一個機器人要想在非結構化的室外環境中與人類高效合作,就必須將指令從操作者直觀的模態轉化為行動。機器人必須能夠像人類一樣感知世界,這樣機器人所采取的行動才能反映自然語言和人類感知的細微差別。傳統上,導航系統結合了個人感知、語言處理和規劃塊,這些塊通常是根據不同的性能規格單獨訓練的。它們使用限制性接口進行通信以簡化開發(即,具有離散屬性的點對象和有限的命令語言),但這也限制了一個模塊可以傳遞給另一個模塊的信息。
深度學習的巨大成功徹底改變了計算機視覺的傳統研究方向,如目標檢測和場景標記。視覺問答(VQA)將自然語言處理中的最先進技術與圖像理解聯系起來。符號基礎、多步驟推理和對空間關系的理解已經是這些系統的元素。這些元素統一在一個具有單一可微損失的架構中,消除了模塊之間定義良好接口的需要,并簡化了與之相伴的假設。我們介紹了一種將文本語言命令和靜態航空圖像轉換為適合規劃的成本圖的技術。我們建立在FiLM VQA架構的基礎上,對其進行調整以生成成本圖,并將其與修改后的可微分計劃損失(最大邊際計劃)結合起來使用Field D*計劃器。通過這種架構,我們向統一語言、感知和規劃到單一的端到端可訓練系統邁出了一步。
我們提出了一個源自CLEVR數據集的可擴展綜合基準測試,我們用它來研究算法在無偏倚環境中具有幾乎無限數據的理解能力。我們分析了該算法在這些數據上的表現,以了解其局限性,并提出未來的工作來解決其缺點。我們使用真實的航空圖像和合成命令提供混合數據集的結果。規劃算法通常具有高分支因子,并且不能很好地映射到近年來催化深度學習發展的GPU。我們精心選擇了Field D和Max Margin Planning,以在高度并行的架構上表現良好。我們引入了一個適用于多GPU數據并行訓練的Field D版本,它使用Bellman-Ford算法,與我們的cpu優化實現相比,性能幾乎提高了十倍。在團隊中工作的人之間的流暢互動取決于對任務、環境和語言微妙之處的共同理解。在這種情況下工作的機器人也必須這樣做。學習將命令和圖像轉換為具有可微分規劃損失的軌跡是捕捉和模仿人類行為的一種方法,也是實現機器人和人類無縫交互的一小步。
魯棒的、通用的機器人可以在半結構化環境中自主地操縱物體,可以為社會帶來物質利益。通過識別和利用半結構化環境中的模式,數據驅動的學習方法對于實現這種系統至關重要,使機器人能夠在最少的人類監督下適應新的場景。然而,盡管在機器人操作的學習方面有大量的工作,但在機器人能夠廣泛應用于現實世界之前,仍有很大的差距。為了實現這一目標,本文解決了三個特殊的挑戰:半結構化環境中的感知、適應新場景的操作以及對不同技能和任務的靈活規劃。在討論的方法中,一個共同的主題是通過將“結構”,或特定于機器人操作的先驗,合并到學習算法的設計和實現中,實現高效和一般化的學習。本文的工作遵循上述三個挑戰。
我們首先在基于視覺的感知難以實現的場景中利用基于接觸的感知。在一項工作中,我們利用接觸反饋來跟蹤靈巧操作過程中手持物體的姿態。另一方面,我們學習定位機器人手臂表面的接觸,以實現全臂感知。接下來,我們將探討針對基于模型和無模型技能的新對象和環境調整操作。我們展示了學習面向任務的交互式感知如何通過識別相關動態參數來提高下游基于模型的技能的性能。本文還展示了如何使用以對象為中心的行動空間,使無模型技能的深度強化學習更有效和可泛化。
探索了靈活的規劃方法,以利用低水平技能完成更復雜的操縱任務。我們開發了一個基于搜索的任務計劃,通過學習技能水平動態模型,放松了之前工作中關于技能和任務表示的假設。該計劃器隨后應用于后續工作中,使用混合力-速度控制器的已知前提條件來執行多步接觸豐富的操作任務。我們還探索了用自然語言描述的更靈活的任務的規劃,使用代碼作為結構化的動作空間。這是通過提示大型語言模型直接將自然語言任務指令映射到機器人策略代碼來實現的,策略代碼協調現有的機器人感知和技能庫來完成任務。
場景表示是將對環境的傳感觀察轉換為緊湊描述的過程。這種智能行為是人工智能的基石。長期以來,科學家們一直試圖重現人類理解物理環境的非凡能力。將對環境的視覺傳感觀察作為輸入,現代智能系統主要致力于學習對基本場景屬性(如幾何和語義)進行編碼的神經表示。這種表示可以用于支持其他下游任務,最終在復雜的3D世界中實現自主感知和交互。近年來,深度神經網絡在神經場景表示中的幾何和語義信息建模方面表現出色。然而,由于不受控制的現實場景的脆弱性,構建健壯的系統仍然具有很高的挑戰性。由于對場景變化的傳感觀察的差異,不同類型的視覺表示之間的領域差距,以及對多類別信息的高效感知的要求,這為場景表示學習帶來了巨大的復雜性。為克服這些挑戰,本文追求魯棒、統一和信息豐富的場景表示,從不同類型的視覺輸入中學習幾何和語義,為自主學習理解周圍世界的智能機器鋪平道路。在此背景下,本文在視覺定位、像素點匹配和語義曲面重建領域做出了三個核心貢獻。
在這篇論文中,我們從單幅圖像開始估計6自由度(DoF)相機姿態。為了學習對環境變化和傳感器操作具有魯棒性的場景表示,提出了一種結合自注意模塊的神經網絡來建模復雜的幾何關系,給定的圖像相對于參考環境進行拍攝。然后,基于極線幾何和立體視覺的內在約束,我們構建了一個更通用的框架,在二維圖像和三維點云之間尋找統一的表示形式。通過引入超寬接收機制和新的損失函數,提出了一種雙全卷積框架,將2D和3D輸入映射到共享的潛表示空間中,以同時描述和檢測關鍵點,彌合2D和3D表示之間的差距。最后,我們將我們的研究擴展到開發信息表示,這通常是智能系統在現實場景中同時用于多個目的的操作所需要的。在借鑒以往基于點的網絡研究成果的基礎上,我們引入了一種全新的端到端神經隱式函數,它可以聯合估計原始和大規模點云的精確三維曲面和語義。
總體而言,本文開發了一系列新穎的深度神經框架,以推動場景表示的機器學習領域向能夠完全感知現實世界3D環境的人工智能發展。
大多數用于機器人感知的3D傳感器,如激光雷達,被動掃描整個環境,同時與處理傳感器數據的感知系統解耦。相比之下,主動感知是機器人的另一種范式,在這種范式中,可控傳感器只自適應地將其感知能力集中在環境中最有用的區域。可編程光幕是最近發明的一種資源高效的主動傳感器,可以測量任何用戶指定的表面(“窗簾”)的深度,分辨率比激光雷達高得多。主要的研究挑戰是設計感知算法來決定光幕在每個時間步的位置,在閉環中緊密耦合感知和控制。
本文為利用可編程光幕進行機器人主動感知奠定了算法基礎。我們研究了光幕在各種感知任務中的使用,如3D對象檢測、深度估計、障礙物檢測和規避以及速度估計。首先,我們將光幕的速度和加速度約束合并為約束圖;這允許我們計算可行的光幕,優化任何特定任務的目標。然后,我們開發了一套算法,使用各種工具,如貝葉斯推理、深度學習、信息獲取和動態規劃,智能地在場景中放置光幕。
最后,我們在一個在線學習框架中結合了多種智能放置策略。首先,我們能夠使用基于粒子濾波和占用網格的貝葉斯濾波技術顯式估計場景點的速度和位置。然后,我們提出了一個新的自監督獎勵函數,評估當前速度估計的準確性使用未來光幕布局。這種洞察力使在線多臂盜匪框架能夠在多個放置策略之間實時智能切換,優于單個策略。這些算法為可控光幕準確、高效、有目的地感知復雜動態環境鋪平了道路。
黑盒優化(BBO)問題經常發生在許多工程和科學學科中,在這些學科中,人們可以訪問一個函數(黑盒)的零階評估,該函數必須在特定的領域進行優化。在許多情況下,函數的計算成本很高,因此計算的次數受到預算的限制。貝葉斯優化(Bayesian Optimization)是一種流行的算法,它通過代理對黑箱函數進行建模,并通過評估最有可能導致最優結果的點進行運算。多目標優化(MOO)是優化中的另一個主題,其目標是在一個公共領域中同時優化定義的多個目標。通常情況下,對于相同的輸入,這些目標不會達到它們的最佳狀態。在這種情況下,不是尋找單一的最佳解決方案,而是需要一組帕累托最優解決方案。本文研究了BBO和MOO的幾種優化策略及其應用。
**本文的前半部分是關于昂貴函數的BBO。**首先,基于隨機擴展的思想,提出了一種簡單而靈活的多目標黑盒優化方法。我們引入了多目標后悔的概念,并表明隨著預算的增長,我們的策略實現了零后悔。接下來,我們研究了神經網絡對昂貴BBO的有效性。我們證明了一個簡單的貪心方法可以達到接近高斯過程貝葉斯優化的性能。利用最近研究的高斯過程和非常廣泛的神經網絡訓練動態之間的聯系,我們證明了我們提出的算法的遺憾的上界。最后,我們提出了一個考慮成本的貝葉斯優化框架,該框架考慮了每次評估的成本。這種方法在評估成本隨輸入域而變化的環境中很有用,低成本評估可以提供關于最大值的大量信息。
本文的后半部分是關于MOO在兩個可微MOO問題上的應用。我們的第一個應用是學習稀疏嵌入,使用神經網絡進行快速檢索。這里要優化的目標是檢索精度和檢索速度。我們引入了一種新的稀疏正則化方法,并演示了一種退火策略,與其他方法相比,該策略產生了更好的目標帕累托邊界。對于我們的第二個應用,我們考慮了分層時間序列預測的問題,其中多個相關的時間序列被組織成一個層次。我們提出了一種考慮層次結構的方法,同時可擴展到大型層次,并表明它在大多數層次級別上都能提高精度。我們還將其視為一個多目標問題,并演示了跨不同層次的性能權衡。為了總結我們的貢獻,在這篇論文中,我們提出了各種類型的黑盒和多目標函數的優化策略,并在合成或基準數據集上進行實驗評估。
模型必須能夠自我調整,以適應新環境。深度網絡在過去十年取得了巨大成功,特別是當訓練和測試數據來自相同的分布時。不幸的是,當訓練(源)與測試(目標)數據不同時,性能會受到影響,這種情況稱為域移位。模型需要自我更新以應對這些意外的自然干擾和對抗性擾動,如天氣變化、傳感器退化、對抗性攻擊等。如果我們有一些標記的目標數據,可以使用一些遷移學習方法,如微調和少樣本學習,以有監督的方式優化模型。然而,對目標標簽的要求對于大多數現實場景是不實際的。**本文專注于無監督學習方法,以將模型泛化到目標域。
本文研究了完全測試時自適應的設置,在不獲取目標標簽和源數據的情況下,將模型更新到不可控的目標數據分布。換句話說,模型在這個設置中只有它的參數和未標記的目標數據。其核心思想是利用測試時間優化目標,熵最小化,作為可學習模型的反饋機制,在測試時間內關閉循環。我們通過在線或離線的方式優化模型,以測量輸出熵的置信度。這種簡單有效的方法可以降低自然破壞和對抗性擾動圖像分類的泛化誤差。此外,語義分割模型的自適應特性可用于處理場景理解的動態尺度推理。通過對比學習和擴散模型,我們可以學習目標域特征并生成源風格的圖像,進一步提高動態環境下的識別性能。
//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-229.html
人類學習本質上是多模態的。我們通過觀察、傾聽、閱讀和交流來學習和理解我們周圍的環境。機器學習領域已經取得了一些與人類活動相關的進展,如語音識別或計算機視覺,這使得對這種類人固有的多模態學習進行計算建模成為可能。多模態視頻理解作為一種機器學習任務,與這種學習形式很接近。本文提出將這個復雜的視頻理解任務分解為一系列相對簡單的任務,并增加復雜性。本文從語音識別的單調任務出發,介紹了一個端到端視聽語音識別模型。語音翻譯是一個更為復雜的任務,除了語音識別外,還需要處理重新排序的輸出序列,這也是本文的第二個任務。對于語音翻譯,我們引入了一個多模態融合模型,該模型學習以半監督的方式利用多視圖多模態數據。此外,我們還將繼續進行多模態視頻摘要和問題回答的任務,以解決抽象層次的理解任務,進一步涉及信息壓縮和重構。最后,我們將這項工作擴展到多模態自我理性化,不僅執行抽象層次的學習,而且還提供了對所獲得的視頻理解的解釋。針對這四個主要任務,我們根據任務的性質和復雜性,提出了一系列多模態融合模型,并在常用的視頻和語言理解數據集上對模型進行了比較和對比。
//lti.cs.cmu.edu/sites/default/files/palaskar%2C%20shruti%20-%20Thesis.pdf
在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。
本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。
我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。
賦予機器以感知三維世界的能力,就像我們人類一樣,是人工智能領域一個基本且長期存在的主題。給定不同類型的視覺輸入,如二維/三維傳感器獲取的圖像或點云,一個重要的目標是理解三維環境的幾何結構和語義。傳統的方法通常利用手工特征來估計物體或場景的形狀和語義。然而,他們很難推廣到新的對象和場景,并努力克服關鍵問題造成的視覺遮擋。相比之下,我們的目標是理解場景和其中的對象,通過學習一般和魯棒的表示使用深度神經網絡,訓練在大規模的真實世界3D數據。為了實現這些目標,本文從單視圖或多視圖的物體級三維形狀估計到場景級語義理解三個方面做出了核心貢獻。
在第3章中,我們從一張圖像開始估計一個物體的完整三維形狀。利用幾何細節恢復密集的三維圖形,提出一種強大的編碼器解碼器結構,并結合對抗式學習,從大型三維對象庫中學習可行的幾何先驗。在第4章中,我們建立了一個更通用的框架來從任意數量的圖像中精確地估計物體的三維形狀。通過引入一種新的基于注意力的聚合模塊和兩階段的訓練算法,我們的框架能夠集成可變數量的輸入視圖,預測穩健且一致的物體三維形狀。在第5章中,我們將我們的研究擴展到三維場景,這通常是一個復雜的個體對象的集合。現實世界的3D場景,例如點云,通常是雜亂的,無結構的,閉塞的和不完整的。在借鑒以往基于點的網絡工作的基礎上,我們引入了一種全新的端到端管道來同時識別、檢測和分割三維點云中的所有對象。
總的來說,本文開發了一系列新穎的數據驅動算法,讓機器感知我們真實的3D環境,可以說是在推動人工智能和機器理解的邊界。
//ora.ox.ac.uk/objects/uuid:5f9cd30d-0ee7-412d-ba49-44f5fd76bf28
機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。
本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習
第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。
第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。
論文題目:Acquiring Diverse Robot Skills via Maximum Entropy Deep Reinforcement Learning
作者:Tuomas Haarnoja
導師:Pieter Abbeel and Sergey Levine
網址:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-176.html
論文摘要:
在本文中,我們研究了最大熵框架如何提供有效的深度強化學習(deep reinforcement learning, deep RL)算法,以連貫性地解決任務并有效地進行樣本抽取。這個框架有幾個有趣的特性。首先,最優策略是隨機的,改進了搜索,防止了收斂到局部最優,特別是當目標是多模態的時候。其次,熵項提供了正則化,與確定性方法相比,具有更強的一致性和魯棒性。第三,最大熵策略是可組合的,即可以組合兩個或兩個以上的策略,并且所得到的策略對于組成任務獎勵的總和是近似最優的。第四,最大熵RL作為概率推理的觀點為構建能夠解決復雜和稀疏獎勵任務的分層策略提供了基礎。在第一部分中,我們將在此基礎上設計新的算法框架,從soft Q學習的學習表現力好的能量策略、對于 sodt actor-critic提供簡單和方便的方法,到溫度自動調整策略, 幾乎不需要hyperparameter調優,這是最重要的一個實際應用的調優hyperparameters可以非常昂貴。在第二部分中,我們將討論由最大熵策略固有的隨機特性所支持的擴展,包括組合性和層次學習。我們將演示所提出的算法在模擬和現實機器人操作和移動任務中的有效性。