亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文的目的是表明,研究機器學習系統中潛在的組成和函數結構使我們能夠更好地理解它們。本文探索了機器學習許多子領域的范疇理論表述,包括優化、概率、無監督學習和有監督學習。本文首先研究了當用一般的范疇理論結構取代梯度時,各種優化算法的行為。證明了這些算法的關鍵性質在非常寬松的假設下是成立的,并通過數值實驗證明了這一結果。本文還探索了動態系統的范疇論視角,使我們能夠從簡單操作的組成中構建強大的優化器。其次,從范疇理論的角度研究了概率建模與梯度優化之間的關系;本文從這個角度來研究最大似然估計如何在從統計模型到監督學習算法的轉換中保持某些關鍵結構。

//ora.ox.ac.uk/objects/uuid:ec72e338-d95e-4bd6-9412-7ac76b7ddc15

接下來,我們從函數的角度來研究無監督學習。我們基于非監督學習算法的函式表示的范疇論性質,開發了非監督學習算法的分類法,并證明了這些分類法是算法行為的預測。用這個視角推導出了一系列用于聚類和流形學習的新無監督學習算法,并證明了這些新算法在真實世界數據上可以優于常用的替代算法。還用這些工具證明了關于流行的無監督學習算法的行為和局限性的新結果,包括細化界限和在噪聲面前的穩定性。最后,轉向監督學習,并證明數據科學和機器學習中許多最常見的問題都可以表示為Kan擴展。本文用這個角度推導出新的分類和監督聚類算法。同時在真實數據上對這些算法的性能進行了測試。

付費5元查看完整內容

相關內容

是一所英國研究型大學,也是羅素大學集團、英國“G5超級精英大學”,歐洲頂尖大學科英布拉集團、歐洲研究型大學聯盟的核心成員。牛津大學培養了眾多社會名人,包括了27位英國首相、60位諾貝爾獎得主以及數十位世界各國的皇室成員和政治領袖。2016年9月,泰晤士高等教育發布了2016-2017年度世界大學排名,其中牛津大學排名第一。

**人類通過被動觀察和主動互動來學習世界的心理模型,從而在環境中導航。他們的世界模型允許他們預測接下來可能發生的事情,并根據潛在的目標采取相應的行動。**這樣的世界模型在自動駕駛等復雜環境的規劃方面具有強大的前景。人類司機或自動駕駛系統用眼睛或相機感知周圍環境。他們推斷出世界的一種內部表示應該:(i)具有空間記憶(例如遮擋),(ii)填充部分可觀測或有噪聲的輸入(例如被陽光蒙蔽時),以及(iii)能夠概率地推理不可觀測的事件(例如預測不同的可能的未來)。它們是具身的智能體,可以通過其世界模型在物理世界中預測、計劃和行動。本文提出一個通用框架,從攝像機觀察和專家演示中訓練世界模型和策略,由深度神經網絡參數化。利用幾何、語義和運動等重要的計算機視覺概念,將世界模型擴展到復雜的城市駕駛場景。**在我們的框架中,我們推導了這種主動推理設置的概率模型,其目標是推斷解釋主動代理的觀察和行動的潛在動力學。**我們通過確保模型預測準確的重建以及合理的操作和過渡來優化日志證據的下界。首先,我們提出了一個模型,預測計算機視覺中的重要量:深度、語義分割和光流。然后,我們使用三維幾何作為歸納偏差在鳥瞰空間中操作。我們首次提出了一個模型,可以從360?環繞單目攝像機鳥瞰動態代理的概率未來軌跡。最后,我們展示了在閉環駕駛中學習世界模型的好處。我們的模型可以聯合預測城市駕駛環境中的靜態場景、動態場景和自我行為。我們表明,學習世界模型和駕駛策略可以生成超過1小時的預測(比訓練序列大小長2000倍)。

付費5元查看完整內容

在過去的十年里,深度學習取得了巨大的成功,但在權值更新和訓練樣本數量方面,實際有用的深度模型的訓練仍然非常低效。為了解決這些問題的一個方面,本文研究了持續學習設置,該模型利用一系列的任務,利用之前的知識來快速學習新任務。持續學習的主要挑戰是,在為新任務更新模型時,避免模型災難性地忘記之前的信息。

//ora.ox.ac.uk/objects/uuid:7a3e5c33-864f-4cfe-8b80-e85cbf651946

為此,本文首先提出了一種持續學習算法,通過正則化兩個連續任務的條件似然之間的kl -散度來保留之前的知識。結果表明,這種正則化對網絡權值施加了二次懲罰,該懲罰基于上一個任務的最小曲率。其次,本文提出了一種更有效的持續學習算法,利用對過去任務的情景記憶作為約束,這樣當對新任務進行權重更新時,情景記憶的損失不會增加。結果表明,使用情景記憶約束目標比正則化網絡參數更有效。此外,為了提高學習新任務的速度,提出了使用組合任務描述符的聯合嵌入模型,大大提高了正向遷移。基于情景記憶的持續學習目標通過直接在損失函數中使用記憶來簡化。盡管它傾向于記憶出現在微小情景記憶中的數據,結果算法顯示出比使用記憶作為約束的算法更好的泛化。分析認為,這種驚人的概化是由于新任務數據帶來的正則化效應。然后利用該算法對合成數據和真實數據進行持續學習。為此,提出了一種方法,通過優化重放緩沖區上的事后遺忘損失,為每個任務生成合成數據點。設計了一個嵌套的持續學習優化目標,有效地利用這些綜合點來減少基于記憶的持續學習方法的遺忘。最后,本文提出了一種持續學習算法,在不重疊的特征子空間中學習不同的任務。通過保持不同任務的子空間相互正交來最小化重疊,可以減少這些任務表示之間的干擾。

付費5元查看完整內容

對稱和不變性在機器學習任務中無處不在。雖然卷積神經網絡以成功利用平移對稱性而聞名,但其他對稱性直到最近才經常被忽視。將對稱性或不變性納入神經網絡體系結構可以避免昂貴的數據增強,并減輕對大型數據集的需求。提出的工作集中在不變和等變神經網絡層,把對稱性放在神經網絡架構設計的中心。具體而言,本文涵蓋了三種不同的不變性:排列不變性、旋轉-平移不變性和標簽不變性。

  • 對稱和不變性在機器學習任務中無處不在。雖然卷積神經網絡以成功利用平移對稱性而聞名,但其他對稱性直到最近才經常被忽視。
  • 將對稱性或不變性納入神經網絡體系結構可以避免昂貴的數據增強,并減輕對大型數據集的需求。
  • 提出的工作集中在不變和等變神經網絡層,把對稱性放在神經網絡架構設計的中心。具體而言,本文涵蓋了三種不同的不變性:排列不變性、旋轉-平移不變性和標簽不變性

付費5元查看完整內容

在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。

//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。

付費5元查看完整內容

我們為什么在這里?我們大多數人來到這里的原因很簡單:我們想解決人工智能問題。那么,人工智能和這本書的書名有什么關系呢?人工智能的現代定義之一是對理性代理的研究和設計[RN09]。從這個意義上說,我們將一個系統描述為智能的,當它最大化某些預期的性能概念時。機器學習的子領域處理的是問題和算法的子集,其中代理可以獲得經驗(通常以某種形式的數據),可以利用這些經驗來改進性能的概念[MRT12]。大多數情況下,性能是由代理人在新的和看不見的情況下如何行動來衡量的,這些情況不構成其訓練經驗的一部分。例如,可以訓練一名代理人將英文翻譯成法文,其訓練經驗包括大量翻譯的聯合國文件。然而,在評估時,它可能會在與它所見過的文件不同的聯合國新文件上進行測試。很自然地,代理在它所看到的訓練經驗和它所評估的新情況下的表現之間存在著差距。代理泛化的能力是通過性能上的差距有多小來衡量的。

希望前面的段落已經解釋了在機器學習的背景下,以及在更大的AI背景下,什么是泛化。那么,標題中還保留著哪些“分布外”詞呢?如前所述,泛化是指減少一個agent在已知訓練情境下的表現與同一agent在未知測試情境下的表現之間的差距。然而,有許多不同類型的未知。統計學習通常處理的一類泛化是分布的:當從訓練示例生成的數據與測試示例生成的數據無法區分時。根據定義,非分布內的泛化問題稱為分布外泛化問題,這是本書的主題。

這項工作的目標很簡單。我們想要回顧,分布外泛化的知識。因此,這項工作的很大一部分將致力于理解(有時是微妙的)不同方法和假設之間的差異和相似性,通常以一種孤立的方式呈現。重點將放在與人工智能或現代大規模機器學習應用等想法上。此外,我們將特別注意研究不同方法的缺點,以及下一步可能是重要的。

  • 在第二章中,我們首先討論如何量化分布外泛化。通過幾個例子,我們研究了分布外泛化與處理不同分布外任務的幾種常用方法之間的關系。本文將特別強調這些方法背后的假設,并說明這些方法何時有效,何時無效。

  • 在第三章中,我們將關注一個特定的分布外任務類。在這些預測任務中,就像在許多實際問題中一樣,在分布之外泛化的困難在于找出數據中的哪些相關性是假的和不可靠的,以及哪些相關性代表感興趣的現象。

  • 在第四章中,我們討論了不同應用領域在實踐中出現的分布外任務的類型,以及這些領域在過去是如何處理這些問題的。

  • 在第五章中,我們為分布外泛化和人工智能背景下的新研究領域奠定了基礎。在本章中,我們將關注在探索或強化學習環境中與世界交互的agent,以及它們如何從分布外泛化中獲益。

付費5元查看完整內容

賦予機器以感知三維世界的能力,就像我們人類一樣,是人工智能領域一個基本且長期存在的主題。給定不同類型的視覺輸入,如二維/三維傳感器獲取的圖像或點云,一個重要的目標是理解三維環境的幾何結構和語義。傳統的方法通常利用手工特征來估計物體或場景的形狀和語義。然而,他們很難推廣到新的對象和場景,并努力克服關鍵問題造成的視覺遮擋。相比之下,我們的目標是理解場景和其中的對象,通過學習一般和魯棒的表示使用深度神經網絡,訓練在大規模的真實世界3D數據。為了實現這些目標,本文從單視圖或多視圖的物體級三維形狀估計到場景級語義理解三個方面做出了核心貢獻。

在第3章中,我們從一張圖像開始估計一個物體的完整三維形狀。利用幾何細節恢復密集的三維圖形,提出一種強大的編碼器解碼器結構,并結合對抗式學習,從大型三維對象庫中學習可行的幾何先驗。在第4章中,我們建立了一個更通用的框架來從任意數量的圖像中精確地估計物體的三維形狀。通過引入一種新的基于注意力的聚合模塊和兩階段的訓練算法,我們的框架能夠集成可變數量的輸入視圖,預測穩健且一致的物體三維形狀。在第5章中,我們將我們的研究擴展到三維場景,這通常是一個復雜的個體對象的集合。現實世界的3D場景,例如點云,通常是雜亂的,無結構的,閉塞的和不完整的。在借鑒以往基于點的網絡工作的基礎上,我們引入了一種全新的端到端管道來同時識別、檢測和分割三維點云中的所有對象。

總的來說,本文開發了一系列新穎的數據驅動算法,讓機器感知我們真實的3D環境,可以說是在推動人工智能和機器理解的邊界。

//ora.ox.ac.uk/objects/uuid:5f9cd30d-0ee7-412d-ba49-44f5fd76bf28

付費5元查看完整內容

【導讀】牛津大學的博士生Oana-Maria Camburu撰寫了畢業論文《解釋神經網絡 (Explaining Deep Neural Networks)》,系統性介紹了深度神經網絡可解釋性方面的工作,值得關注。

作者介紹:

Oana-Maria Camburu,來自羅馬尼亞,目前是牛津大學的博士生,主修機器學習、人工智能等方向。

Explaining Deep Neural Networks

深度神經網絡在計算機視覺、自然語言處理和語音識別等不同領域取得了革命性的成功,因此越來越受歡迎。然而,這些模型的決策過程通常是無法向用戶解釋的。在各種領域,如醫療保健、金融或法律,了解人工智能系統所做決策背后的原因至關重要。因此,最近研究了幾個解釋神經模型的方向。

在這篇論文中,我研究了解釋深層神經網絡的兩個主要方向。第一個方向由基于特征的事后解釋方法組成,也就是說,這些方法旨在解釋一個已經訓練過的固定模型(事后解釋),并提供輸入特征方面的解釋,例如文本標記和圖像的超級像素(基于特征的)。第二個方向由生成自然語言解釋的自解釋神經模型組成,也就是說,模型有一個內置模塊,為模型的預測生成解釋。在這些方面的貢獻如下:

  • 首先,我揭示了僅使用輸入特征來解釋即使是微不足道的模型也存在一定的困難。我表明,盡管有明顯的隱含假設,即解釋方法應該尋找一種特定的基于真實值特征的解釋,但對于預測通常有不止一種這樣的解釋。我還展示了兩類流行的解釋方法,它們針對的是不同類型的事實基礎解釋,但沒有明確地提及它。此外,我還指出,有時這兩種解釋都不足以提供一個實例上決策過程的完整視圖。

  • 其次,我還介紹了一個框架,用于自動驗證基于特征的事后解釋方法對模型的決策過程的準確性。這個框架依賴于一種特定類型的模型的使用,這種模型有望提供對其決策過程的洞察。我分析了這種方法的潛在局限性,并介紹了減輕這些局限性的方法。引入的驗證框架是通用的,可以在不同的任務和域上實例化,以提供現成的完整性測試,這些測試可用于測試基于特性的后特殊解釋方法。我在一個情緒分析任務上實例化了這個框架,并提供了完備性測試s1,在此基礎上我展示了三種流行的解釋方法的性能。

  • 第三,為了探索為預測生成自然語言解釋的自解釋神經模型的發展方向,我在有影響力的斯坦福自然語言推斷(SNLI)數據集之上收集了一個巨大的數據集,數據集約為570K人類編寫的自然語言解釋。我把這個解釋擴充數據集稱為e-SNLI。我做了一系列的實驗來研究神經模型在測試時產生正確的自然語言解釋的能力,以及在訓練時提供自然語言解釋的好處。

  • 第四,我指出,目前那些為自己的預測生成自然語言解釋的自解釋模型,可能會產生不一致的解釋,比如“圖像中有一只狗。”以及“同一幅圖片中沒有狗”。不一致的解釋要么表明解釋沒有忠實地描述模型的決策過程,要么表明模型學習了一個有缺陷的決策過程。我將介紹一個簡單而有效的對抗性框架,用于在生成不一致的自然語言解釋時檢查模型的完整性。此外,作為框架的一部分,我解決了使用精確目標序列的對抗性攻擊的問題,這是一個以前在序列到序列攻擊中沒有解決的場景,它對于自然語言處理中的其他任務很有用。我將這個框架應用到e-SNLI上的一個最新的神經模型上,并表明這個模型會產生大量的不一致性。

這項工作為獲得更穩健的神經模型以及對預測的可靠解釋鋪平了道路。

地址: //arxiv.org/abs/2010.01496

付費5元查看完整內容
北京阿比特科技有限公司