**人類通過被動觀察和主動互動來學習世界的心理模型,從而在環境中導航。他們的世界模型允許他們預測接下來可能發生的事情,并根據潛在的目標采取相應的行動。**這樣的世界模型在自動駕駛等復雜環境的規劃方面具有強大的前景。人類司機或自動駕駛系統用眼睛或相機感知周圍環境。他們推斷出世界的一種內部表示應該:(i)具有空間記憶(例如遮擋),(ii)填充部分可觀測或有噪聲的輸入(例如被陽光蒙蔽時),以及(iii)能夠概率地推理不可觀測的事件(例如預測不同的可能的未來)。它們是具身的智能體,可以通過其世界模型在物理世界中預測、計劃和行動。本文提出一個通用框架,從攝像機觀察和專家演示中訓練世界模型和策略,由深度神經網絡參數化。利用幾何、語義和運動等重要的計算機視覺概念,將世界模型擴展到復雜的城市駕駛場景。**在我們的框架中,我們推導了這種主動推理設置的概率模型,其目標是推斷解釋主動代理的觀察和行動的潛在動力學。**我們通過確保模型預測準確的重建以及合理的操作和過渡來優化日志證據的下界。首先,我們提出了一個模型,預測計算機視覺中的重要量:深度、語義分割和光流。然后,我們使用三維幾何作為歸納偏差在鳥瞰空間中操作。我們首次提出了一個模型,可以從360?環繞單目攝像機鳥瞰動態代理的概率未來軌跡。最后,我們展示了在閉環駕駛中學習世界模型的好處。我們的模型可以聯合預測城市駕駛環境中的靜態場景、動態場景和自我行為。我們表明,學習世界模型和駕駛策略可以生成超過1小時的預測(比訓練序列大小長2000倍)。
**最近機器學習方法的大部分成功都是通過利用過去幾年產生的大量標記數據而實現的。**然而,對于一些重要的實際應用來說,如此大規模的數據收集仍然是不可行的。這包括機器人、醫療健康、地球科學和化學等領域,在這些領域獲取數據可能既昂貴又耗時。在本文中,我們考慮三個不同的學習問題,其中可以收集的數據量是有限的。這包括在在線學習期間限制對標簽、整個數據集和生成經驗的訪問的設置。本文通過采用序列決策策略來解決這些數據限制,這些策略在收集新數據和根據新獲得的證據做出明智的決策之間迭代。**首先,解決標簽獲取成本較高時如何高效地收集批量標簽的問題。**概率主動學習方法可用于貪婪地選擇信息量最大的待標記數據點。然而,對于許多大規模問題,標準的貪心算法在計算上變得不可行。為緩解這個問題,本文提出一種可擴展的貝葉斯批量主動學習方法,其動機是近似模型參數的完整數據后驗。
**其次,我們解決了自動化分子設計的挑戰,以加速對新藥物和材料的搜索。**由于迄今為止只探索了化學空間的一個小區域,可用于某些化學系統的數據量是有限的。本文通過將3D分子設計問題制定為強化學習任務,克服了生成模型對數據集的依賴,并提出了一種對稱感知策略,可以生成用以前方法無法實現的分子結構。
**最后,我們考慮了如何在不同任務中有效地學習機器人行為的問題。**實現這一目標的一個有希望的方向是在不同的任務上下文中泛化局部學習的策略。上下文策略搜索通過顯式地將策略約束在參數化上下文空間上,從而提供數據高效的學習和泛化。進一步構建上下文策略表示,在各種機器人領域實現更快的學習和更好的泛化。
機器學習(ML)的最新進展改變了世界。過去是人類主宰規則,現在是機器儲存數據并做出決定。雖然這一變化帶來了真正的好處,但它已經實現了大量基于人類的交互自動化,使其易于操作。研究已經確定,機器學習模型非常容易受到對抗性擾動,特別是對其輸入的更改,這些更改對人類來說是無法察覺的,但會迫使它們以意想不到的方式作業。在本文中,我們采取了一種相當非正統的方法來研究機器學習安全,并通過計算機安全的角度來研究機器學習的現狀。我們發現了大量潛伏在系統安全和機器學習交叉領域的新攻擊和問題。接下來,我們描述了文獻的現狀,強調了我們仍然缺少重要知識的地方,并描述了該領域的幾個新的貢獻。該領域的一些特征使當前的安全方法變得不太適用,使現代機器學習系統容易受到各種各樣的攻擊。我們的主要貢獻是對機器學習的可用性攻擊——針對推理或模型訓練延遲的攻擊。我們還解釋了攻擊者如何利用與模型環境的許多其他交集。一個重要的見解是,必須理解、承認機器學習模型的固有局限性,并通過在更大系統中使用組件來補償控制進行緩解。
機器學習(ML)徹底改變了現代計算機系統,因此,更多的任務現在是完全自動化和模型驅動的。盡管深度神經網絡的性能令人印象深刻,但人們很快發現,底層模型是極其敏感的,攻擊者可以找到微小的,有時甚至無法察覺的擾動,以控制底層模型的行為。圖1 - 1展示了這種對抗性示例的一個例子——一個輸入樣本,旨在迫使模型將鳥瞰圖視為一輛汽車。(每個像素顏色的微小擾動被放大,使它們在這些圖像中可見。)這一發現導致了對抗性機器學習領域的誕生,在那里我們研究如何攻擊和防御ML模型。起初,這主要是由對基礎數學的研究和構建不太敏感的函數(如對抗性訓練)驅動的。然而,令人驚訝的是,這對嵌入模型的大型系統的安全性影響甚微,因為相同的模型仍然容易受到其他攻擊者的攻擊,也容易受到減少效用的影響。在實踐中,使用不那么敏感的近似函數并不一定會提高或降低安全性。攻擊者很少受到擾動大小的限制,并且可能更喜歡獲得模型的控制權,而不是根據某些學術指標保持攻擊不可察覺。
//www.repository.cam.ac.uk/handle/1810/338197
這種認識導致了一個新領域的創建——機器學習的安全性——在這里,我們不是孤立地觀察ML,而是在其環境、依賴項和需求的上下文中分析它。我們在博士期間一直在做的工作對這一文獻做出了早期貢獻,特別是開創了三種新的攻擊和防御類型。
為自動駕駛汽車等自動系統設計控制策略是復雜的。為此,研究人員越來越多地使用強化學習(RL)來設計策略。然而,對于安全攸關系統而言,保障其在實際訓練和部署過程中的安全運行是一個尚未解決的問題。此外,當前的強化學習方法需要精確的模擬器(模型)來學習策略,這在現實世界的應用中很少出現這種情況。**本文介紹了一個安全的強化學習框架,提供了安全保證,并開發了一種學習系統動力學的受限學習方法。本文開發了一種安全的強化學習算法,在滿足安全約束的同時優化任務獎勵。在提供基線策略時,考慮安全強化學習問題的一種變體。**基線策略可以產生于演示數據,可以為學習提供有用的線索,但不能保證滿足安全約束。本文提出一種策略優化算法來解決該問題。將一種安全的強化學習算法應用于腿部運動,以展示其在現實世界的適用性。本文提出一種算法,在使機器人遠離不安全狀態的安全恢復策略和優化的學習器策略之間進行切換,以完成任務。進一步利用系統動力學的知識來確定策略的切換。結果表明,我們可以在不摔倒的情況下在現實世界中學習腿部運動技能。重新審視了已知系統動力學的假設,并開發了一種從觀察中進行系統辨識的方法。知道系統的參數可以提高模擬的質量,從而最小化策略的意外行為。最后,雖然safe RL在許多應用中都有很大的前景,但目前的方法需要領域專業知識來指定約束。本文引入了一個新的基準,在自由格式的文本中指定約束。本文開發了一個模型,可以解釋和遵守這種文本約束。我們證明該方法比基線獲得了更高的回報和更少的約束違背。
機器學習的現實應用通常具有復雜的目標和安全關鍵約束。當代的機器學習系統擅長于在具有簡單程序指定目標的任務中實現高平均性能,但它們在許多要求更高的現實世界任務中很困難。本文致力于開發可信的機器學習系統,理解人類的價值觀并可靠地優化它們。
機器學習的關鍵觀點是,學習一個算法通常比直接寫下來更容易,然而許多機器學習系統仍然有一個硬編碼的、程序指定的目標。獎勵學習領域將這種見解應用于學習目標本身。由于獎勵函數和目標之間存在多對一的映射,我們首先引入由指定相同目標的獎勵函數組成的等價類的概念。
在論文的第一部分,我們將等價類的概念應用于三種不同的情形。首先,我們研究了獎勵函數的可識別性:哪些獎勵函數集與數據兼容?我們首先對誘導相同數據的獎勵函數的等價類進行分類。通過與上述最優策略等價類進行比較,我們可以確定給定數據源是否提供了足夠的信息來恢復最優策略。
其次,我們解決了兩個獎勵函數等價類是相似還是不同的基本問題。我們在這些等價類上引入了一個距離度量,即等價策略不變比較(EPIC),并表明即使在不同的過渡動態下,低EPIC距離的獎勵也會誘導具有相似回報的策略。最后,我們介紹了獎勵函數等價類的可解釋性方法。該方法從等價類中選擇最容易理解的代表函數,然后將代表函數可視化。
在論文的第二部分,我們研究了模型的對抗魯棒性問題。本文首先介紹了一個物理上現實的威脅模型,包括在多智能體環境中行動的對抗性策略,以創建對防御者具有對抗性的自然觀察。用深度強化學習訓練對手,對抗一個凍結的最先進的防御者,該防御者通過自訓練,以對對手強大。這種攻擊可以可靠地戰勝最先進的模擬機器人RL智能體和超人圍棋程序。
最后,研究了提高智能體魯棒性的方法。對抗性訓練是無效的,而基于群體的訓練作為一種部分防御提供了希望:它不能阻止攻擊,但確實增加了攻擊者的計算負擔。使用顯式規劃也有幫助,因為我們發現具有大量搜索的防御者更難利用。
。
一個機器人要想在非結構化的室外環境中與人類高效合作,就必須將指令從操作者直觀的模態轉化為行動。機器人必須能夠像人類一樣感知世界,這樣機器人所采取的行動才能反映自然語言和人類感知的細微差別。傳統上,導航系統結合了個人感知、語言處理和規劃塊,這些塊通常是根據不同的性能規格單獨訓練的。它們使用限制性接口進行通信以簡化開發(即,具有離散屬性的點對象和有限的命令語言),但這也限制了一個模塊可以傳遞給另一個模塊的信息。
深度學習的巨大成功徹底改變了計算機視覺的傳統研究方向,如目標檢測和場景標記。視覺問答(VQA)將自然語言處理中的最先進技術與圖像理解聯系起來。符號基礎、多步驟推理和對空間關系的理解已經是這些系統的元素。這些元素統一在一個具有單一可微損失的架構中,消除了模塊之間定義良好接口的需要,并簡化了與之相伴的假設。我們介紹了一種將文本語言命令和靜態航空圖像轉換為適合規劃的成本圖的技術。我們建立在FiLM VQA架構的基礎上,對其進行調整以生成成本圖,并將其與修改后的可微分計劃損失(最大邊際計劃)結合起來使用Field D*計劃器。通過這種架構,我們向統一語言、感知和規劃到單一的端到端可訓練系統邁出了一步。
我們提出了一個源自CLEVR數據集的可擴展綜合基準測試,我們用它來研究算法在無偏倚環境中具有幾乎無限數據的理解能力。我們分析了該算法在這些數據上的表現,以了解其局限性,并提出未來的工作來解決其缺點。我們使用真實的航空圖像和合成命令提供混合數據集的結果。規劃算法通常具有高分支因子,并且不能很好地映射到近年來催化深度學習發展的GPU。我們精心選擇了Field D和Max Margin Planning,以在高度并行的架構上表現良好。我們引入了一個適用于多GPU數據并行訓練的Field D版本,它使用Bellman-Ford算法,與我們的cpu優化實現相比,性能幾乎提高了十倍。在團隊中工作的人之間的流暢互動取決于對任務、環境和語言微妙之處的共同理解。在這種情況下工作的機器人也必須這樣做。學習將命令和圖像轉換為具有可微分規劃損失的軌跡是捕捉和模仿人類行為的一種方法,也是實現機器人和人類無縫交互的一小步。
本文探討了計算機如何使用自監督學習在沒有強監督的情況下學習視覺對象的結構。我們演示了我們可以使用一個以重構為關鍵學習信號的自動編碼框架來學習對象的結構表示。我們通過工程瓶頸將對象結構從其他變化因素中分離出來來做到這一點。此外,設計了以2D和3D物體地標或3D網格形式表示物體結構的瓶頸。具體來說,我們開發了一種自動發現2D對象地標的方法,無需任何注釋,該方法使用帶有2D關鍵點瓶頸的條件自動編碼器,將表示為2D關鍵點的姿勢和外觀分離開來。**盡管自監督學習方法能夠學習穩定的物體地標,但自動發現的地標與人類標注者標注的地標不一致。為解決這個問題,本文提出一種方法,通過引入一種新的地標自編碼,將未配對的經驗先驗注入到條件自編碼器中,可以利用對抗性學習中使用的強大圖像鑒別器。**這些條件自動編碼方法的一個副產品是,可以通過操縱瓶頸中的關鍵點來交互控制生成。我們利用這一特點在一個新的方法進行交互式3D形狀變形。該方法以自監督的方式訓練,使用自動發現的3D地標來對齊對3D形狀。在測試時間內,該方法允許用戶通過發現的三維物體標志進行物體形狀的交互變形。最后,我們提出了一種利用光幾何自編碼器恢復物體類別三維形狀的方法,而不需要任何三維注釋。它使用視頻進行訓練,并學會將輸入的圖像分解為剛性的姿勢、紋理和可變形的形狀模型。
在許多現實世界的應用中,多主體決策是一個普遍存在的問題,如自動駕駛、多人視頻游戲和機器人團隊運動。多智能體學習的主要挑戰包括其他智能體行為的不確定性,以及由聯合觀察、行動和策略空間的高維性導致的維數災難。由于未知的智能體意圖和意外的、可能的對抗性行為,這些挑戰在對抗性場景中進一步加劇。本文提出了魯棒和可擴展的多智能體學習方法,目標是高效地構建可以在對抗性場景中魯棒運行的自主智能體。通過觀察智能體的行為準確推斷其意圖的能力是魯棒決策的關鍵。在這種情況下,一個挑戰是對手實際行為的高度不確定性,包括潛在的欺騙,這可能與先驗行為模型有很大的不同。捕捉自我主體和對手之間的交互以及對雙方主體可用信息的推理,對于建模這種欺騙行為至關重要。本文采用博弈論對手建模方法解決了這一意圖識別問題,該方法基于一種新的多樣性驅動的信念空間集合訓練技術,用于實現對欺騙的魯棒性**。為了將集成方法擴展到具有多個智能體的場景,本文提出了一種可擴展的多智能體學習技術,該技術通過稀疏注意力機制促進了接近最優的聯合策略學習。該機制的結果是集中的參數更新,這大大提高了采樣效率**。此外,本文還提出了一種新的隱式集成訓練方法,該方法利用多任務學習和深度生成策略分布,以較低的計算和內存成本獲得更好的魯棒性。將魯棒的意圖識別和可擴展的多智能體學習結合起來,可以實現魯棒的、可擴展的離線策略學習。然而,完全自主的智能體還需要能夠不斷地從新的環境和對等智能體中學習(并適應)。因此,本文還提出了一種安全的適應方法,既能適應新的對手,又能在對抗場景中對任何可能的對手剝削保持低可利用性。本文的貢獻有助于構建自主代理,使其能夠在具有不確定性的競爭多智能體場景下做出魯棒的決策,并通過計算效率學習安全地適應以前未見的對等智能體。
盡管最近在深度學習方面取得了進展,但大多數方法仍然采用豎井式的解決方案,即為每個單獨的任務訓練一個單獨的神經網絡。然而,許多現實世界的問題需要同時解決許多任務。例如,一輛自動駕駛汽車應該能夠檢測場景中的所有物體,對其進行定位,估計其距離和軌跡等,以便在其周圍環境中安全導航。類似地,用于商業應用的圖像識別系統應該能夠標記產品、檢索類似的商品、提出個性化的建議等,以便為客戶提供盡可能好的服務。這類問題促使研究人員建立多任務學習模型。多任務學習的核心思想是并行學習多個任務,同時共享學習到的表示。與單任務情況相比,多任務網絡具有許多實際的優點,單任務情況下,每個單獨的任務由自己的網絡單獨解決。首先,由于層的共享,產生的內存占用大大減少。其次,由于它們避免在共享層中重復計算特征,每個任務一次,它們顯示出提高的推理速度。第三,如果相關的任務共享互補信息,或者作為一個正則化器,它們有可能提高性能。
在構建多任務學習模型時,我們面臨著兩個重要的挑戰。首先,我們需要想出能夠處理多個任務的神經網絡架構。其次,我們需要為共同學習任務制定新的訓練方案。特別是,由于我們并行地優化多個目標,一個或多個任務可能會開始主導權重更新過程,從而阻礙模型學習其他任務。在這份手稿中,我們在視覺場景理解的背景下鉆研了這兩個問題。我們提出了兩種新的模型類型來解決體系結構問題。首先,我們探索了分支多任務網絡,其中神經網絡的更深層次逐漸成長為更具體的任務。我們介紹了一種有原則的方法來自動構建這樣的分支多任務網絡。構造過程將可以用一組相似特征來解決的任務組合在一起,同時在任務相似性和網絡復雜性之間進行權衡。通過這種方式,我們的方法生成的模型可以在性能和計算資源量之間做出更好的權衡。
其次,我們提出了一種新的神經網絡結構,用于聯合處理多個密集的預測任務。其關鍵思想是從多個尺度上對其他任務的預測中提取有用信息,從而提高對每個任務的預測。包含多個尺度的動機是基于這樣的觀察:在某個尺度上具有高相似性的任務不能保證在其他尺度上保持這種行為,反之亦然。在密集標記的兩個流行基準上進行的廣泛實驗表明,與之前的工作不同,我們的模型提供了多任務學習的全部潛力,即更小的內存占用,減少的計算數量,以及更好的性能w.r.t.單任務學習。此外,我們還考慮了多任務學習優化問題。我們首先分析幾種平衡任務學習的現有技術。令人驚訝的是,我們發現了這些工作之間的一些差異。我們假設,這可能是由于多任務學習缺乏標準化的基準,不同的基準受益于特定的策略。基于這個結果,我們然后分離最有希望的元素,并提出一組啟發式方法來平衡任務。啟發式具有實際性質,并在不同的基準測試中產生更魯棒的性能。
在最后一章中,我們從另一個角度來考慮場景理解的問題。文獻中描述的許多模型都受益于有監督的預訓練。在這種情況下,在轉移到感興趣的任務之前,模型首先在一個更大的帶注釋的數據集(如ImageNet)上進行預訓練。這使得模型能夠很好地執行,即使是在只有少量標記示例的數據集上。不幸的是,有監督的預訓練依賴于帶注釋的數據集本身,這限制了它的適用性。為了解決這個問題,研究人員開始探索自監督學習方法。我們以對比學習為基礎來回顧最近流行的作品。首先,我們展示了現有的方法,如MoCo可以在不同的數據集上獲得穩健的結果,包括以場景為中心的數據、長尾數據和特定領域的數據。其次,我們通過增加額外的不變性來改進學習的表示。這一結果直接有利于許多下游任務,如語義分割、檢測等。最后,我們證明了通過自監督學習所獲得的改進也可以轉化為多任務學習網絡。綜上所述,本文提出了幾個重要的貢獻,以改進多任務學習模型的視覺場景理解。創新集中在改進神經網絡結構、優化過程和訓練前方面。所有方法都經過了各種基準測試。該代碼公開發布://github.com/SimonVandenhende。
機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。
本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習
第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。
第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。