亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

能夠解釋機器學習模型的預測在醫療診斷或自主系統等關鍵應用中是很重要的。深度非線性ML模型的興起,在預測方面取得了巨大的進展。然而,我們不希望如此高的準確性以犧牲可解釋性為代價。結果,可解釋AI (XAI)領域出現了,并產生了一系列能夠解釋復雜和多樣化的ML模型的方法。

在本教程中,我們結構化地概述了在深度神經網絡(DNNs)的背景下為XAI提出的基本方法。特別地,我們提出了這些方法的動機,它們的優點/缺點和它們的理論基礎。我們還展示了如何擴展和應用它們,使它們在現實場景中發揮最大的作用。

本教程針對的是核心和應用的ML研究人員。核心機器學習研究人員可能會有興趣了解不同解釋方法之間的聯系,以及廣泛的開放問題集,特別是如何將XAI擴展到新的ML算法。應用ML研究人員可能會發現,理解標準驗證程序背后的強大假設是很有趣的,以及為什么可解釋性對進一步驗證他們的模型是有用的。他們可能還會發現新的工具來分析他們的數據并從中提取見解。參與者將受益于技術背景(計算機科學或工程)和基本的ML訓練。

目錄內容:

Part 1: Introduction to XAI (WS) 可解釋人工智能

  • Motivations for XAI
  • Methods and Validation of XAI
  • The Clever Hans Effect

Part 2: Methods for Explaining DNNs (GM) 可解釋深度神經網絡方法

  • Self-Explainable DNNs
  • Perturbation-Based Explanation Techniques
  • Propagation-Based Explanation Techniques

Part 3: Implementation, Theory, Evaluation, Extensions (GM) 實現,理論、評價

  • Implementating XAI Techniques for DNNs
  • Theoretical Embedding of XAI
  • Desiderata of XAI Techniques and Evaluation
  • Extending XAI Beyond Heatmaps and DNNs

Part 4: Applications (WS) 應用

  • Walk-Through Examples
  • Debugging Large Datasets (Meta-Explanations and "Unhansing")
  • XAI in the Sciences
付費5元查看完整內容

相關內容

從社交網絡到分子,許多真實數據都是以非網格對象的形式出現的,比如圖。最近,從網格數據(例如圖像)到圖深度學習受到了機器學習和數據挖掘領域前所未有的關注,這導致了一個新的跨領域研究——深度圖學習(DGL)。DGL的目標不是繁瑣的特征工程,而是以端到端方式學習圖的信息性表示。它在節點/圖分類、鏈接預測等任務中都取得了顯著的成功。

在本教程中,我們的目的是提供一個深入的圖學習的全面介紹。首先介紹了深度圖學習的理論基礎,重點描述了各種圖神經網絡模型(GNNs)。然后介紹DGL近年來的主要成就。具體來說,我們討論了四個主題:1)深度GNN的訓練; 2) GNNs的魯棒性; 3) GNN的可擴展性; 4) GNN的自監督和無監督學習。最后,我們將介紹DGL在各個領域的應用,包括但不限于藥物發現、計算機視覺、醫學圖像分析、社會網絡分析、自然語言處理和推薦。

//ai.tencent.com/ailab/ml/KDD-Deep-Graph-Learning.html

目錄:

  • 08:10 am – 09:00 am: Introduction to Graphs and Graph Neural Networks 圖神經網絡介紹
  • 09:00 am – 09:40 am: Robustness of Graph Neural Networks 圖神經網絡魯棒性
  • 09:40 am – 10:00 am: Break
  • 10:00 am – 10:40 am: Self-Supervised Learning for Graph Neural Network I 圖神經網絡自監督學習
  • 10:40 am – 11:20 am: Scalable Learning for Graph Neural Networks & Healthcare 圖神經網絡可擴展學習
  • 11:20 am – 00:15 pm: Graph Structure Learning & NLP 圖結構學習
付費5元查看完整內容

可解釋的機器學習模型和算法是越來越受到研究、應用和管理人員關注的重要課題。許多先進的深度神經網絡(DNNs)經常被認為是黑盒。研究人員希望能夠解釋DNN已經學到的東西,以便識別偏差和失敗模型,并改進模型。在本教程中,我們將全面介紹分析深度神經網絡的方法,并深入了解這些XAI方法如何幫助我們理解時間序列數據。

//xai.kaist.ac.kr/Tutorial/2020/

付費5元查看完整內容

本教程對基于模型的強化學習(MBRL)領域進行了廣泛的概述,特別強調了深度方法。MBRL方法利用環境模型來進行決策——而不是將環境視為一個黑箱——并且提供了超越無模型RL的獨特機會和挑戰。我們將討論學習過渡和獎勵模式的方法,如何有效地使用這些模式來做出更好的決策,以及規劃和學習之間的關系。我們還強調了在典型的RL設置之外利用世界模型的方式,以及在設計未來的MBRL系統時,從人類認知中可以得到什么啟示。

//sites.google.com/view/mbrl-tutorial

近年來,強化學習領域取得了令人印象深刻的成果,但主要集中在無模型方法上。然而,社區認識到純無模型方法的局限性,從高樣本復雜性、需要對不安全的結果進行抽樣,到穩定性和再現性問題。相比之下,盡管基于模型的方法在機器人、工程、認知和神經科學等領域具有很大的影響力,但在機器學習社區中,這些方法的開發還不夠充分(但發展迅速)。它們提供了一系列獨特的優勢和挑戰,以及互補的數學工具。本教程的目的是使基于模型的方法更被機器學習社區所認可和接受。鑒于最近基于模型的規劃的成功應用,如AlphaGo,我們認為對這一主題的全面理解是非常及時的需求。在教程結束時,觀眾應該獲得:

  • 數學背景,閱讀并跟進相關文獻。
  • 對所涉及的算法有直觀的理解(并能夠訪問他們可以使用和試驗的輕量級示例代碼)。
  • 在應用基于模型的方法時所涉及到的權衡和挑戰。
  • 對可以應用基于模型的推理的問題的多樣性的認識。
  • 理解這些方法如何適應更廣泛的強化學習和決策理論,以及與無模型方法的關系。
付費5元查看完整內容

【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開。來自美國Linkedin、AWS等幾位學者共同給了關于在工業界中可解釋人工智能的報告,講述了XAI概念、方法以及面臨的挑戰和經驗教訓。

人工智能在我們的日常生活中扮演著越來越重要的角色。此外,隨著基于人工智能的解決方案在招聘、貸款、刑事司法、醫療和教育等領域的普及,人工智能對個人和職業的影響將是深遠的。人工智能模型在這些領域所起的主導作用已經導致人們越來越關注這些模型中的潛在偏見,以及對模型透明性和可解釋性的需求。此外,模型可解釋性是在需要可靠性和安全性的高風險領域(如醫療和自動化交通)以及具有重大經濟意義的關鍵工業應用(如預測維護、自然資源勘探和氣候變化建模)中建立信任和采用人工智能系統的先決條件。

因此,人工智能的研究人員和實踐者將他們的注意力集中在可解釋的人工智能上,以幫助他們更好地信任和理解大規模的模型。研究界面臨的挑戰包括 (i) 定義模型可解釋性,(ii) 為理解模型行為制定可解釋性任務,并為這些任務開發解決方案,最后 (iii)設計評估模型在可解釋性任務中的性能的措施。

在本教程中,我們將概述AI中的模型解譯性和可解釋性、關鍵規則/法律以及作為AI/ML系統的一部分提供可解釋性的技術/工具。然后,我們將關注可解釋性技術在工業中的應用,在此我們提出了有效使用可解釋性技術的實踐挑戰/指導方針,以及在幾個網絡規模的機器學習和數據挖掘應用中部署可解釋模型的經驗教訓。我們將介紹不同公司的案例研究,涉及的應用領域包括搜索和推薦系統、銷售、貸款和欺詐檢測。最后,根據我們在工業界的經驗,我們將確定數據挖掘/機器學習社區的開放問題和研究方向。

//sites.google.com/view/www20-explainable-ai-tutorial

付費5元查看完整內容

【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 于美國紐約舉辦。AAAI2020關于可解釋人工智能的Tutorial引起了人們極大的關注,這場Tutorial詳細闡述了解釋黑盒機器學習模型的術語概念以及相關方法,涵蓋基礎、工業應用、實際挑戰和經驗教訓,是構建可解釋模型的重要指南.

可解釋AI:基礎、工業應用、實際挑戰和經驗教訓

?

地址//xaitutorial2020.github.io/

Tutorial 目標 本教程的目的是為以下問題提供答案:

  • 什么是可解釋的AI (XAI)

    • 什么是可解釋的AI(簡稱XAI) ?,人工智能社區(機器學習、邏輯學、約束編程、診斷)的各種流有什么解釋?解釋的度量標準是什么?
  • 我們為什么要關心?

    • 為什么可解釋的AI很重要?甚至在某些應用中至關重要?闡述人工智能系統的動機是什么?
  • 哪里是關鍵?

    • 在大規模部署人工智能系統時,真正需要解釋的實際應用是什么?
  • 它是如何工作的?

    • 在計算機視覺和自然語言處理中,最先進的解釋技術是什么?對于哪種數據格式、用例、應用程序、行業,什么有效,什么沒有效?
  • 我們學到了什么?

    • 部署現有XAI系統的經驗教訓和局限性是什么?在向人類解釋的過程中?
  • 下一個是什么?

    • 未來的發展方向是什么?

概述

人工智能的未來在于讓人們能夠與機器合作解決復雜的問題。與任何有效的協作一樣,這需要良好的溝通、信任、清晰和理解。XAI(可解釋的人工智能)旨在通過結合象征性人工智能和傳統機器學習來解決這些挑戰。多年來,所有不同的AI社區都在研究這個主題,它們有不同的定義、評估指標、動機和結果。

本教程簡要介紹了XAI迄今為止的工作,并調查了AI社區在機器學習和符號化AI相關方法方面所取得的成果。我們將激發XAI在現實世界和大規模應用中的需求,同時展示最先進的技術和最佳實踐。在本教程的第一部分,我們將介紹AI中解釋的不同方面。然后,我們將本教程的重點放在兩個特定的方法上: (i) XAI使用機器學習和 (ii) XAI使用基于圖的知識表示和機器學習的組合。對于這兩種方法,我們將詳細介紹其方法、目前的技術狀態以及下一步的限制和研究挑戰。本教程的最后一部分概述了XAI的實際應用。

Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。

目錄與內容

第一部分: 介紹和動機

人工智能解釋的入門介紹。這將包括從理論和應用的角度描述和激發對可解釋的人工智能技術的需求。在這一部分中,我們還總結了先決條件,并介紹了本教程其余部分所采用的不同角度。

第二部分: 人工智能的解釋(不僅僅是機器學習!)

人工智能各個領域(優化、知識表示和推理、機器學習、搜索和約束優化、規劃、自然語言處理、機器人和視覺)的解釋概述,使每個人對解釋的各種定義保持一致。還將討論可解釋性的評估。本教程將涵蓋大多數定義,但只深入以下領域: (i) 可解釋的機器學習,(ii) 可解釋的AI與知識圖和機器學習。

第三部分: 可解釋的機器學習(從機器學習的角度)

在本節中,我們將處理可解釋的機器學習管道的廣泛問題。我們描述了機器學習社區中解釋的概念,接著我們描述了一些流行的技術,主要是事后解釋能力、設計解釋能力、基于實例的解釋、基于原型的解釋和解釋的評估。本節的核心是分析不同類別的黑盒問題,從黑盒模型解釋到黑盒結果解釋。

第四部分: 可解釋的機器學習(從知識圖譜的角度)

在本教程的這一節中,我們將討論將基于圖形的知識庫與機器學習方法相結合的解釋力。

第五部分: XAI工具的應用、經驗教訓和研究挑戰

我們將回顧一些XAI開源和商業工具在實際應用中的例子。我們關注一些用例:i)解釋自動列車的障礙檢測;ii)具有內置解釋功能的可解釋航班延誤預測系統;(三)基于知識圖譜的語義推理,對企業項目的風險層進行預測和解釋的大范圍合同管理系統;iv)識別、解釋和預測500多個城市大型組織員工異常費用報銷的費用系統;v)搜索推薦系統說明;vi)解釋銷售預測;(七)貸款決策說明;viii)解釋欺詐檢測。

付費5元查看完整內容

【導讀】最新的一期《Science》機器人雜志刊登了關于XAI—Explainable artificial intelligence專刊,涵蓋可解釋人工智能的簡述論文,論述了XAI對于改善用戶理解、信任與管理AI系統的重要性。并包括5篇專刊論文,值得一看。

BY DAVID GUNNING, MARK STEFIK, JAESIK CHOI, TIMOTHY MILLER, SIMONE STUMPF, GUANG-ZHONG YANG

SCIENCE ROBOTICS18 DEC 2019

可解釋性對于用戶有效地理解、信任和管理強大的人工智能應用程序是至關重要的。

//robotics.sciencemag.org/content/4/37/eaay7120

最近在機器學習(ML)方面的成功引發了人工智能(AI)應用的新浪潮,為各種領域提供了廣泛的益處。然而,許多這些系統中不能向人類用戶解釋它們的自主決策和行為。對某些人工智能應用來說,解釋可能不是必要的,一些人工智能研究人員認為,強調解釋是錯誤的,太難實現,而且可能是不必要的。然而,對于國防、醫學、金融和法律的許多關鍵應用,解釋對于用戶理解、信任和有效地管理這些新的人工智能合作伙伴是必不可少的(參見最近的評論(1-3))。

最近人工智能的成功很大程度上歸功于在其內部表示中構造模型的新ML技術。其中包括支持向量機(SVMs)、隨機森林、概率圖形模型、強化學習(RL)和深度學習(DL)神經網絡。盡管這些模型表現出了高性能,但它們在可解釋性方面是不透明的。ML性能(例如,預測準確性)和可解釋性之間可能存在固有的沖突。通常,性能最好的方法(如DL)是最不可解釋的,而最可解釋的方法(如決策樹)是最不準確的。圖1用一些ML技術的性能可解釋性權衡的概念圖說明了這一點。

圖1 ML技術的性能與可解釋性權衡。

(A)學習技巧和解釋能力。(B)可解釋模型:學習更結構化、可解釋或因果模型的ML技術。早期的例子包括貝葉斯規則列表、貝葉斯程序學習、因果關系的學習模型,以及使用隨機語法學習更多可解釋的結構。深度學習:一些設計選擇可能產生更多可解釋的表示(例如,訓練數據選擇、架構層、損失函數、正則化、優化技術和訓練序列)。模型不可知論者:對任意給定的ML模型(如黑箱)進行試驗以推斷出一個近似可解釋的模型的技術。

什么是XAI?

一個可解釋的人工智能(XAI)系統的目的是通過提供解釋使其行為更容易被人類理解。有一些通用原則可以幫助創建有效的、更人性化的人工智能系統:XAI系統應該能夠解釋它的能力和理解;解釋它已經做了什么,現在正在做什么,接下來會發生什么; 披露其所依據的重要信息(4)。

然而,每一個解釋都是根據AI系統用戶的任務、能力和期望而設置的。因此,可解釋性和可解釋性的定義是與域相關的,并且可能不是與域獨立定義的。解釋可以是全面的,也可以是片面的。完全可解釋的模型給出了完整和完全透明的解釋。部分可解釋的模型揭示了其推理過程的重要部分。可解釋模型服從根據域定義的“可解釋性約束”(例如,某些變量和相關變量的單調性服從特定關系),而黑箱或無約束模型不一定服從這些約束。部分解釋可能包括變量重要性度量、局部模型(在特定點近似全局模型)和顯著性圖。

來自用戶的期望

XAI假設向最終用戶提供一個解釋,該用戶依賴于AI系統所產生的決策、建議或操作,然而可能有許多不同類型的用戶,通常在系統開發和使用的不同時間點(5)。例如,一種類型的用戶可能是智能分析師、法官或操作員。但是,需要對系統進行解釋的其他用戶可能是開發人員或測試操作員,他們需要了解哪里可能有改進的地方。然而,另一個用戶可能是政策制定者,他們試圖評估系統的公平性。每個用戶組可能有一個首選的解釋類型,能夠以最有效的方式交流信息。有效的解釋將考慮到系統的目標用戶組,他們的背景知識可能不同,需要解釋什么。

可操作性——評估和測量

一些方法提出了一些評價和衡量解釋有效性的方法;然而,目前還沒有通用的方法來衡量XAI系統是否比非XAI系統更容易被用戶理解。其中一些度量是用戶角度的主觀度量,例如用戶滿意度,可以通過對解釋的清晰度和實用性的主觀評級來度量。解釋有效性的更客觀的衡量標準可能是任務績效; 即,這樣的解釋是否提高了用戶的決策能力?可靠和一致的測量解釋的影響仍然是一個開放的研究問題。XAI系統的評價和測量包括評價框架、共同點[不同的思維和相互理解(6)]、常識和論證[為什么(7)]。

XAI -問題和挑戰

在ML和解釋的交集處仍然存在許多活躍的問題和挑戰。

  1. 從電腦開始還是從人開始(8). XAI系統應該針對特定的用戶進行解釋嗎?他們應該考慮用戶缺乏的知識嗎?我們如何利用解釋來幫助交互式和人在循環的學習,包括讓用戶與解釋交互以提供反饋和指導學習?

  2. 準確性與可解釋性。XAI解釋研究的一條主線是探索解釋的技術和局限性。可解釋性需要考慮準確性和保真度之間的權衡,并在準確性、可解釋性和可處理性之間取得平衡。

  3. 使用抽象來簡化解釋。高級模式是在大步驟中描述大計劃的基礎。對抽象的自動發現一直是一個挑戰,而理解學習和解釋中抽象的發現和共享是當前XAI研究的前沿。

  4. 解釋能力與解釋決策。有資格的專家精通的一個標志是他們能夠對新情況進行反思。有必要幫助終端用戶了解人工智能系統的能力,包括一個特定的人工智能系統有哪些能力,如何衡量這些能力,以及人工智能系統是否存在盲點;也就是說,有沒有一類解是永遠找不到的?

從以人為本的研究視角來看,對能力和知識的研究可以使XAI超越解釋特定XAI系統和幫助用戶確定適當信任的角色。未來,XAIs可能最終會扮演重要的社會角色。這些角色不僅包括向個人學習和解釋,而且還包括與其他代理進行協調以連接知識、發展跨學科見解和共同點、合作教授人員和其他代理,以及利用以前發現的知識來加速知識的進一步發現和應用。從這樣一個知識理解和生成的社會視角來看,XAI的未來才剛剛開始。

本期刊論文

Explainable robotics in science fiction

BY ROBIN R. MURPHY

SCIENCE ROBOTICS18 DEC 2019 RESTRICTED ACCESS

我們會相信機器人嗎?科幻小說說沒有,但可解釋的機器人可能會找到方法。

A tale of two explanations: Enhancing human trust by explaining robot behavior BY MARK EDMONDS, FENG GAO, HANGXIN LIU, XU XIE, SIYUAN QI, BRANDON ROTHROCK, YIXIN ZHU, YING NIAN WU, HONGJING LU, SONG-CHUN ZHU

SCIENCE ROBOTICS18 DEC 2019 FULL ACCESS

最適合促進信任的解釋方法不一定對應于那些有助于最佳任務性能的組件。

A formal methods approach to interpretable reinforcement learning for robotic planning

BY XIAO LI, ZACHARY SERLIN, GUANG YANG, CALIN BELTA

SCIENCE ROBOTICS18 DEC 2019 FULL ACCESS

形式化的強化學習方法能從形式化的語言中獲得回報,并保證了安全性。

An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators BY XIAOBIN JI, XINCHANG LIU, VITO CACUCCIOLO, MATTHIAS IMBODEN, YOAN CIVET, ALAE EL HAITAMI, SOPHIE CANTIN, YVES PERRIARD, HERBERT SHEA

SCIENCE ROBOTICS18 DEC 2019 FULL ACCESS

參考文獻:

  1. W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, K. R. Muller, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (Springer Nature, 2019).

Google Scholar

  1. H. J. Escalante, S. Escalera, I. Guyon, X. Baró, Y. Gü?lütürk, U. Gü?lü, M. van Gerven, Explainable and Interpretable Models in Computer Vision and Machine Learning (Springer, 2018).

  2. O. Biran, C. Cotton, Explanation and justification in machine learning: A survey, paper presented at the IJCAI-17 Workshop on Explainable AI (XAI), Melbourne, Australia, 20 August 2017.

  3. Intelligibility and accountability: Human considerations in context-aware systems.Hum. Comput. Interact. 16, 193–212 (2009).

  4. T. Kulesza, M. Burnett, W. Wong, S. Stumpf, Principles of explanatory debugging to personalize interactive machine learning, in Proceedings of the 20th International Conference on Intelligent User Interfaces (ACM, 2015), pp. 126–137.

  5. H. H. Clark, S. E. Brennan, Grounding in communication, in Perspectives on Socially Shared Cognition, L. B. Resnick, J. M. Levine, S. D. Teasley, Eds. (American Psychological Association, 1991), pp. 127–149.

  6. D. Wang, Q. Yang, A. Abdul, B. Y. Lim, Designing theory-driven user-centric explainable AI, in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (ACM, 2019), paper no. 601.

?

  1. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38(2018).

  2. D. Gunning, Explainable artificial intelligence (XAI), DARPA/I2O;www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf.

付費5元查看完整內容

報告主題: Explanation In AI: From Machine Learning To Knowledge Representation And Reasoning And Beyond

嘉賓介紹: Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。

付費5元查看完整內容
北京阿比特科技有限公司