亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

建模的一個核心目標是幫助我們理解周圍的世界,但通常我們希望建模的現象只能間接觀察到。例如,我們經常通過它們對周圍物體產生的引力效應來檢測黑洞。未觀察到的現象通常使用與觀察到的變量存在統計關系但從未直接觀察到的潛變量來建模。這些潛變量模型是一種強大的形式主義,可以實現數據的簡潔和可解釋表示,但在變量之間的關系復雜時很難使用。 本論文開發了一種適用于具有非線性函數參數化變量之間依賴關系的潛變量模型的擬合技術,例如深度神經網絡或非線性微分方程。非線性依賴關系使得解析方法變得不可行,本論文的主要重點是將蒙特卡羅文獻中的抽樣算法擴展到深度生成模型中的工作。

具體來說,本論文側重于對順序數據進行建模,如神經電壓跟蹤或語音音頻。首先,我介紹了一種名為FIVO的方法,用于使用濾波順序蒙特卡羅來擬合非線性順序潛變量模型,并使用它來改進語音音頻和鋼琴譜的模型。然后,我開發了一種名為SIXO的基于平滑的FIVO擴展,成功地擬合了神經膜電位的生物物理模型。接下來,我介紹了NAS-X,這是SIXO的擴展,適用于離散潛變量。最后,我開發了用于嵌入式抽樣算法的擬合模型的方法,并與基于能量的建模建立了聯系。

這些方法為非線性潛變量模型中的推斷和學習建立了新的標準。例如,在霍奇金-赫胥黎神經膜電位模型中,NAS-X和SIXO相對于以前的方法實現了32倍的推斷對數似然度的改進。改進的推斷性能導致了參數學習方面的下游收益,并且能夠擬合基于具有數百個參數的非線性微分方程的潛變量模型。總的來說,本論文擴展了蒙特卡羅算法,以解決序列建模中的難題。

付費5元查看完整內容

相關內容

 (StanfordUniversity)位于加利福尼亞州,臨近舊金山,占地35平方公里,是美國面積第二大的大學。它被公認為世界上最杰出的大學之一,相比美國東部的常春藤盟校,特別是哈佛大學、耶魯大學,斯坦福大學雖然歷史較短,但無論是學術水準還是其他方面都能與常春藤名校相抗衡。斯坦福大學企業管理研究所和法學院在美國是數一數二的,美國最高法院的9個大法官,有6個是從斯坦福大學的法學院畢業的。

新型機器學習方法是科學和工程變革的核心。概率模型已成為知識發現的基礎學習模型。作為替代模型,它們允許在有限的預算下進行高效的黑箱優化或積極學習復雜系統的行為。另一個重要的用例是使用概率模型作為生成模型,生成具有所需屬性的新設計,或從物理系統的平衡分布中生成樣本。但是,為了充分發揮概率模型在知識發現中的潛力,必須開發既能應對不斷增長的數據大小和復雜性,又能讓領域專家容易解讀的模型。

在這篇論文中,我從開發一種新方法開始,該方法解決了貝葉斯優化中的概率替代模型的稀疏解識別問題。稀疏解的發現不僅增強了解決方案對人類的可解釋性,以便理解系統行為,還便于使用較少的參數更輕松地部署和維護。

接下來,我介紹了一種利用深度學習增強高斯過程推斷可擴展性的新方法。高斯過程被廣泛用作知識發現中的概率替代模型,但由于在GP回歸中識別核超參數的高成本,其實際使用受到限制,涉及到昂貴的邊緣可能性。我展示了如何通過使用“攤銷”超參數推斷來繞過昂貴的邊緣可能性的需求。這是通過訓練一個單一的神經網絡實現的,該網絡消耗一組數據并產生一個估計的核函數,用于不同的任務。

最后,我介紹了邊緣化模型,這是一種新的高維離散數據生成模型,在科學發現中無處不在。通過使用神經網絡對所有誘導的邊緣分布進行明確的建模,邊緣化模型提供了可擴展和靈活的生成建模與合理的可能性。直接建模邊緣使得邊緣推斷效率高,能夠對給定的(非規范化)概率函數進行任意階的生成模型的可擴展訓練,克服了以前具有精確可能性的方法的主要限制。

概率模型作為建模數據分布的原則機器學習方法,最近開始在促進科學探索和發現中起到重要作用。替代模型在科學、工程、機器人學和許多其他領域都是寶貴的工具,其中它們模擬復雜的系統行為。利用概率代理模型提供的不確定性量化,可以設計自動算法通過與系統主動交互來有效地完成給定用例的目標。一個主要的用例是優化,例如通過實驗測試確定電池正極的最佳材料組成。在這種情況下,使用概率模型進行貝葉斯優化(Shahriari等,2015b),根據實驗結果了解和迭代微調組成和性能之間的關系。同時,基于替代模型的不確定性量化,策略性地選擇下一個實驗條件,平衡對新組成的探索與對已知性能良好的組成的利用,從而加速最佳組成的發現。

主動學習提供了另一個主要的用例,例如在訓練替代模型準確模擬分子動力學(Vandermause等,2020)。該過程從基于有限數據的初始概率模型開始,然后通過主動查詢系統獲取額外的標記數據來系統地加強。選擇最具信息性的樣本進行標記是由替代模型的固有不確定性估計指導的,從而得到一個準確的模型,標記工作量最小。

除替代模型外,概率生成模型在跨多個領域建模復雜數據分布方面也取得了顯著進展,包括自然語言建模(Brown等,2020)、圖像生成(Song和Ermon,2019; Ho等,2020)、音頻合成(Huang等,2018)和科學發現應用(Wang等,2022; Schneuing等,2022)。在訓練科學發現的生成模型時,有兩個主要設置。第一個設置是最大似然訓練,目標是訓練生成模型以最大化訓練數據的似然。這種設置通常用于圖像生成、自然語言建模和藥物設計等任務,目標是生成與訓練數據分布非常相似的數據。第二個設置是分布匹配,目標是將生成分布與目標密度對齊。這種設置在圖像和語言方面研究較少,但在如采樣晶格模型和估計分子或材料的平衡性質等應用中經常使用,其中需要從物理系統的熱力學平衡分布中生成樣本。

在這篇論文中,我提出了新方法來解決知識發現背景下概率模型的解釋性和可擴展性挑戰。在深入研究所提議的方法的細節之前,我為替代模型和生成模型的現有文獻提供了簡短的概述。 本章的其余部分組織如下:第1.1.1節首先簡要介紹了高斯過程,這是一種在科學發現中使用的流行的概率替代模型。然后在第1.1.2節中,我回顧了貝葉斯優化的基本方法論方面。第1.2節簡要概述了關于生成模型的現有文獻,重點關注科學發現中的應用。最后,在第1.3節中,我總結了整個論文的大綱。

付費5元查看完整內容

雖然生成模型具有令人興奮的潛力,但其有限的可用性為其在現實世界應用中的廣泛采納帶來了重大挑戰。具體而言,現有方法往往會放大埋藏在其訓練數據中的有害社會偏見,并且經常無法準確反映用戶主觀規格,例如在生成輸出中的風格。此外,當處理具有獨特結構的數據分布,如周期性時,存在明顯的性能差距,限制了它們在圖像和文本數據之外的適用性。本論文考慮了所有這些方面,以幫助構建安全、可靠的生成AI系統,以便實際集成和部署。

首先,我們提出了一個方法論框架來應對偏見緩解和可控性的挑戰。基于傳統的密度比率估計(DRE)方法,我們開發了技術來修正已學習的模型分布,使其顯示的特征更接近感興趣的另一個目標分布。這些貢獻不僅為DRE提供了一個新的理論框架,而且還提高了在一系列下游任務上的性能,如域適應、數據增強和互信息估計。接下來,我們展示了這些方法在社會應用中的兩個實際應用。我們證明:(a)我們的重新加權生成建模框架成功地緩解了數據集偏見,以及(b)更可控制的模型可以更好地根據個人偏好定制AI生成的音樂,并協助創作過程。最后,我們總結了開發新的學習算法,將領域特定的歸納偏見整合到無線通信的生成模型中,以及離散數據分布。

基于概率的生成模型為我們今天的社會解鎖了大量新的機會。在大規模數據集和計算能力的推動下,最近的進展使我們能夠自動完成開發者工作流中的代碼[Che+21],根據自然語言指令合成高保真度的圖像和視頻[Ram+21; Ram+22; Rom+22; Yu+22; Ho+22; Sin+22],將風格傳遞給錄制視頻的每一幀[Ess+23],并個性化音樂表演以適應我們的口味[Don+23; Ago+23]。從通過協助數字內容創建為經濟增加數萬億美元的價值,到為創意工作民主化訪問和降低進入門檻,該領域正準備重新定義人工智能(AI)領域內的可能性[Bom+21; Elo+23]。

然而,這種興奮掩蓋了阻礙生成模型在現實世界應用中實際可用性的新出現的瓶頸。盡管它們具有強大的功能,生成模型仍然難以準確捕獲具有周期性(例如,醫學時間序列)和離散性(例如,分子生成的圖)這樣的特性的結構化數據分布。這極大地限制了它們在圖像和文本數據的創意努力之外的實用性。此外,實際將這些模型整合到我們的創意循環中也由于控制其輸出所涉及的復雜性而面臨重大挑戰[Lou+20]。這是因為指導合成輸出的用戶指定控制信號通常很難在數學或語言上明確地表達,而需要大量注釋的數據集進行標記監督或巧妙地導航模型超參數的組合爆炸[Yu+22; Gal+22; Fen+23]。最后,這樣的模型可能是不安全的,并在部署時產生意外的后果。因為生成模型旨在捕獲數據分布,它們不幸地可能放大訓練數據中的有害社會刻板印象,在下游應用中[Wei+21; CZB22]。這種關鍵的故障模式對終端用戶構成了重大的安全風險,他們可能會暴露于或在令人不安的內容中被利用[Jal+21; Bia+22; Ran+22]。因此,大型機構行為者可能會猶豫是否開放這些模型的源代碼,而基于這些技術構建的產品非常難以可靠且安全地部署到廣大公眾。 在這一背景下,任何成功的利用這些AI系統的方法都必須滿足兩個基本標準。首先,它們必須生成忠實于用戶規格的高質量內容,無論控制信號是顯式的(例如,風格)還是隱式的(例如,社會規范或價值觀)。這種細致的控制將確保生成可靠和相關的輸出,適用于實際的、真實世界的應用。第二個要素是,它們必須成功處理各種數據分布。這對于擴展這些模型在各種社會和技術領域的適用性至關重要

付費5元查看完整內容

盡管生成模型具有令人振奮的潛力,但它們的有限可用性對于在現實世界應用中廣泛采用它們提出了重大挑戰。具體來說,現有方法往往會放大嵌入在其訓練數據中的有害社會偏見,并且通常無法準確反映生成的輸出中的主觀用戶規范,例如風格。此外,當處理具有獨特結構的數據分布時,如周期性,會存在明顯的性能差距,這限制了它們在圖像和文本數據之外的適用性。本論文考慮了所有這些方面,以幫助構建安全可靠的生成式人工智能系統,用于實際集成和部署。

首先,我們提出了一種方法論框架,以應對偏見減輕和可控性方面的挑戰。在經典的密度比估計(DRE)方法基礎上,我們開發了技術,用于糾正學習模型分布,使其表現出更與另一目標分布更緊密對齊的特征。這些貢獻不僅為DRE提供了一個新的理論框架,還提高了在各種下游任務上的性能,如領域自適應、數據增強和互信息估計等。接下來,我們介紹了這些方法在社會應用中的兩個真實應用。我們證明:(a)我們的重新加權生成建模框架成功減輕了數據集偏見,(b)更可控的模型可以更好地定制AI生成的音樂以適應個人偏好,并促進創造過程。最后,我們總結了通過將領域特定的歸納偏見納入無線通信的生成模型以及離散數據分布的生成模型中的新學習算法。

概率生成模型承諾為我們的社會帶來巨大的新機會。受大規模數據集和計算資源的可用性推動,最近的進展已經催生出可以自動完成開發者工作流中的代碼 [Che+21],根據自然語言指令合成高保真度圖像和視頻 [Ram+21; Ram+22; Rom+22; Yu+22; Ho+22; Sin+22],將風格轉移到錄制視頻的每一幀 [Ess+23],并個性化音樂表演以迎合我們的口味 [Don+23; Ago+23] 的機器。從通過協助數字內容創作增加數萬億美元的經濟價值到民主化訪問并降低創意工作的準入門檻,這個領域準備重新定義人工智能(AI)領域的可能性 [Bom+21; Elo+23]。

然而,這種興奮熱潮掩蓋了阻礙生成模型在實際應用中的實用性的新興瓶頸。盡管生成模型具有強大的能力,但它們仍然難以準確捕捉具有周期性(例如,醫學時間序列)和離散性(例如,分子生成的圖形)等特征的結構化數據分布。這極大地限制了它們在涉及圖像和文本數據以外的創意工作之外的實用性。此外,實際將這些模型集成到我們的創意循環中也面臨著重大挑戰,因為控制它們的輸出涉及復雜性 [Lou+20]。這是因為用于引導合成輸出的用戶指定的控制信號通常在數學或語言上很難表達,而是需要大量的帶標簽監督的注釋數據集或巧妙地導航可能的模型超參數組合爆炸 [Yu+22; Gal+22; Fen+23]。最后,這些模型可能存在安全風險,并在部署時產生意想不到的后果。因為生成模型的設計目標是捕捉數據分布,不幸的是,它們可能會在下游應用中放大訓練數據中存在的有害社會刻板印象 [Wei+21; CZB22]。這種重要的故障模式對最終用戶構成了重大安全風險,他們可能會接觸到或被濫用于令人不安的內容 [Jal+21; Bia+22; Ran+22]。因此,大型機構可能會猶豫是否開源這些模型,以及基于這些技術構建的產品可能會受到極大的限制。

在這種背景下,任何成功的方法來利用這些人工智能系統都必須滿足兩個基本標準。首先,它們必須生成高質量的內容,忠實于用戶的規范,無論控制信號是顯式的(比如風格)還是隱式的(比如社會價值觀念)。這種細粒度的控制將確保可靠且相關的輸出,使其適用于實際的現實世界應用。第二個要素是它們必須成功處理各種數據分布。這對于擴展這些模型的適用性到各種社會和技術領域將是至關重要的。

付費5元查看完整內容

本論文旨在設計有效的方法,將已知結構融入機器學習模型中。結構的產生源于問題的形式化(例如,物理約束、聚合約束)或模型所需的屬性(能效、稀疏性、魯棒性)。在許多情況下,建模者對他們正在建模的系統有一定的了解,這必須以精確的方式進行加強。這對于提供充分的安全保證,或提高系統效率是必要的:用更少的數據訓練系統,或減少計算成本。本論文在各種設置中提供了方法,這些方法建立在連續的、受約束的優化和可微統計建模(也稱為深度學習)的兩個基礎領域之上。

論文的第一部分集中于設計和分析帶有凸約束的優化問題的高效算法。特別是,它關注Frank-Wolfe算法的兩個變體:第一個變體提出了一個快速的回溯線搜索算法,以自適應地設置全梯度設置中的步長;第二個變體提出了一個快速的隨機Frank-Wolfe算法,用于受約束的有限和問題。我還描述了對開源受約束優化軟件的貢獻。這篇論文的第二部分關注設計確切強制某些約束的深度學習模型:基于物理的約束,以及概率預測模型的聚合約束。這部分利用了雙層優化模型,并利用可微優化約束復雜神經網絡的輸出。我們證明,可以在復雜的非凸模型上強制執行復雜的非線性約束,包括概率模型。

這些例子展示了混合模型的威力,這些模型結合了數據驅動的學習,利用如深度神經網絡這樣的復雜非線性模型,并允許高效算法的經過深入研究的優化問題。這些混合模型幫助高度靈活的模型捕獲結構模式,有時甚至不需要任何數據訪問就能實現出色的性能。

近年來,機器學習模型在旨在匹配人類感知的領域(計算機視覺、音頻處理、自然語言)中取得了無數的成功。這些成功是通過理解如何利用模型輸入中的結構來實現的:圖片、聲音、文本、代碼,甚至分子的數字表示[1, 2, 3, 4]。為了在工程和科學中達到相似的成功水平,模型必須納入額外的結構性約束:模型的內部和輸出都應滿足某些關鍵屬性(例如,模型內部的稀疏或低秩權重,以及模型輸出的物理方程)。盡管優化領域長期以來一直關注如何實施這些約束,但將優化方法帶來的結構與數據驅動模型的靈活性結合起來的努力是非常近期的[5, 6]。這篇論文提出了新穎、高效的方法,將結構融入機器學習模型中,無論是在模型的內部(第一部分)還是在模型的輸出(第二部分)。我們認為這樣的混合系統將是為復雜的物理應用開發高性能系統的關鍵。機器學習中的結構性約束最近再次將Frank-Wolfe(FW)算法家族推到了聚光燈下。Frank-Wolfe算法允許對決策變量(例如,模型權重)施加凸約束,同時保持決策變量的稀疏表示。這篇論文的第一部分開發了新穎的Frank-Wolfe算法變體,以提高算法的實際速度。此外,我們還描述了我們的兩個開源優化庫:COPT和CHOP。在實際環境中部署決策制定系統時,系統必須執行物理約束:差異可能導致未定義的決策。例如,如果我們預測一個地區不同粒度的水庫的入水流量,不同級別的預測必須執行質量守恒;否則,會有未被計入的水量,破壞決策制定系統。這篇論文的第二部分考慮了將物理約束納入深度學習模型的問題,采用偏微分方程和分層質量守恒的形式。

付費5元查看完整內容

允許生成模擬但不提供分布密度訪問的統計模型被稱為模擬器模型。它們通常由科學家開發,用于表示自然現象,并依賴于具有物理意義的參數。類似地,生成網絡通過將噪聲(或潛在)分布的抽樣通過神經網絡進行轉換,從而從概率分布中產生樣本;對于模擬器模型,密度是不可獲取的。這兩個框架是由不同社區獨立開發的,可以歸為生成模型類;與明確指定密度的統計模型相比,它們更強大且更靈活。

對于生成網絡,通常通過通過自動微分啟用的梯度下降最小化目標函數來獲得參數(或權重)的單點估計。相比之下,對于模擬器模型,通常通過某種統計算法獲得參數的概率分布的樣本。然而,在這兩種情況下,推斷方法都依賴于利用模擬的共同原則。在這篇論文中,我遵循通過評分規則評估概率模型如何與觀察結果相匹配的原則。這概括了基于密度函數的常見統計實踐,并且通過特定的評分規則,允許處理生成模型。

在第1章中進行了詳細的介紹和文獻綜述之后,這篇論文的第一部分(第2章和第3章)涉及推斷模擬器模型參數的概率分布的方法。具體來說,第2章通過一種學習概要統計的新方法為傳統的貝葉斯無似然推斷文獻做出貢獻,這些概要統計被定義為模擬器模型的最佳指數族近似的充分統計。相反,第3章通過定義一個基于廣義貝葉斯推斷框架的新的后驗分布,而不是作為標準后驗的近似來偏離傳統。后驗分布是通過對模擬器模型可計算的評分規則來定義的,并且對異常值具有魯棒性。

在論文的第二部分(第4章和第5章),我研究評分規則最小化以確定生成網絡的權重;對于評分規則的特定選擇,這種方法比流行的替代方法更好地捕捉數據的可變性。我將以這種方式訓練的生成網絡應用于對不確定性敏感的任務:在第4章中,我使用它們為模擬器模型的參數提供概率分布,從而回到第2章和第3章的主題;相反,在第5章中,我考慮概率預測,同時也確立了訓練目標與依賴訓練數據的一致性。 最后,我在第6章中總結了一些最終的想法和未來工作的方向。

付費5元查看完整內容

表示學習已經成為一種多功能工具,能夠利用使用數字技術獲得的大量數據集。該方法的廣泛適用性源于其作為子系統使用的靈活性和在模型架構中納入先驗的可擴展性。數據內部的直觀依賴關系,如像素主要對其鄰近的上下文做出貢獻,可以被形式化和嵌入,以提高泛化,并允許具有很大能力的模型避免過擬合。元學習也被應用于將這些系統擴展到低數據設置,通過將特定任務視為更普遍問題的實現而不損失性能。本文考慮如何利用這些方法的基本兼容性。本工作的主要論點是,歸納偏差提供的計算的清晰度可以用于改進元學習架構,并直接構建元學習器過去經驗和解決問題能力到新任務的遷移。通過融合這些方法開發的方法可以在廣泛的設置和領域中提高與基線模型相比的性能。融合有三種實現方式。第一個將復合分類確定為一種自然設置,并展示了如何使用注意力下數據點的自組織來增強元學習分類器。第二種使用顯式關系推理來調節和重組神經模塊,以在測試時快速準確地適應。自適應神經過程來捕獲關系和時間依賴,以提高預測和不確定性估計的準確性和一致性。在驗證本文的激勵假設時,這些貢獻在其他領域中發現了最先進的應用,包括小樣本圖像分類、粒子控制系統的相互作用的無監督恢復、蛋白質-蛋白質相互作用位點預測以及動力系統的識別和演化。通過這樣做,這項工作有助于使機器智能應用于更廣泛、更精細的問題范圍——作為所考慮問題的解決方案,作為進一步應用的架構模板,以及作為未來研究的方向。

付費5元查看完整內容

深度學習為我們提供了越來越復雜的神經網絡,可以通過梯度上升來調整,以最大化某些目標。貝葉斯統計為我們提供了一種原則性和統一的方法來指定統計模型和執行推斷。將這兩種方法配對的一種有效方法產生了深度生成模型(DGM),其中概率模型中統計參數之間的映射本身使用神經網絡進行參數化。在本文中,我們研究了這種方法可以用于解決機器學習中的各種問題的方法,以及由此產生的模型的屬性。在這篇論文中,有三個反復出現的主題,魯棒性,結構和層次,貫穿始終。

首先研究如何構建一個深度生成模型,以在一種稱為半無監督學習的新學習機制中進行學習。這是半監督學習的一個極端情況,對于某些類別的數據,沒有給定的標記示例。在學習將數據劃分為不同的成分,不同的基礎真值類時,模型必須能夠在未標記的類上進行聚類,并在給出了一些標記示例的類上進行半監督學習。本文展示了如何在一系列標準數據集上實現這一點。

從處理一個離散潛變量聚類分配開始,研究具有離散潛變量層次結構的模型。我們提出了一種新的方法來參數化這種類型的模型中的潛在變量,放松的責任向量量化,可以訓練非常深的潛在變量層的層次結構。該方法在一系列標準數據集上,對端到端的分層離散DGM進行訓練,在最大化數據證據(訓練和測試集)的下界方面取得了最先進的結果。在這樣做的過程中,這些模型有助于縮小具有離散潛在的分層DGM和具有連續潛在的分層DGM之間的差距,并提供極其穩定的訓練。

然后我們切換到另一個問題,如何構建一個模型,以有效地從高維數據中學習統計獨立的潛在表示。本文提出一種分層方法,使用雙射函數flow來產生一個中間表示,然后由高度約束的線性獨立成分分析(ICA)模型起作用。與其他方法相比,這導致了在各種玩具和真實數據集上的優越性能。

然后,研究迄今為止未考慮的問題,即如何使DGM對對抗性攻擊具有魯棒性。對這些模型的潛空間進行正則化可以可靠地誘導魯棒性,并通過將這種正則化應用于分層的DGM來獲得更魯棒的模型。最后,從理論角度研究了DGM算法的魯棒性問題。我們定義r-魯棒性,DGM魯棒性的新標準,然后得出該標準上的間隔,在該間隔內的模型可以說是魯棒的。與潛空間被正則化的各種DGM的最佳模型的新理論相結合,這種間隔的形式有助于了解這種正則化如何提高魯棒性。

**本文提出的工作表明,深度學習和貝葉斯統計的結合是多么有效,并提供了對他們的組合所產生的模型本質的見解。**這為這兩個方向開辟了新的研究——為建立在所提出工作之上的新模型,也為研究深度生成模型的理論工作開辟了新途徑。

//ora.ox.ac.uk/objects/uuid:fa76ad20-30bb-48a3-8ae4-56da578a1767

付費5元查看完整內容

長期以來,隨著數據處理系統的復雜性不斷增加,系統設計者一直在想象能夠根據環境線索進行自我配置和適應的系統(如數據庫、調度程序)。在這種情況下,強化學習(RL)方法從一開始就吸引了系統開發人員。他們承諾從原始反饋信號中獲取復雜的決策策略。盡管RL方法在概念上很流行,但在現實世界的數據處理系統中卻很少見到。最近,由于利用大型神經網絡(深度強化學習)取得了引人注目的成功,RL受到了爆炸性增長的關注。新興的機器學習框架和強大的硬件加速器催生了大量新的潛在應用。在本文中,我首先提出,為了高效地設計和執行深度RL算法,需要新穎的軟件抽象來適應通信密集和快速進化算法的獨特計算模式。我提出了一種將邏輯算法構造與本地和分布式執行語義解耦的體系結構。我將進一步介紹RLgraph,這是我對這個體系結構的概念驗證實現。在RLgraph中,算法開發人員可以通過組合邏輯組件構建高級數據流圖來探索新的設計。此數據流圖獨立于特定的后端框架或執行概念,只在以后通過分階段構建過程映射到執行語義。RLgraph支持高性能算法實現,同時保持快速原型的靈活性。

//www.repository.cam.ac.uk/handle/1810/304385

其次,我研究了系統本身中RL應用程序稀缺的原因。我認為,由于缺乏用于任務模型設計的工具來彌合系統和算法之間的差距,以及缺乏評估模型能力的共同標準,應用RL的進展受到了阻礙。在本文中,我介紹了應用RL中第一個用于增量模型設計的工具——Wield。Wield 提供了一小組原語,將系統接口和特定于部署的配置從表示中分離出來。運用的核心是一種新的指導性實驗協議,稱為漸進隨機化,它幫助從業者逐步評估非確定性的不同維度。我演示了如何使用和漸進的隨機化可以用來再現和評估之前的工作,并指導新RL應用程序的實現。

付費5元查看完整內容

從社交網絡到Web和大腦結構,圖是各種系統的一種自然表示。即使當數據沒有顯式地相互連接時,將其轉換成圖表以便進一步分析通常也是很方便的。許多涉及圖的任務,如鏈接預測、社區檢測和分類,依賴于圖中節點或圖整體之間的各種相似度定義。然而,這種相似性大多是隱式的,這意味著物體在某些空間中不被特征向量表示。相比之下,現代機器學習方法要求明確表示歐幾里得空間中的對象。為了在圖數據上利用機器學習的能力,我們必須具有適當的圖的顯式表示。

本論文研究針對圖結構數據表示的有效的算法。我們關注的是算法的可擴展性,因為它們必須有能力處理Web大小的圖,以能夠應對實踐。局部圖算法具有這種能力; 我們引入可擴展的局部算法來表示節點,邊,和整個圖作為向量在歐氏空間。通過潛在相似性來研究表征,使我們能夠闡明以前的工作,并將非常理想的特性引入我們提出的模型。值得注意的是,我們介紹了第一個隨時表示圖節點的算法。對于整個圖的情況,我們提出了表示,它使圖的多尺度比較和其局部逼近的方法。我們通過實驗驗證了我們的方法并沒有為了算法的可擴展性而犧牲表示的表達性。我們介紹了圖分析的新應用,并在具有數十億節點的大規模圖上使用我們的方法。

//bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/9119

付費5元查看完整內容

在生態學、流行病學和天文學等許多應用領域中,仿真模型被用來研究發生在自然界中的復雜現象。通常,這些模型的似然函數的分析形式要么是不可用的,要么是太昂貴而無法評估,從而使統計推斷復雜化。無概率推理(LFI)方法,如近似貝葉斯計算(ABC),基于用模型的正演模擬代替難以處理的似然評估,已成為對仿真模型進行推理的一種流行方法。然而,當前的LFI方法在計算和統計方面存在一些挑戰。特別是,標準的ABC算法需要大量的仿真,這使得它們在前向仿真代價昂貴的情況下不可行。

本文討論了計算代價高的模型的無概率推理。主要貢獻是基于高斯過程代理模型的LFI一致性框架。GP模型允許對仿真模型輸出的平滑假設進行編碼,以減少所需的仿真量。此外,由于模擬預算有限,所產生的基于模型的后驗逼近的不確定性可以被量化。我們提出貝葉斯實驗設計策略來選擇評估地點,以使計算成本最小化。順序設計(每次選擇一個模擬)和批處理策略(允許利用并行計算)都是推導出來的。除了LFI場景外,本文提出的方法也適用于可能性可以評估但代價昂貴的情況。

本質上,所提出的框架可以被視為概率數值方法的LFI對等物,如貝葉斯優化,用于優化昂貴的目標函數,貝葉斯求積,用于計算昂貴函數的積分。我們通過大量的經驗模擬證明了所提出的LFI方法的優點。文中還對所提算法進行了理論分析,并討論了它們與其他GP代理方法的關系。

//aaltodoc.aalto.fi/handle/123456789/46310

付費5元查看完整內容
北京阿比特科技有限公司