要想大規模應用,算法訓練和算力部署均需先行。
ChatGPT系列報告:
**刷爆的ChatGPT什么算法這么強!臺大李宏毅老師國語講解《ChatGPT (可能)是怎么煉成的 》! **
** **
** **
【芯片算力】▲芯片需求=量↑x價↑,AIGC拉動芯片產業量價齊升。1)量:AIGC帶來的全新場景+原場景流量大幅提高;2)價:對高端芯片的需求將拉動芯片均價。ChatGPT的“背后英雄”:芯片,看好國內GPU、CPU、FPGA、AI芯片及光模塊產業鏈。 相關標的:海光信息、景嘉微、龍芯中科、中國長城、安路科技、復旦微電、紫光國微、寒武紀、瀾起科技、德科立、天孚通信、中際旭創。 【深度學習框架】深度學習框架是人工智能算法的底層開發工具,是人工智能時代的操作系統,當前深度學習框架發展趨勢是趨于大模型訓練,對深度學習框架的分布式訓練能力提出了要求,國產深度學習框架迎來發展機遇。 相關標的:百度、海天瑞聲、商湯科技、微軟、谷歌、Meta。 【深度學習大模型】ChatGPT是基于OpenAI公司開發的InstructGPT模型的對話系統,GPT系列模型源自2017年誕生的Transformer模型,此后大模型數量激增,參數量進入千億時代,國內百度也發布了ERNIE系列模型并有望運用于即將發布的文心一言(ERNIEBot)對話系統,未來國內廠商有望在模型算法領域持續發力。 相關標的:百度、科大訊飛、商湯科技、谷歌、微軟。 【應用】ChatGPT火爆全球的背后,可以窺見伴隨人工智能技術的發展,數字內容的生產方式向著更加高效邁進。ChatGPT及AIGC未來有望在包括游戲、廣告營銷、影視、媒體、互聯網、娛樂等各領域應用,優化內容生產的效率與創意,加速數實融合與產業升級。 相關標的:百度、騰訊、阿里巴巴、網易、昆侖萬維、閱文集團、捷成股份、視覺中國、風語筑、中文在線、三七互娛、吉比特、天娛數科。 【通信】AIGC類產品未來有望成為5G時代新的流量入口,率先受益的有望是AIGC帶來的底層基礎算力爆發式增長。 相關標的:包括算力調度(運營商)、算力供給(運營商、奧飛數據、數據港)、算力設備(浪潮信息、聯想集團、紫光股份、中興通訊、銳捷網絡、天孚通信、光庫科技、中際旭創、新易盛)、算力散熱(英維克、高瀾股份)。
ChatGPT引領AI技術新一輪熱潮,預示著NLP技術有望迅速進入平民化應用時代。2022年11月30日,OpenAI公司上線了聊天機器人模型ChatGPT,迅速引發了全球的熱潮。ChatGPT是一種預訓練的語言大模型,采用大量的參數和大量的數據進行訓練,基于人類反饋的強化學習算法,將NLP技術和機器學習結合,極大地提升了模型算法的效率和能力。隨著ChatGPT的熱度不斷攀升,多家科技公司都開始布局ChatGPT相關技術領域,NLP技術有望迅速進入平民化應用時代。
ChatGPT具有良好的商業價值,未來應用空間廣闊。ChatGPT相關技術不僅對眾多的C端應用帶來革新,同時也將對B端應用產生重大影響,企業數字化轉型有望真正從數字化走向智能化,ChatGPT在企業辦公中的應用,具備很大的想象空間。我們認為,協同辦公類應用作為企業各類應用的入口,同時具備知識管理、流程引擎等功能,具備很強卡位價值,在把ChatGPT技術引入后,可以極大提升產品的功能與應用體驗。員工僅需給出想要辦理的流程,由ChatGPT進行智能化辦理,從而改變過去員工需要自行在OA、ERP及業務系統中完成信息錄入、功能查找、業務辦理的現狀,將極大地提升辦公效率和使用體驗。目前微軟已經將ChatGPT應用到了Dynamics365、Teams等產品線,未來將要應用到Bing搜索中,未來的商業價值空間十分可觀。 AIGC有望成為未來人工智能的重要方向,商業化模式仍需摸索。AIGC即人工智能內容生成,ChatGPT就是典型的文本生成式的AIGC,其目前的成功也有望帶動AIGC在圖像、音樂、視頻等其他領域落地。Gartner曾多次將生成式AI列為未來的重要技術趨勢,是當下最引人注目的人工智能技術之一。據Gartner預計,到2025年,生成式人工智能將占所有生成數據的10%,而目前這一比例還不到1%。隨著ChatGPT開啟付費訂閱試點,AIGC的商業化進程正式拉開帷幕。據量子位報告統計,到2030年,AIGC的市場規模將超過萬億人民幣,但由于AIGC目前產業化程度有限,大量業務場景尚未成功變現,商業模式也還處于探索階段。我們認為,在當下時點,AIGC基于其出色的降本增效能力,在企業級市場的應用前景較為明朗和穩定,在C端消費市場的商業模式仍需進一步摸索。