當下,全球國防工業正在快速進步發展和創新。更復雜的是,這些進步跨越了不同的技術,其中幾個關鍵的技術趨勢旨在改變2024年及以后的國防能力并加強國家安全行動。
人工智能、3D 打印、超連接、網絡安全、數字孿生技術、可持續發展努力和軍事物聯網是 2024 年將塑造該行業的主要國防技術趨勢。
這些技術專注于增強國防能力、克服供應鏈問題、實現可持續發展目標和提高流程效率。
持續的數字化轉型對于應對國家安全的動態挑戰至關重要。
預計到 2024 年,人工智能 (AI) 和機器學習 (ML) 技術的國防應用將越來越多。根據行業分析:
人工智能和機器學習將用于優化復雜的國防行動,增強決策,實現預測分析,并提高整體軍事效率。
算法可以快速分析來自不同來源的大量數據,并確定可操作的見解,以獲得戰略優勢。
人工智能系統的自學習能力將有助于適應動態的戰斗情況。
通過人工智能實現日常任務的自動化將使人類的工作集中在批判性思維和任務規劃上。
人工智能虛擬助手、計算機視覺系統、自主無人機、網絡防御工具、兵棋推演模擬是一些應用。
全球軍事人工智能市場規模預計將從 2022 年的 62.6 億美元增長到 2028 年的 131.6 億美元,復合年增長率為 12.2%。
例如,美國國防部的 MAVEN 項目通過梳理無人機監控錄像并識別目標和模式,將人工智能用于地理空間分析。這加強了情報收集,并幫助作戰人員領先于新出現的威脅。
雖然人工智能已經被納入情報處理、網絡安全、后勤優化和模擬訓練環境等領域,但未來的國防應用正在迅速擴展:
1、自主系統
人工智能算法正在為自動駕駛補給卡車、損害評估無人機、3D 打印機器人和小隊支援陸地機器人等國防系統實現更大的自主性:
2、AI 優化的通信
ML 模型可以對軍事通信進行編碼/解碼以確保安全性,并建議優化的波形協議。抗干擾、自愈網狀網絡可以保持連接。特別與新的戰術鏈路通信系統有關,或與戰場上5G通信系統的潛力有關(仍然存在一些局限性)。
3、增強的仿真環境
AI 生成越來越逼真的模擬環境,用于在各種場景中訓練戰斗機飛行員、坦克乘員和步兵部隊:
4、對話式 AI 助手
像 Anthropic Clara 這樣的 AI 虛擬助手在理解自然語言和參與細致入微的對話方面表現出越來越強的能力:
這種對話代理在進行繁瑣的行政工作時,使關鍵的國防相關知識更容易獲得。隨著語言模型研究的指數級進展,到 2024 年,AI 助手自然交談的能力將發生轉變,從而大大提高其實用性。
人工智能賦能的國防系統已經取得了成功,但也面臨著訓練數據偏差、決策透明度問題和采用猶豫等挑戰。機器學習、神經網絡、預測分析和自然語言處理方面正在進行的研究重點是克服這些障礙,使人工智能在 2024 年成為不可或缺的力量倍增器。
越來越多的技術轉向創建靈活且可互操作的多域防御生態系統。傳統上,陸地、空中、海洋、太空、網絡領域中不同的網絡和系統正在融合:
1、戰術邊緣云
分布式云基礎設施,專注于步兵巡邏隊、裝甲車等野戰單位。它提供:
2、私有國防云
針對國防數據主權、規模和安全需求定制的企業級云解決方案:
3、 混合模型
公有云、私有云和邊緣資源的組合,專為任務需求量身定制:
BAE系統的聯邦云通過將空中、陸地、海洋、太空領域橋接到靈活的云架構上,實現超連接系統。美國國防部 JADC2 采用類似的混合云方法。到 2024 年,向彈性、可重構的多域云平臺的融合將加速,以實現超連接的國防任務。
Indra 正在歐洲聯合會中積極開發其中的一些解決方案,這些解決方案將在未來幾年內推動這些技術的采用。
4、網絡安全 - 捍衛數字前沿
網絡攻擊是一種嚴重且始終存在的國家安全威脅。高級持續性威脅、勒索軟件、供應鏈攻擊可能會削弱關鍵的防御基礎設施。
由敵對國家的復雜網絡組織正在不斷探測網絡的弱點,以提取情報或獲得未來破壞的訪問權限。因此,強大的網絡安全勢在必行。
5、IT/OT 融合
武器、車輛、工業控制系統等傳統信息技術 (IT) 和作戰技術 (OT) 系統正在通過 IP 網絡融合,以實現數據可訪問性:
6、零信任和欺騙策略
零信任和欺騙網絡安全策略越來越受歡迎。
零信任要求在授予任何訪問權限之前進行嚴格的身份驗證和最低權限授權。這樣可以最大程度地減少攻擊爆炸半徑。
欺騙使用陷阱和誘餌來檢測威脅行為者并研究他們改進國防的工具。
7、網絡殺傷鏈分析
將威脅映射到網絡殺傷鏈包括入侵和攻擊進展:
分析被破壞的殺傷鏈階段有助于調查,提高恢復和防御工事。
到 2024 年,高級持續性威脅的規模和復雜程度預計將增長。因此,網絡安全必須與陸、空、天防一起提升為一項關鍵的戰略能力。
2024 年,由于新型高強度、多功能可打印材料的出現,國防 3D 打印能力正在擴大:
1、高性能聚合物
PEKK、PPSF/PPSU 等耐熱/耐化學腐蝕聚合物可為飛機、衛星、船舶和核應用提供耐用的 3D 打印部件。
2、先進金屬合金
鋁、鈦、鎳和鋼合金在車輛、武器和植入物方面具有優于傳統材料的強度重量比。
3、智能材料
壓電材料、形狀記憶合金和聚合物在模擬時會改變形狀/性能。這允許實時重新配置天線、機翼、傳感器。
4、生物相容性材料
生物打印利用明膠、纖維素、透明質酸材料來打印皮膚移植物、軟骨、骨骼和肌肉組織,以提供快速的現場醫療援助。
5、多材料3D打印
將聚合物、金屬和智能材料結合到一次打印中,可實現定制和多功能。防御系統可以通過交換材料輕松升級。
6、3D打印
3D打印技術也稱為增材制造,通過基于數字模型逐層沉積材料來構建結構。對于國防應用:
法國陸軍已經利用 Ultimaker S5 3D 打印機按需制造專門的車輛零件、天線等。英國皇家海軍的新型自主船HMS Tamar還具有多個3D打印部件,以實現靈活性。3D打印技術在多材料制造、打印速度、零件強度和精度方面的持續改進將推動其在2024年的國防采用。
數字孿生技術創建了一個物理實體(如飛機、車輛、基地等)的虛擬仿真模型,這些實體通過一個通用的數據環境相互連接。它支持:
數字主線需要一個通信框架,該框架將整個產品生命周期(從構思、設計、生產到部署)的數字孿生連接起來。它將促進:
根據 MarketsandMarketsTM 的數據,航空航天和國防的數字孿生和線程市場將以 16.5% 的復合年增長率從 15 億美元(2022 年)增長到 30 億美元(2027 年)。
BAE系統公司與Microsoft合作,采用其基于云的數字孿生解決方案。它提供了身臨其境的 3D 環境、模擬和數據集成,這對于他們的獵人級護衛艦計劃至關重要,從構思到部署。到 2024 年,基礎仿真、云計算、物聯網、AR/VR、數據集成和安全功能的成熟將刺激數字孿生和線程技術在國防中用于高級系統工程項目。
航空航天和國防部門越來越關注通過脫碳工作和采用綠色技術實現環境可持續性:
例如,美國空軍和海軍已經測試了全電動和混合動力飛行演示器,測試了零排放飛行。2035年后的目標是對所有新購置的空氣系統進行優化,以實現可持續性。國防脫碳目標的實現取決于新興綠色技術的成熟,到 2024 年,投資將超過 14 億美元,這將進一步推動。
物聯網 (IoT) 范式正在通過智能互連傳感器、設備、武器系統和其他資產共同構成軍事物聯網 (IoMT) 應用于國防和航空航天領域。
相關應用包括:
MarketsandMarketsTM 估計,到 2025 年,軍事物聯網市場規模將從 2020 年的 18.8 億美元達到 44.2 億美元,復合年增長率為 13.5%。
泰雷茲集團利用 IoMT 對關鍵的航空航天和國防設備進行預測性維護。智能傳感器數據饋送到 AI 模型中,可提前檢測異常并采取預防措施。到 2024 年,具有底層 5G、衛星通信網絡、基于 AI 的分析和強大的網絡安全的 IoMT 將成為軍事行動不可或缺的一部分。
參考來源:Eusebio Rodriguez
前美國防部長馬克·埃斯珀(Mark Esper)曾經說過:“歷史告訴我們,那些率先利用新一代技術的人往往在未來幾年的戰場上擁有決定性的優勢”。
人工智能和機器學習將在塑造現代戰場方面發揮關鍵作用。這些技術增強了態勢感知能力,優化了決策,并提供了競爭優勢。
從用于偵察的自主無人機到用于供應鏈管理的預測分析,它們的影響是深遠的。在烏克蘭的行動凸顯了這些技術的應用:由克里斯·希爾博士領導的陸軍物資司令部分析小組利用作戰數據在需要時協助需求規劃,同時無縫預測和協調需求。快速處理此類大量數據的能力允許實時威脅檢測和響應,從而挽救生命和資源。
此外,人工智能有助于開發復雜的網絡防御系統,并支持創造更智能、適應性更強的武器。簡而言之,人工智能和機器學習正在通過提高效率、準確性和整體有效性來徹底改變戰爭。隨著我們繼續開展活動和運營,并在全球范圍內進行投資,情況將保持不變。
總的來說,指揮官和領導者必須信任這項技術,才能在聯合全域作戰中證明其有效。當務之急是,所有梯隊的領導者都必須考慮如何制定和實施與家鄉站的數據訓練策略——以及戰斗訓練中心的參與——以建立對技術的信心,以便領導者能夠以信任的速度運作。
在不斷變化的戰爭環境中,技術進步不斷塑造著武裝部隊的作戰方式。從南北戰爭期間的加特林機槍到二戰期間的DUKW兩棲車輛和M-3半履帶運兵車,技術一直影響著我們的戰斗方式。
在這些進步中,人工智能和機器學習已成為游戲規則的改變者,無疑將徹底改變現代戰場。它們的整合在軍事行動的各個方面,從情報收集到決策等方面都帶來了前所未有的改進。
量子計算和機器學習可以在幾秒鐘內做出比傳統工作人員在軍事決策過程中更多的行動方案,這允許決策速度,這將給我們帶來決定性的優勢。
隨著戰爭性質的變化,我們正處于一個戰略轉折點,正如現已退休的馬克·米利將軍在 2023 年 7 月發表的“聯合部隊季刊”文章《戰略拐點:戰爭性質中最具歷史意義和最根本的變化正在發生——而未來籠罩在迷霧和不確定性中》中所闡明的那樣。
“我們必須努力比敵人少犯錯,”他說。這要求我們的聯合特遣部隊在聯合作戰概念的指導下進行根本性轉變。隨著我們過渡到一個新的戰爭時代,如果我們要贏得“比敵人少犯錯”的戰斗,我們必須確保聯合部隊被納入人工智能和機器學習的整合中。
同時,全面了解戰場對于軍事成功至關重要,人工智能和機器學習將使軍隊能夠利用大數據和實時信息的力量來增強態勢感知能力。配備人工智能算法的自主無人機可以以無與倫比的效率執行偵察任務,捕獲有關敵人動向、地形狀況和潛在威脅的數據。這些信息可以快速處理,使指揮官能夠在使用傳統方法所需時間的一小部分內做出明智的決定。
這種增強的態勢感知能力不僅可以最大限度地降低士兵的風險,還可以對新出現的威脅做出積極反應。簡而言之,訪問可以快速處理和分析的數據,為指揮官和作戰人員的實時決策提供信息,這將改變戰場上的游戲規則。
利用人工智能和機器學習等技術將塑造我們如何在未來的戰斗中采用這一概念,并決定我們如何培訓和發展梯隊領導者,以便在競爭、危機或沖突中利用這項革命性技術。
在“軍事評論”最近的一篇文章中,堪薩斯州萊文沃思堡陸軍聯合武器中心司令米爾福德·比格爾中將談到了我們必須如何通過減少對材料的依賴和提高對信息維度的利用來優化指揮所。
在混亂的戰爭中,瞬間的決策可以決定戰斗的結果。
正如在第二次世界大戰期間的中途島海戰中所看到的那樣,在那場海戰中,決策速度決定了成敗。人工智能和機器學習算法旨在處理大量數據并識別人類可能遺漏的模式。這些工具將改變組織如何更快地做出更好的決策。
將那些經常在“數據脫節”環境中作戰的戰場最邊緣的指揮官提升到行動指揮官和上層之間費力的信息流的犧牲品。
這種能力有助于軍事領導人做出更明智的決策,從選擇最佳戰略到根據實時情報評估最佳行動方案。從歷史數據中得出的預測分析還可以幫助預測敵人的動向并識別其防御中的潛在弱點。這是對指揮官現在利用的人類情報和信號情報流的一大補充。
最后,利用這項技術可以采取更有計劃、更有效的軍事行動方法,從而最大限度地減少傷亡并提高任務成功率。
戰略競爭對手正在部署能力,通過所有領域的多層對峙來對抗對手,這將要求在太空、網絡、空中、海上和陸地上擊敗多層對峙。實時檢測和響應威脅的能力是現代戰爭的重要組成部分。
人工智能驅動的系統可以同時監控多個數據源,從衛星圖像到截獲的通信。通過實時分析這些數據,算法可以識別異常和潛在威脅,從而立即向軍事人員發出警報。這種積極主動的方法能夠實現快速響應和反擊,防止對手占據上風。
無論是對關鍵基礎設施的網絡攻擊還是敵軍的移動,人工智能驅動的威脅檢測系統在維護軍事行動的安全性和完整性方面都具有顯著優勢。
后勤和供應鏈管理是任何軍事行動的命脈。在全球綜合后勤環境中,有太多相互作用的變量,維持者無法有效監控。
如今,人員只能通過各種數據流對車隊和供應商品的歷史數據進行監控。正如 Lone Star Analysis 的 John Price 在 2021 年 8 月發表在“軍事嵌入式系統”上的一篇文章中所寫的那樣,“計算機系統可以提供持續的評估,并且有足夠的機器智能,預測就會變得強大。
人工智能和機器學習通過預測需求模式、識別供應短缺和簡化分銷路線來優化這些流程。這包括人工智能驅動的基于車輛狀態的維護,該維護監控車輛的各個方面,從進氣到排氣以及其中的所有點。
因此,我們將范式完全從工廠轉移到了工廠,現在需求從散兵坑傳到了工廠。基于車輛狀態的維護利用預測性和規范性分析,同時提供持續診斷以及提供問題預測和解決方案處方,從而使人員能夠專注于進行特定調整,以優化軍用車隊的運營可用性。
這不僅確保了部隊擁有必要的資源,而且還最大限度地減少了浪費并降低了成本。通過自動化重復性任務和優化路線,武裝部隊可以更有效地分配資源,并在速度和效率方面保持競爭優勢。這種由人工智能和機器學習實現的精確維持確保響應符合需要,或者從散兵坑移動到工廠,而不是從工廠轉移到散兵坑。
同時,現代戰爭超越了傳統戰場,也包括了網絡領域。人工智能和機器學習在制定針對網絡威脅的自適應防御策略方面發揮著至關重要的作用。
美國防部的OODA - 觀察,定位,決策和行動 - 是作戰人員使用數據不僅實現有根據的決策,而且及時定位的循環。這些技術可以快速識別和響應網絡攻擊,分析模式以區分正常的網絡活動和可疑行為。此外,人工智能驅動的網絡安全系統可以從以前的攻擊中吸取教訓,并不斷提高其檢測和消除新出現的威脅的能力。
隨著世界的不斷發展,沖突的性質也在不斷變化。人工智能和機器學習已成為現代軍事武器庫中不可或缺的工具。他們處理大量數據、加強決策和實現實時響應的能力改變了武裝部隊的運作方式。
從提高態勢感知到徹底改變供應鏈管理和網絡安全,這些技術正在塑造戰爭的未來。
美國防部致力于遵循“設計即使用”的方法,在聯合全域作戰中利用這項技術。在開發解決方案時,每種服務都有不同的要求。
美國陸軍的要求可能是移動中的士兵或地面戰車;相比之下,對于空軍來說,這個案例可能是前沿空軍基地所需要的。
隨著向前邁進,這些技術的整合對于保持軍事優勢和確保軍事人員在現代戰場上的安全和成功仍然至關重要。借助人工智能和機器學習,無疑將能夠“以最先的速度”到達那里。
參考來源,David Wilson,美國陸軍維持司令部司令
隨著數字化技術的進一步發展,數據中心的規模、架構、技術、管理等方面都取得了顯著的進步和突破,其重要性等級也不斷提升。數據中心當前處于一個快速發展和技術變革的特殊時期,全新的人工智能應用正在重塑整個世界,為社會帶來便捷的同時,也為數據中心的發展帶來了新的機遇和挑戰。智能算力的爆發式增長,對數據中心提出了大算力、高性能的新需求,并為數據中心的發展提供了強勁的動力和更加廣闊的空間。隨著數字化技術的進一步發展,數據中心的規模、架構、技術、管理等方面都取得了顯著的進步和突破,其重要性等級也不斷提升。而近年來數據中心的安全事故時有發生,由此造成的社會影響和經濟損失,呈逐年升高的趨勢,安全可靠作為數據中心的最基本要素,成為行業共同關注的重要課題。華為數字能源與產業領袖、技術專家和行業客戶基于深入研討,并結合自身的深刻洞察和長期實踐,發布《數據中心能源十大趨勢白皮書》,希望為促進數據中心行業健康發展提供參考,貢獻智慧。核心觀點Core Viewpoints據Uptime權威數據,從2019年到2022年,數據中心業務中斷損失超過10萬美金的比例,已經從39%上升至71%,且會隨著算力需求翻番成倍增長。毫無疑問,安全可靠是數據中心最核心需求,應始終作為最高優先級關注。趨勢1:高可靠產品+專業化服務是保障數據中心安全可靠運行的關鍵數據中心承載海量數據的存儲、處理和傳輸,為千行百業堅定運行提供保障,而數據中心的安全性、可靠性一直是較薄弱的環節。為確保數據中心的安全可靠運行,在產品設計、生產環節就要貫穿“全鏈安全”的理念,同時嚴控產線質量,高度自動化,減少人為干預,保障產品自身的高可靠性。此外,要大膽假設,充分考慮產品出現問題后的應對措施,通過提供專業化部署和運維服務,降低產品失效率,最小化災后影響,完善端到端的保障機制,雙管齊下保障數據中心安全可靠運行。趨勢2:分布式制冷架構將成為溫控安全的更優選擇傳統大型數據中心多采用集中式制冷架構的方案,如傳統冷凍水系統,冷凍站中涉及七大子系統和幾十種設備,各設備之間不能獨立運行,一旦發生單點故障,可能會影響整個冷凍站的安全運行,導致數據中心大規模宕機,近年來業內部分數據中心安全事故也說明集中式制冷架構存在單點故障的風險。相較之下,分布式制冷架構靈活,各個子系統相互獨立,單臺設備故障不會影響其他設備運行,故障域更小,可靠性更高,可以直接從架構設計上避免數據中心制冷系統的單點故障,提升數據中心的運行可靠性。趨勢3:預測性維護將成為數據中心基礎設施的標配數據中心的維護往往是事后型,發生事故后才知道問題所在,但隨著智算時代的到來,數據中心的故障響應時間大幅縮短。未來數據中心基礎設施的運維,預測性維護將成為標配,從事后型轉為事前型。得益于AI技術的快速發展,預測性維護的范圍將持續擴大,從電容、風扇等易損件的壽命預測、設備的熱失控預警到制冷系統的漏液預警,都能提前預測,提前處理避免事故的發生,做到“治未病”,從被動“救火”走向主動“防火”,在運維方面大幅提升數據中心可靠性。趨勢4:全生命周期的網絡安全防護體系將成為數據中心基礎設施的保護盾隨著數字化、智能化程度的加深,網絡安全風險也在成倍增加,網絡攻擊越來越常態化。不管是UPS還是空調設備,一旦遭遇惡意攻擊,都會直接影響數據中心安全可靠性。未來數據中心基礎設施,硬件安全加軟件安全,才是全方位的安全,軟件安全要從供應安全、縱深防御和運維/運營安全三個維度,構筑全生命周期網絡安全防護體系,為數據中心的安全可靠運行保駕護航。趨勢5:預制化、模塊化將成為高質量快速交付的最佳選擇互聯網云廠商全球業務加速發展,帶動數據中心建設需求顯著增長。而傳統的數據中心建設模式,建設速度慢,工程復雜,不能滿足快速部署的要求。因此,建設周期更短、質量更高的預制化、模塊化方案將成為首選。通過“工程產品化”和“產品模塊化”,在工廠一體化集成,完成預制和預調試,保證現場交付的是高質量產品,有效縮短交付周期,同時滿足客戶業務快速上線需求,還大幅減少現場施工造成的“三廢”垃圾。趨勢6:專業化管理平臺讓數據中心運維更安全、更高效從千柜級建筑到萬柜級園區,數據中心呈現規模化、集約化發展趨勢,相應的整體運維復雜度也大幅提升,且數據中心設備多為“啞”設備,依賴傳統巡檢難度大,對技能的要求較高,故障定位時間長。構建專業化的管理平臺,可以顯著提升數據中心運維效率和準確性,通過原廠的專業化管理平臺,幫助客戶構建設備深度管理能力,大大降低運維難度,做到快速判斷問題,及時排除故障,確保數據中心安全穩定運行。趨勢7:風液融合將成為業務需求不確定場景下的優選架構當前正處于通用算力和智能算力的過渡期,同一個數據中心會同時存在通用算力和智能算力場景。通用服務器單柜功率密度一般不超過15kW,風冷型設備即可滿足制冷需求,而智算中心單柜功率密度通常超過30kW,這種場景往往需要液冷來散熱。對于需求不確定的業務場景,風液融合將成為適配未來演進的數據中心優選架構,通過風冷+液冷的組合和比例可調,靈活適應業務需求變化,保護用戶投資。趨勢8:間接蒸發冷依然是現在和未來最優的制冷方案當前風冷方案仍占據主流應用場景,在冷源側,間接蒸發冷卻方案相較冷凍水系統,在架構、效率和運維方面存在明顯優勢,是現在和未來最經濟適用的制冷方案。間接蒸發冷卻的分布式制冷架構可有效避免單點故障,可靠性更高;并且通過最大化利用自然冷源,僅需一次熱交換,在寒冷地區絕大部分時間無需壓縮機制冷,實現極致PUE;針對智能算力需求,間接蒸發冷卻支持未來演進的架構,進一步適配液冷的計算場景。趨勢9:能效PUE挖潛要從關注部件高效調整為系統工程最優解“碳中和”是全球共識和使命,傳統數據中心關注提升UPS、空調等部件效率,但受限于元器件物理限制,部件的效率提升接近瓶頸,微小改進的時間和成本遠趕不上算力時代需求。因此,數據中心能效的提升要轉換思路,從關注部件效率轉為系統工程優化,用系統工程思維綜合審視,在現實條件和部件技術水平進行權衡,得出最優解,如UPS雙變換模式轉向S-ECO、數據中心PUE轉向PFPUE(算力PUE),端到端的進行數據中心能效優化。趨勢10:AI調優將成為存量DC能效智能優化的最佳選擇在數據中心節能方面,除了新建的數據中心,仍有大量存量數據中心PUE遠高于“國家一體化大數據中心”政策要求,面臨節能改造的迫切需求。傳統的節能改造需要停線停業務,存在業務中斷的風險,而采用人工調整優化的方式,難度大,效果差,頻率低。相較之下,AI能效調優解決方案通過預置AI算法和大數據模型,可對存量數據中心實現節能優化,且AI調優不依賴人工經驗,優化速度快,效果好,實現從“制冷”到“智冷”的轉變。
自 1950 年代以來,人工智能以一種非凡的方式發展,它不僅改變了行業,也改變了我們的日常生活。世界各地的武裝部隊正在以多種方式整合人工智能的使用,由于該領域尚未受到監管,因此正在探索和開發各種基于人工智能的自主系統。眾所周知,基于人工智能的自主系統的首次使用是由DARPA(美國)開發的動態和分析重新規劃工具(DART),用于安排供應鏈和個人移動,以解決其軍隊的后勤效率問題。從那時起,它已經走了很長一段路,在最近的沖突和戰爭中,以破壞性的方式觀察到基于人工智能的自主系統的大規模使用。自主無人機在超出任何反措施范圍的高度等待,以便對系統選擇的目標進行有效的精確打擊。這可能是最簡單但最有效的例子之一,可以詳細說明現代作戰基礎設施如何過渡到集成自主系統。除了具有高有效性和效率的優勢外,這些系統還為士兵提供了3D(沉悶,骯臟和危險)任務的安全,并優化了高昂的作戰成本。
人工智能使用計算機系統模擬自然智能,在該系統中,它感知和感知數據,分析數據,從數據集中學習,然后將其用于所需的決策,而無需人類參與。對于人類來說,圖像是根據存儲在人腦中腦回溝細胞結構中的圖像來感知和理解的,而在 AI 模型中,具有具有權重的神經網絡算法的計算機處理器在數學上學習和感知相同的圖片。
人工智能是機器學習 (ML)、深度學習 (DL) 和自然語言處理 (NLP) 等多個領域的龐大通用集合,它們是根據可用數據集的大小解決各種問題的工具。人工智能的目標是創建一個可以智能和獨立運行的系統。任何 AI 模型的這一目標都涉及培養解決問題的能力、允許持續學習、鼓勵智能、促進創造力以及實現人與 AI 的協同作用。人工智能可以根據它應該執行的任務類型,分別在不熟悉的領域或特定的已知需求中大致分為廣義或狹義。人工智能模型基于傳感器輸入的數據,根據算法處理數據以解釋、預測或采取行動。然后,系統可以分析或提供反饋以適應或自我學習。所有這些都屬于 ML、DL、NLP、語音識別、專家系統、優化、機器人技術、計算機視覺形成自主系統。
基于人工智能的系統的軍事用例很多,涵蓋了上述所有技術,以了解軍事行動的確切動態。這些系統是作戰系統、戰略決策算法、數據處理單元、兵棋推演中的戰斗模擬、目標識別、威脅監測、蜂群、游蕩彈藥、高效的后勤方法、因果關系護理和疏散。 基于人工智能的武裝部隊自主系統由一組多個復雜的子系統組成,其中可能包括傳感器/感知系統、通信設備、基于機器學習和訓練數據的決策算法的執行器,這些執行器不需要任何人工干預即可執行所需的任務。這些系統可以根據其功能和操作分為各種類別,如無人機/無人機/機器人平臺/蜂群或其他作戰系統。
自主系統旨在通過收集信息并在沒有任何人工干預的情況下長時間工作,在不斷變化的環境中實現一系列目標。他們可以自己思考。雖然它們有一個人工智能核心,包括傳感器、通信系統、執行器、基于機器或深度學習的決策算法,但它們也需要是冗余的,與按照道德和法律框架制定的網絡安全措施相結合,應該有足夠的人機界面。
根據戰略用途的類型和特定地理位置的戰術需求,這些自主系統以各種形式設計。最常見的是地面車輛(履帶式、輪式或腿式)和無人機,它們也可以作為集群運行。 海洋自主系統旨在根據情況需要在水下或水面上移動。該系統將武器或傳感器安裝在地面或空中平臺上,專為戰斗、ISR、后勤、目標/火控、搜索和救援等特定作戰場景而設計。自主通信網絡旨在最有效地利用已部署的資源,以實現連續的信息流。以類似的方式,成群的無人機或地面車輛在網狀網絡上工作,其算法旨在避免碰撞,同時在定義的空間中作為一個組保持凝聚力。一群類似于鳥類的無人機在成群結隊、上學和覓食方面工作,而不會因冗余而影響操作必要性。
自主系統是有利的,因為它們可以降低士兵的生命風險,因此可以處理各種對人類來說骯臟、沉悶或危險的任務,如解除爆炸物、敵對條件下的 ISR、戰斗、CI/CT 操作、巡邏、快速反應、搜索和救援、惡劣地形中的后勤、長期操作、事故預防和醫療應用。
這些自主系統的開發、集成、部署和維護是有成本的,但從長遠來看,通過負責任的規劃和決策,它們在整體成本效益方面具有優勢。自主系統降低成本的方式和手段是減少人員費用,減少損失風險,優化資源及其分配,降低維護成本,提高任務效率,減少燃料消耗,操作靈活性,可擴展性和規模經濟。
這個基于人工智能的自主系統領域正在隨著新技術的發展而增長,以增強軍事能力。這些系統充當了力量倍增器,確保了速度和精度,操作的連續性,并具有更好的數據處理和分析能力。這些不斷發展的自主系統與軍事戰略相結合,將導致戰爭的新面貌,使它們成為任何現代作戰部隊不可或缺的資產,確保提高效率,降低生命風險并節省成本,但是,負責任地部署這些系統存在道德,法律和政策相關的問題,以避免任何意外和不希望的情況,因為對手也將開發導致沖突的此類系統。降低與自主系統相關的任何風險至關重要,包括負責任的決策、保持監督和故障安全檢查。
參考來源:Narendra Tripathi中校
在客戶預期與商業模式隨著AI技術不斷變化發展的背景下,2024年Gartner十大戰略技術趨勢將幫助貴企業在創造價值的同時,重塑自身,為業務發展保駕護航。 無論是業務高管還是技術人員,均可下載本電子書: * 了解戰略技術趨勢及其對業務目標的影響。 * 獲取技術介紹,探索各大技術特點及其影響。 * 尋找機遇,了解這些技術趨勢帶來的優勢及效益。 * 獲取案例,參考早期采用者的過往經驗和使用現狀。 * 獲取實施建議,制定行動計劃。
航空航天和國防領域正在經歷一場變革,其主要驅動力是將人工智能(AI)和機器學習(ML)技術集成到為軍事設計的傳感器、武器和信息系統中。在精確度、快速決策和穩健性至關重要的環境中,人工智能/機器學習已成為一項關鍵技術,可加快對態勢的理解和決策,提高作戰效率。這些技術使軍事行動更有可能克服 "戰爭迷霧",人工智能/機器學習基于無休止和持續的信號收集,而不是人眼可見的跡象,使感官和態勢理解更加敏銳。這些部門的獨特要求,如多域作戰、極端條件下的應變能力、高風險決策、互操作性和先進的安全措施,為人工智能發揮重大影響創造了條件。
航空航天和國防領域轉向人工智能有幾個關鍵因素:
1.快速準確的決策:軍事行動在時間和空間上都具有決定性意義。人工智能系統快速處理和分析海量數據的能力對于實時做出戰略和行動決策至關重要。挖掘來自不同來源和領域的信息并快速融合這些數據,可為決策者提供可在短周期內實施的行動情報,從而在分配的時間和空間內產生預期效果。
2.彈性和可靠性: 人工智能應用程序必須在各種具有挑戰性的環境中始終如一地運行;其建議和響應必須可信、可靠,并且不會出現商業大型語言模型(LLM)所遇到的 "幻覺"。信心和信任是軍事人工智能系統中最重要的因素,能讓用戶利用這些系統發揮最大價值。安全和信心不應是設計功能,而應是軍事人工智能系統基線基礎設施的一部分。此外,還應考慮物理安全和安保問題,采用分布式系統、邊緣處理以及強大而有彈性的網絡,使人工智能隨時隨地為作戰部隊提供支持。
3.道德和受控的自動化:無論是否有制衡機制來實現人類的信任,軍事系統的高風險都要求人工智能系統納入并遵守道德標準,并允許人類在不減慢整個流程的情況下進行監督。盡管 "道德標準 "是一個不固定的術語,取決于設計者和用戶的法律、文化、宗教和社會背景,但它為人工智能操作定義了 "游戲場地 "和邊界,就像戰爭法定義了作戰人員在戰時能做什么或不能做什么一樣。
4.先進的安全措施:鑒于國防行動的敏感性,人工智能系統必須具備無與倫比的網絡安全能力,消除系統訓練和操作過程中的不利和惡意行為。人工智能系統依賴于網絡、信息、數據饋送以及通過訓練嵌入的算法。在設計或訓練過程中篡改這些基礎,或在系統運行階段對其進行惡意操作,都可能會給用戶和依賴系統帶來巨大風險和意想不到的后果。因此,從早期設計階段就應考慮安全措施,包括風險檢測、規避和應對。
研究了數十家公司的產品,觀看了演示,并在展覽和會議上聽取了官員的介紹。通過研究,掃描了市場上專為軍事行動設計或能夠支持軍事用途的人工智能系統。使用現有最好的人工智能工具進行研究,但即使這樣也需要大量的人工分析才能提供符合標準的可用信息。在第一部分中,挑選了五個在軍事行動中表現出色的人工智能系統。
為何選擇:作為行業領導者,洛克希德-馬丁公司是將人工智能廣泛應用于國防領域的典范。他們的 AI Factory 計劃展示了他們在該領域推進 AI/ML 技術的承諾。它提供了一個安全的端到端模塊化生態系統,用于訓練、部署和維持可信賴的人工智能解決方案。其功能側重于從開發到部署和維護的自動化,應用 MLOps 解決方案(機器學習運營)來驗證、解釋、保護和監控所有機器學習生命周期階段,并創建可跨項目重復使用的參考架構和組件。
影響:從作戰飛機到太空探索,洛克希德-馬丁公司通過其人工智能驅動的解決方案影響著全球國防戰略,樹立了行業標準并為未來的技術進步鋪平了道路。
為何選擇: Palantir 在大數據分析領域舉足輕重,為情報收集和作戰計劃提供人工智能平臺。他們的 AIP 平臺為綜合解決方案奠定了基礎,通過向決策者提供相關信息、利用可用傳感器增強信息以及根據對信息、紅軍和藍軍戰術、技術和程序(TTP)的理解向決策者提供相關的、可操作的響應,從而增強軍事組織的能力并使其同步化。
影響: Palantir AIP 將大型語言模型和尖端人工智能的力量結合起來,激活數據和模型,以安全、合法和合乎道德的方式從最高度敏感的環境中獲取信息。他們的系統利用信息源的可追溯性和可信推理,在復雜的國防環境中實現數據驅動決策,說明人工智能在作戰計劃和情報行動中的重要性與日俱增。
為何選擇:Anduril Industries 站在將人工智能整合到自主系統和監控技術的前沿,改變傳統的防御戰略,采用可信賴的有人無人操作能力。
影響:他們的任務自主方法是從邊境安全和態勢感知發展而來的。他們的 Lattice AI 操作系統重新定義了防御方法,引入了分布式任務自主,采用由小型人類團隊操作的眾多無人系統。核心軟件提供傳感器融合、目標識別和跟蹤、智能網絡、指揮和控制。與其他解決方案不同的是,Anduril 的方法是通過添加可操作的使能因素,將其人工智能的覆蓋范圍擴展到 Lattice 核心之外--在安全領域,這些使能因素包括 Sentry 傳感器、Anvil 和 Roadrunner 反制措施。在進攻性打擊任務中,例如在美國陸軍的 "空中發射效應 "中,該系統通過Altius長續航時間傳感器、Fury Attritable飛機和Altius 700M效應器,將Anduril的移動自主概念發揮到極致。作為一個集成解決方案,它通過擴展覆蓋范圍、能力和態勢感知,使人類能夠使用自主系統,同時使作戰人員能夠更快地做出更好的決策。
為何選擇:C3.ai 的突出之處在于其將各種人工智能工具整合到 AI-Readiness 中的戰略,這是一個安全、統一的平臺,具有可信任、彈性和可互操作的可擴展系統,可在整個生命周期內連接和管理復雜且不同的資產。
影響: 通過提高決策和運營效率,C3.ai 的解決方案優化了資源管理和維護計劃,證明了人工智能在提高國防資產的可用性和使用壽命方面的作用,同時還能保持高安全標準。為支持引入人工智能驅動的解決方案,該公司提供了一個人工智能開發工作室,將技術評估加速到數天,并在數周或數月內完成應用開發和部署,而不是數年。
為何選擇:赫爾辛公司代表了新一輪專注于專業人工智能應用的國防初創企業,他們得到歐洲主要國防企業的支持,凸顯了赫爾辛公司在人工智能國防市場的潛力和影響力。
影響:赫爾辛公司在情報分析和決策支持方面的人工智能解決方案利用先進的目標識別和人工智能賦能的電子戰技術,與其他合作伙伴的解決方案一起,必將成為雄心勃勃的未來空戰系統(FCAS)這一任務系統的人工智能支柱的一部分。赫爾辛公司專為現代戰爭量身定制,將為未來提供獨一無二的人工智能國防和航空應用。自 2022 年以來,赫爾辛公司一直活躍在烏克蘭,為前線作戰提供能力和技術。
正如這些領先公司所展示的那樣,航空航天和國防領域正在走向以人工智能為中心的未來。市場格局多種多樣,發展迅速。每家公司都以獨特的方式塑造人工智能的市場、技術和未來,凸顯了人工智能對全球國防和航空航天戰略的變革性影響。這一趨勢增強了當前的能力,為軍事和太空行動開辟了新的可能性,標志著國防技術進入了一個新時代。
參考來源:DEFENSE UPDATE
超視距(BLOS)通信是國防通信戰略中不可或缺的要素,可在傳統視距(LOS)方法遇到障礙的情況下促進信息交流。本文深入探討了推動 BLOS 通信的前沿技術,重點介紹了虛擬網絡、納米網絡、空中中繼和基于衛星的國防通信等先進系統。此外,我們還介紹了一個使用優化技術在有輻射威脅的戰區進行無人機路徑規劃的實際案例,增加了具體的相關性,強調了 BLOS 國防通信系統的實際應用。此外,我們還介紹了國防系統中 BLOS 通信的幾個未來研究方向,如彈性增強、異構網絡集成、有爭議頻譜的管理、多媒體通信的進步、自適應方法以及蓬勃發展的軍事物聯網(IoMT)領域。對 BLOS 技術及其應用的探索為產業界和學術界之間的協同合作奠定了基礎,促進了國防通信模式的創新。
關鍵詞--國防通信系統、超視距、空中中繼、虛擬網絡、軍事物聯網
圖 1. BLOS國防通信系統示意圖。
全球國防通信系統市場正蓄勢待發,預計 2023 年將達到 467 億美元,到 2033 年將飆升至 1206.2 億美元,復合年增長率(CAGR)將達到 9.9%[1]。該行業占全球航空航天和國防市場的近四分之一,由于其對商業無線技術的依賴以及對衛星通信設備不斷升級的需求,該行業的需求不斷增加。從地區來看,受大量國防開支的推動,北美占據了市場主導地位,2022 年的市場份額將達到 36.5%。歐洲,特別是英國、法國和德國,占據了 24.8% 的市場份額。亞太地區由于政府對軍事和國防設備的大量投資,2022 年的市場份額為 28%,顯示出良好的增長前景[1]。中東和非洲的增長速度較慢,但預計到預測期結束時將有所改善。值得注意的是,美國在國防通信系統現代化方面的工作,包括對新型手持式單兵無線電的大量投資。德國憑借其強大的工業基礎,在歐洲軍事通信市場中占據突出地位。與此同時,在沿海安全需求和海上商業活動增長的推動下,中國的海洋通信系統產業也將大幅擴張[1]。從細分市場來看,在國際邊界緊張局勢升級的推動下,國防通信衛星的銷售呈現明顯上升趨勢。市場未來的發展軌跡取決于戰略合作、持續的技術創新以及物聯網(IoT)的整合[2]。制造商可利用先進的通信系統、低延遲無線鏈路和物聯網集成來擴大業務規模,這為國防通信領域的增長提供了巨大機遇。
通信系統是軍事行動的關鍵所在,可使武裝部隊內不同單元之間實現無縫信息交流。在錯綜復雜的國防威脅中,有效的通信不僅僅是必要的,它還具有戰略必要性,對戰術任務的成功和總體作戰準備具有深遠的影響[3]。如圖 1 所示,這一專業通信領域所面臨的挑戰遠遠超出民用網絡,面臨著電子戰(EW)、指揮與控制戰(C2W)以及超視距(BLOS)通信固有的困難等獨特障礙。面對不斷變化的威脅和作戰環境,防務通信作為協調軍事行動的核心,其固有的復雜性增強了其戰略意義。此外,軍事力量橫跨地面、水域和空域的多面性也為國防通信帶來了額外的復雜性。作為協調軍事行動的紐帶,它使部隊在面對各種不斷變化的威脅時能夠隨機應變、制定戰略并取得勝利[4]。因此,國防通信成為最重要的支柱,使部隊有能力駕馭現代戰爭的復雜性,并在全球國防的動態環境中取得勝利。
最近,五大趨勢重塑了國防通信的格局。首先,太空技術在國防行動中的地位提升,天基連接在各種國防應用中舉足輕重[5]、[6]。軍方的投資優先考慮在不同運輸工具和軌道上運行的專用和彈性空間系統,將空間視為新沖突的潛在前線。其次,美國國防部(DoD)越來越多地采用多星座、多傳輸和軟件定義網絡,重點關注低地球軌道(LEO)系統的彈性和低延遲[7]。展望未來,低地軌道衛星和地球靜止衛星將通過軟件定義網絡進行協調。第三,圍繞發展聯合全域指揮與控制(JADC)、聚合項目和超配項目開展的關鍵工作。其目標是建立一個跨越不同軍種的統一指揮與控制系統,強調與行業利益相關者的合作。第四個趨勢強調了國防網絡對商業技術的依賴不斷升級,將商業創新和現成產品整合到天基網絡中,以增強網絡的彈性[7]。最后,為國防部量身定制的獨立 5G 部署可在設施內提供高速、安全和私密的無線通信,具有零信任安全架構和運行采用人工智能和機器學習的邊緣應用的能力。這些趨勢與滿足最終用戶需求、促進合作和探索商業技術以增強國防通信能力的戰略目標相一致。
雖然國防通信已吸引了相當多的學者關注,研究范圍包括認知無線電[8]、基于區塊鏈的隱私保護[9]、動態頻譜抗干擾通信[10]、雷達互聯網、聯合雷達通信[11]和 BLOS 幻影網絡[12]。然而,就作者所知,現有文獻中還沒有對國防通信系統中的 BLOS 通信進行全面研究。因此,本文旨在通過深入研究明確針對軍事背景下 BLOS 場景量身定制的最新技術和策略來彌補這一空白。
本文的其余部分安排如下。首先,介紹了最先進的 BLOS 國防通信技術,包括虛擬網絡(Phantom networks)、納米網絡、衛星網絡和空中中繼。隨后,介紹了一個綜合案例研究,說明無人機在國防通信中的 BLOS 路線規劃。隨后,闡述了新出現的挑戰和未來的研究方向,最后是本文的總結部分。
國防通信包括軍用無線電、C2W、電子戰、安全傳輸和警報測量系統等重要組成部分。直接波傳播依賴于信源(發射機)和目的地(接收機)之間暢通無阻的視線(LOS),是信息交換的最佳解決方案,頻率低于約 50 MHz 時有利于表面波或地波傳播[13]。然而,較高的頻率會面臨明顯的衰減,因此需要在對流層兩層內設置管道,以實現信號的長距離傳播。此外,地球曲率、自然或人為障礙等也會阻礙 LOS 通信的有效性,因此需要采用超視距通信技術 [3]。軍事領域廣泛依賴各種超視距技術,包括虛擬網絡、納米網絡、衛星網絡和空中中繼。虛擬網絡為超出范圍的設備提供了一種按需空中通信方法,而納米網絡則由霧化水霧中的納米節點組成,是虛擬網絡的基礎。
歷史上,氣球、無人機和無人駕駛飛行器(UAVs)為超視距通信提供了便利。盡管這些超視距技術很有用,但也遇到了挑戰。表 I 提供了超視距技術的比較概述,突出了主要特點和相關挑戰。
表 I 各種超視距通信網絡和挑戰。
虛擬網絡(Phantom Networks)是國防和軍事應用領域超視距通信戰略的創新基石,它標志著一種范式的轉變,即在傳統 LOS 通信不足的地方實現按需、無形的空中連接[12]。在動態和充滿挑戰的軍事環境中,這些網絡的適應性和響應能力證明是不可或缺的,可增強通信效果,提高軍用無線電系統的多功能性。例如,虛擬 MESH 結合了最先進的通信技術和先進的干擾技術,采用 MESH 無線電--一種基于令牌傳遞的移動 ad-hoc 網絡 [14]。這種自愈式網絡架構可在極具挑戰性的環境中建立穩健的射頻路徑,這對于非直接目視或無線電接觸的行動至關重要。該解決方案中的 iMESH 套件(包括 iMESH KRIP 和 iHIVE)可確保靈活性、安全性和快速部署性。其他幻影技術,如 Eagle 108 無人機干擾器和 EW1600 軍用戰術衛星通信(SATCOM)干擾器,可消除來自未經授權的無人機的威脅,確保超視距情況下的安全保障。Blu Wireless 公司推出了專為 BLOS 軍事通信優化的開創性 V 波段無線電節點 PhantomBlu,具有動態網狀網絡功能,數據傳輸速率高達多千兆比特,適用于多樣化的 BLOS 場景[15]。該系統可在戰術邊緣高效處理高帶寬傳感器數據和視頻,為在 BLOS 環境中運行的地面部隊提供隱蔽和彈性通信。PhantomBlu 的不斷進步旨在納入 W 波段收發器,使其符合 IEEE 6G 標準,并將其定位為用于近距離戰術行動的多功能 BLOS 解決方案。
納米網絡為國防和軍事應用領域的超視距(BLOS)通信奠定了開創性的技術基礎[16]。這些網絡在納米尺度上運行,采用懸浮在霧化水霧中的納米節點,為強大的超視距通信提供了基本的復雜性。它們的復雜性為克服動態作戰環境中的環境障礙提供了一種微妙的解決方案[17]。其納米級組件大大提高了靈活性和適應性,可在傳統方法難以奏效的情況下實現有效通信[18]。此外,納米技術對超視距軍事應用的潛在影響還延伸到醫療和材料進步領域。軍事納米技術專門針對超視距應用場景,側重于提高人體裝甲的有效性。這些技術包括二氧化硅 Si、二氧化鈦 TiO2 和二氧化硅 SiO2 納米粒子。這些納米粒子構成的納米器件旨在為士兵提供輕便而又有彈性的保護,以應對直接視覺或無線電接觸受阻的情況[19]。此外,納米技術推動了傳感器的發展,為超視距作戰提供了更小、更靈敏的傳感器。這方面的例子包括高靈敏度紅外熱傳感器、帶 GPS 的緊湊型加速度計(用于運動和位置傳感)、微型高性能攝像系統和生化傳感器,這些都說明了納米材料在增強超視距環境下軍事傳感器能力方面的適應性。將納米技術集成到超視距機器人系統和控制機制中可進一步提高效率,這強調了納米技術對超視距軍事技術的變革性影響。
基于衛星的國防通信是超視距作戰行動中的關鍵,可保障跨越廣袤而充滿挑戰的地形的通信,確保在執行關鍵軍事任務期間的持續連接,并通過加密傳輸保護敏感數據[20]、[21]。然而,信號延遲和易受電子戰影響等長期存在的挑戰凸顯了持續技術進步的必要性。包括新興低地軌道星座和自適應通信協議在內的關鍵創新技術有望增強現代軍事通信戰略的彈性和有效性[22]。國防衛星通信系統(DSCS)是美軍全球衛星通信的重要組成部分,由大容量軍用衛星組成,通過其六信道轉發器系統為不同的國防實體提供支持[23]。該星座以安全、核加固、抗干擾和高數據速率通信而著稱,是在有爭議環境中進行長途通信不可或缺的部分。其他基于衛星的國防通信網絡,如德國的 SATCOMBw、法國的 Syracuse IV 和英國的 Skynet,在超視距行動中充當重要的通信中繼站,確保軍事場景中的不間斷連接[24]。這些系統采用加密數據傳輸協議,確保國防通信的保密性和完整性。目前正在取得的進展旨在應對信號延遲和易受電子戰影響等挑戰,目的是提高現代軍事通信戰略的有效性和復原力。
這種超視距通信技術包括有人駕駛飛機和無人駕駛飛行器充當空中中繼器,建立和維護遠距離通信鏈路[25]。配備先進通信系統的有人駕駛飛機是軍事通信網絡的關鍵節點,可增強超視距通信的通用性和覆蓋范圍。同時,無人機是一種動態的、適應性強的解決方案,善于在具有挑戰性的環境中航行,并能在有爭議的空域迅速部署以建立通信鏈路[26]。使用系留無人機、系留氣球和浮動氣球進一步豐富了空中中繼的種類,為在不同作戰場景中進行持續通信提供了獨特的解決方案[27]。這些空中中繼從戰略上克服了視距限制,確保為軍事行動提供持續、彈性的通信支持。下文將討論國防通信系統中用于超視距通信的前瞻性空中中繼。
有人駕駛飛機: 有人駕駛飛機在國防和軍事應用領域的超視距通信中起著關鍵和多方面的作用。這些飛機配備了先進的通信系統,可充當空中中繼器,形成遠距離的關鍵鏈路。它們的多功能性超越了傳統通信,可在各種作戰場景中進行戰略部署。這些飛機具有無與倫比的覆蓋范圍和適應性,是軍事通信網絡中的重要節點。除了發揮中繼作用外,它們還為情報、監視和偵察(ISR)工作做出了重大貢獻,提高了對軍事行動整體態勢的認識。有人駕駛飛機的人工操作性質引入了動態決策,允許實時調整通信策略,以應對復雜軍事環境中不斷變化的需求。有人駕駛飛機是超視距通信的有效渠道,是將通信、監視和戰略能力全面整合到國防行動中的基石。
無人機(UAV): 無人機被譽為現代軍事戰略中的變革性資產,是超視距通信中適應性和創新性的縮影。這些無人系統專為在具有挑戰性的環境中航行而設計,在傳統方法不可行的情況下,可極大地增強軍隊的通信能力。無人機為超視距方案帶來了無與倫比的靈活性,可快速部署,在有爭議的空域、難以接近的地形或高風險區域建立通信鏈路 [28], [29]。除了作為通信中繼器的作用外,無人機還可廣泛用于情報搜集和監視,提高對動態軍事環境的態勢感知能力。無人機的自主性使其能夠對不斷變化的作戰需求做出迅速敏捷的反應,從而展示了其在實時決策過程中的關鍵作用。作為軍事超視距戰略不可或缺的組成部分,無人機增強了通信復原力,并在不斷變化和復雜的安全環境中,在提高國防行動的敏捷性和有效性方面體現了變革力量。
系留無人機: 系留無人機是國防和軍事應用超視距通信中一種獨特的多功能解決方案。這些無人機系在一個固定點上,具有獨特的持續通信能力,適合執行長時間監視和通信中繼任務。系留可延長飛行時間,確保平臺穩定,有助于提供持久可靠的通信支持。在軍事場景中,系留無人機可適應各種作戰環境,即使在具有挑戰性的環境中也能為監視和通信提供動態有利位置。它們能夠在特定高度長時間盤旋,這使它們成為在復雜多變的軍事戰場上保持持續通信聯絡的寶貴資產。除了在通信方面的作用,系留無人機還有助于情報收集、監視和監測,展示了其在增強超視距通信復原力之外的軍事能力方面的多方面用途。系留無人機的戰略用途凸顯了其作為現代國防通信戰略中靈活而持久的工具的重要意義。
系留氣球: 系留氣球在國防和軍事應用的超視距通信中提供了一種獨特且具有戰略價值的解決方案。這些氣球安全地系在地面上,可作為穩定的高架平臺,改善信號傳播。系留氣球提供了一種具有成本效益的解決方案,可確保在廣闊區域內保持持久穩定的通信鏈路。在軍事應用中,系留氣球可以進行戰略定位,以增強特定作戰區域的覆蓋范圍和連接性,為在具有挑戰性的地形中建立通信提供動態和適應性強的手段。系留氣球的穩定性、適應性和在不同高度運行的能力使其成為在多樣化和動態軍事環境中保持通信彈性的寶貴資產。除通信作用外,系留氣球還有助于情報、監視和偵察工作,展示了其作為軍事行動組成部分的多功能性。系留氣球以其持久的存在和戰略定位,體現了增強超視距通信能力的微妙方法,為現代防御場景提供了可靠而全面的解決方案。
浮空氣球:浮空氣球裝有通信有效載荷,是國防和軍事應用超視距通信領域的創新和動態解決方案。這些氣球在高空飛行,為在具有挑戰性的地形中保持通信聯絡提供了一個機動靈活的平臺。浮空氣球的機動性和在不同高度運行的能力使其成為確保在不同作戰場景中實現持續通信覆蓋的有效工具。在軍事應用中,這些浮空氣球為建立彈性和廣闊的超視距通信網絡做出了巨大貢獻,尤其是在傳統方法可能無法覆蓋的偏遠或交通不便地區。浮空氣球的創新方法符合現代戰爭不斷發展的需求,通過提供靈活而強大的通信能力,提供戰略優勢。除了在通信方面的作用,浮空氣球還有助于情報收集、偵察和監視工作,展示了其在增強超視距通信復原力之外的軍事能力方面的多面效用。浮空氣球的戰略部署凸顯了其在不斷變化的國防通信戰略中作為前瞻性和多功能資產的重要意義。
如上一節所述,在國防通信系統中,無人機在應對超視距挑戰方面發揮著至關重要的作用。在超視距挑戰中,各種場景的直接目視或無線電接觸都會受到阻礙,這就要求采用創新的解決方案來建立穩健的通信鏈路。作為靈活、適應性強的平臺,無人機可在復雜地形中航行,在敵對威脅中行動,克服超視距環境中的障礙[30]。為超視距路由規劃戰略性地部署無人機變得至關重要,可確保在錯綜復雜的作戰環境中優化路徑,以提高通信可靠性和任務成功率。將路徑優化技術等前沿技術整合到基于無人機的超視距路由規劃中,可進一步提高功效[31]。無人機在具有挑戰性的環境中進行路徑規劃是現實世界中的一項優化挑戰,需要一個最佳規劃器來實現高效導航。這就需要將路徑規劃任務概念化為優化問題,而進化計算正是應對此類挑戰的有效方法。粒子群優化(PSO)等受大自然啟發的優化技術可以動態優化無人機的飛行路徑,這對導航雷達密集的戰區至關重要。這種集成強化了國防通信系統,提高了敏捷性、響應速度和安全性,實現了跨越挑戰性距離的無縫通信鏈路,極大地促進了任務的成功[32]。本節重點討論雷達威脅戰區的無人機路徑規劃,將其視為一個優化問題。
我們將重點放在無人機在具有挑戰性的雷達限制環境中的路徑規劃上,在這種環境中,確定性搜索算法由于搜索空間的巨大復雜性而被證明是不切實際的。由于存在規則定位的環形雷達威脅,且被限制在預定的全局范圍內,優化過程變得更加復雜。該方法優先優化無人機在預定義三維地形環境中的性能。在軍事行動中,無人機在起點和目標點之間的高效路徑規劃對于縮短時間和提高任務效率至關重要。規劃過程包括三個相互關聯的階段:(1) 建立成本和約束函數,(2) 根據任務環境調整數字地圖,(3) 優化和完善飛行路線。在作戰場景中,無人機導航會遇到來自地形、雷達、火炮和禁飛區等各種危險源的挑戰。考慮到無人機的物理限制因素,規劃的路線必須繞過這些障礙物,以確保安全穿越和避免碰撞。在無人機航線規劃過程中,如何應對各種風險和限制所帶來的眾多目標和約束是一項挑戰[33]。如圖 2 所示,開發有效的規劃器對于處理多目標有限無人機路線規劃的復雜性至關重要,尤其是在錯綜復雜的情況下。
圖 2. 軍事行動中的無人機路徑規劃示意圖。
在無人飛行器路徑規劃中,PSO 在預定義的約束條件和初始速度范圍內對每個粒子的路徑進行顯著優化。盡管粒子傾向于向自己的速度矢量移動,但 PSO 中的粒子會遵守蟲群約束,交換信息,并在保留當前位置和速度的同時保留之前的最佳位置。在 PSO 的迭代過程中,粒子群的整體最佳粒子(即全局最佳粒子)會出現。PSO 的迭代過程通過更新粒子的位置和速度來完善粒子的位置 [34]。在路徑優化過程中,粒子利用其先前的速度、全局最佳位置和個人最佳位置等向量來確定最佳路徑。在無人飛行器路徑規劃中,這種優化方法可引導無人飛行器穿越復雜環境,促進高效導航,實現任務目標。利用 PSO 在具有挑戰性的動態場景中尋找最佳解決方案的能力,該方法可幫助無人機在各種障礙和限制條件下確定安全有效的路線。
利用 PSO 算法,我們制定了無人機在戰區航行的最佳飛行路徑,尤其是在雷達系統和地面火炮存在的情況下。雷達系統對定位和跟蹤空域物體至關重要,因此在敵對環境中要想取得任務成功并確保安全,就必須躲避雷達探測。此外,地面火炮也對無人機構成重大威脅。要應對這些地面威脅,導航策略不僅要考慮飛行高度,還要考慮威脅的動態性質,要求飛行路徑靈活、適應性強。要想有效躲避敵方雷達探測和火炮等地面威脅,就必須采取全面的策略,認識到每種威脅源帶來的不同挑戰。我們提出的無人機軌跡路由設計旨在保持一致的海拔高度,從而簡化導航模型,并為無人機的飛行軌跡建立可靠的基準。相比之下,地面導航往往需要適應地形和地面障礙物,因此必須偏離無人機的一致高度方法。基于 PSO 算法的無人機航線規劃如圖 3 所示,圖中紅色小圓圈表示無人機的初始位置,藍色圓圈表示目標位置。大圓表示雷達威脅,小圓表示火炮威脅。黑色虛線表示 PSO 算法生成的路徑。這些場景的復雜程度各不相同,因此會產生獨特的導航問題。我們假定無人機事先知道目標位置,目標是在導航的同時躲避各種威脅,以達到指定目標。我們引入了三種復雜程度不同的場景,每種場景都呈現了不同的雷達和火炮威脅配置。復雜度越高,從起點到目標的軌跡上分布的雷達和火炮威脅就越復雜。我們還在圖 4 中說明了所有三種情況下路徑長度的收斂速度。
圖 3. 不同場景下的無人機航線規劃 (a) 低復雜度 (b) 中等復雜度 (c) 高復雜度。
圖 4. 3 種不同方案的收斂曲線
現代戰爭的形勢不斷發展,要求通信系統善于在各種網絡中機動,管理有爭議的電磁頻譜,并滿足不斷升級的多媒體密集型通信要求。在軍事行動中整合無人自主系統和各種傳感器,提升了自適應通信戰略的重要性,尤其是在超視距情況下。本節深入探討了超視距環境下特有的前沿挑戰,為軍事通信技術的未來及其在塑造成功防御行動中的關鍵作用提供了有價值的見解,特別是在直接視距或無線電接觸有限的條件下。
國防通信系統在多樣化和分散的環境中運行,會遇到與成熟商業網絡不同的基礎設施挑戰[35]。從密集的城市景觀到偏遠的嚴酷地區,國防通信系統的適應性對于確保在不可預測的作戰場景中實現可靠、安全的連接至關重要。有效應對這些超視距基礎設施的挑戰凸顯了采用戰略方法優化網絡性能和增強動態地形復原力的必要性。超視距研究的一個新興前沿領域是探索天基系統在關鍵基礎設施框架中不斷演變的作用,為未來軍事行動提供關鍵機會[36]。了解和利用超視距天基系統的潛力可以徹底改變軍事行動的規劃和執行。這些系統是大多數超視距軍事行動不可或缺的,其可靠性凸顯了超視距衛星控制與地下系統之間的相互依存關系[36]。未來的研究應探索國家安全與保護關鍵基礎設施之間錯綜復雜的關系。考慮到由技術進步驅動的威脅的持續演變,應探索創新方法,包括對聯邦法規的調整和對潛在危機情景的積極預測,以加強這種重要聯系。
異構網絡在超視距國防通信系統中至關重要,它提供了一個可無縫集成各種技術、標準和設備的統一基礎設施[37]。這種方法有助于應對軍事行動中時間和空間變化帶來的挑戰,提供可根據不斷變化的條件進行動態調整的自適應解決方案,并確保持續通信 [38],[39]。在簡化采購、快速部署和成本效益等優勢的推動下,商用現成(COTS)技術越來越多地融入軍事通信領域,這就要求對其進行精心定制,以符合嚴格的安全性和可靠性標準。戰術通信的特點是 COTS 衍生解決方案與軍用標準并存,因此需要對超視距通信場景中的異構網絡進行精確規劃和集成測試。例如,意大利海軍研究中心、Selex ES 和 ELMAN 合作開發了一個模塊化測試平臺,該平臺有助于快速集成各種技術,為各種測試活動提供可定制的環境,特別是與海上和瀕海行動相關的測試[40]。這些舉措凸顯了異構網絡在軍事領域的廣泛應用,解決了實驗、安全、路由架構、傳感器網絡能效以及無人機聯盟網絡監控和頻譜接入優化等方面的挑戰[41]。這些工作共同強調了異構網絡在滿足超視距場景下現代軍事行動復雜通信要求方面的關鍵作用。
軍事通信會遇到在有爭議的電磁環境中航行的挑戰,在這種環境中,適應性對于維持超視距鏈路性能和抵御脆弱性仍然至關重要 [42],[43]。隨著軍事行動擴展到直接視距或無線電接觸之外,對超視距的考慮變得越來越重要。這種戰略轉移旨在確保在有爭議的電磁頻譜中的行動自由,同時認識到超視距系統在通過快速技術進步尋求全球霸權方面的局限性。在以普及高端電子技術為特征的當代全球格局中,國防科學委員會對美軍在復雜電磁環境中的作戰能力進行了全面調查[44]。這項調查顯示,美軍在不同任務領域的作戰支持方面存在重大缺陷,凸顯了美軍在感知、通信、聯網和同步作戰方面面對近鄰和地區強國時可能存在的局限性。電磁頻譜已成為一個戰略領域,將陸地、空中、海上、太空和網絡領域相互聯系在一起。雖然西方軍隊在歷史上一直保持著電磁優勢,但隨著頻譜日益復雜和擁擠,不斷變化的形勢對這種優勢提出了挑戰。俄羅斯和非國家行為體等競爭對手利用不斷進步的技術,威脅著西方在這一領域的主權。應對這一挑戰需要采取務實的方法,強調戰術層面的靈活頻譜管理、效應集中和輔助性等問題,以便在特定時空框架內建立電磁局部優勢。
在當代軍事行動中,超視距通信的范圍超越了傳統的語音和數據傳輸,涵蓋了高度多媒體密集的能力,包括視頻和寬帶。這種演變反映了 21 世紀軍事能力的動態性質,要求士兵體現基本屬性(Be)、掌握知識(Know)和執行行動(Do),以便在多樣化的作戰環境中取得成功[45]。在更廣泛的超視距軍事通信范圍內應對靈活、快速部署通信系統的挑戰,也需要多媒體密集型能力。美國國防部高級研究計劃局(DARPA)強調了無繩通信的必要性,倡導開展研發工作,以滿足國防部對安全性、互操作性和靈活性的要求[46]。可以研究 5G 及更先進的技術,以便在未來國防領域提供實時決策支持,實現超融合連接和安全數據網絡。此外,它還能促進海量數據的傳輸,提供即時態勢感知,增強訓練和戰場能力。
集成無人自主系統和各種傳感器提出了動態和不斷變化的要求,對軍事通信系統的靈活性和適應性提出了很高的要求。在瞬息萬變的作戰環境中,這些不斷變化的需求對于確保超視距通信的有效連接至關重要。雖然軍事機構曾經在無線通信市場中的份額較小,但目前的商業部門在很大程度上影響著技術的發展[47]。然而,關鍵的差距依然存在,包括在缺乏維護良好的基礎設施的地區進行超視距通信的必要性、多跳網絡的整合以及同一地區內多個異構網絡的運行。連接這些不同的網絡,尤其是在有爭議的電磁環境中,仍然是一項艱巨的挑戰[48]。隨著軍方努力應對不斷變化的作戰環境,培養分析和分析人員的新道德觀并強調認知工程原則,對于確保超視距軍事通信戰略的適應性和有效性至關重要。
在國防系統領域,軍事物聯網(IoMT)驅動的統一網絡是未來的發展趨勢。這種互聯系統通過邊緣計算、人工智能和 5G 技術,將各種資產--艦艇、飛機、地面車輛、無人機和人員--匯集在一起。它增強了指揮結構,允許在實時場景中做出即時決策[49]。超視距通信在塑造 IoMT 的未來方面舉足輕重,它統一了三個關鍵領域:來自傳感器和觀察者的物理數據生成、信息傳輸和存儲以及認知數據處理。這種互聯網絡支持部隊指揮、武器系統管理、監視和醫療等各種軍事功能。然而,除了要滿足戰場的連接性、互操作性和電源要求外,確保設備和網絡的穩健安全仍是一項重大挑戰。
本文探討了超視距通信在防御中的關鍵作用,尤其是在傳統的視距方法無法勝任的情況下。為了強調超視距功能,我們研究了虛擬網絡、納米網絡、空中中繼和衛星國防通信等先進技術。在火炮環境中進行的無人機路徑規劃案例研究鞏固了這些概念,展示了超視距防御系統在真實場景中的實際影響。此外,論文還強調了未來的幾個研究方向,包括彈性增強、異構網絡的整合、有爭議頻譜的管理、多媒體通信的進步、自適應方法以及蓬勃發展的軍事物聯網(IoMT)領域。總之,這項研究對學術界和工業界都具有重要意義,它為優化超視距通信系統開辟了道路,并以安全和網絡復原力為重點指導技術進步。它展示了超視距技術在軍事行動中的實際應用,鼓勵國防機構、技術開發人員和學術界開展合作。這與可持續發展目標產生了共鳴,在促進和平、安全和技術創新的同時,也為學術和工業前沿架起了橋梁。
大數據與人工智能(AI)的結合實現了準確預測和明智決策,為工業和研究帶來了革命性的變化。這些進步也在軍事領域找到了自己的應用位置,一些舉措整合來自不同領域的數據源和傳感器,提供共享的態勢感知。在城市軍事行動中,及時了解具體情況的信息對于實現精確和成功至關重要。數據融合將來自不同來源的信息結合在一起,對實現這一目標至關重要。此外,民用數據可提供關鍵的背景信息,并對任務規劃產生重大影響。本文提出了軍事數據空間(MDS)概念,探討大數據如何通過結合民用和軍用數據來支持軍事決策。文章介紹了使用案例,強調了數據融合和圖像認證在提高數據質量和可信度方面的優勢。此外,還討論了數據安全、隱私、完整性、獲取、融合、聯網和利用人工智能方法等方面的挑戰,同時強調了構建下一代軍事應用的機遇。
大數據的興起改變了企業存儲、管理和分析海量數據的方式。此外,大型數據集的可用性和更強大硬件的發展也為人工智能(AI)時代的到來鋪平了道路。盡管存在局限性,但這些課題在軍事領域也找到了適用性。其中一個例子是美軍使用的多域作戰(MDO),后來擴展為聯合全域指揮與控制(JADC2),以及 "共同作戰圖景"(COP)概念,這些概念整合了多個領域(陸地、海洋、空中、太空和網絡空間)的各種數據源和傳感器,使決策變得更快、更明智,提供了從戰術到戰略的各級組織的共享態勢感知。此外,北約社區已通過北約核心數據框架(NCDF)討論并測試了數據湖概念,以便在適當的時間/形式與聯盟伙伴共享可靠的跨域信息。
利用先進的算法和計算能力,人工智能可以處理龐大的數據集,揭示人類通常無法察覺的復雜模式。這使國防行動能夠增強實戰經驗、促進任務執行、做出數據驅動的決策、協調來自不同來源的數據,并加強應對威脅和災難的準備。通過整理來自不同來源的數據,指揮與控制(C2)部門可以深入了解城市景觀,并通過數據融合技術[3]、[4]促進態勢感知決策[1]、[2]。現代城市部署了傳感器網絡,利用大數據支持城市軍事戰略。此外,社交媒體平臺是寶貴的文本、圖像和視頻來源,豐富了態勢感知,但也帶來了數據完整性等挑戰。在 "非戰爭 "行動中,包括打擊腐敗政府、毒品販運和人道主義任務,大數據、數據融合、數據完整性和人工智能在任務成功中的重要作用在當代全球格局中變得顯而易見。
本文深入探討了利用大數據促進軍事決策以及相關挑戰。文章以簡明易讀的方式涵蓋了該領域相對欠缺探索的各個方面。在此背景下,研究介紹了軍事數據空間(MDS)的概念,這是一種將軍內數據(IMD)和軍外數據(EMD)結合在一起的新方法,旨在引發討論并開發軍事解決方案。然后,它通過以數據融合和圖像完整性機制為重點的使用案例來說明大數據的好處。最后,它討論了使用大數據的挑戰和機遇,集中在支持戰略性軍事決策必須考慮的四個主要方面:i) 數據融合;ii) 安全/隱私和完整性;iii) 人工智能;以及 iv) 網絡作為訪問大數據的手段。
從網絡視角討論數據傳播問題具有現實意義,文獻中也有廣泛論述。因此,本研究旨在引發對大數據觀點的討論,以及利用大數據造福軍事系統的可能性。此外,我們還強調了應對整合 IMD 和 EMD 相關挑戰的重要性。這種整合對于建立有凝聚力的大數據,最終提高軍事決策能力至關重要。總之,本文的貢獻如下:
文章結構如下。第二節介紹了 MDS 的概念。第三節回顧了有關軍事和民用場景中大數據的最新文獻。第四節介紹兩個使用案例,說明大數據如何支持軍事決策。第五節討論了軍事數據領域的挑戰和機遇。最后,第六節總結了本研究討論的主要方面,為文章畫上了句號。
軍事數據空間(MDS)的概念是根據 [5] 中討論的觀點提出的。它提供了一個以數據為驅動的軍事場景視角,有助于根據不同的數據源做出決策。MDS 包括兩個主要類別: 軍內數據(IMD)和軍外數據(EMD),如圖 1 所示。目前大多數軍事文獻都只針對 IMD 提出和評估系統(如中間件、協議)。然而,隨著信息和通信技術(ICT)的迅猛發展,民用系統已成為不可忽視的數據和基礎設施(網絡)的重要來源。因此,考慮到數據隱私/安全、完整性、獲取、融合、聯網和利用人工智能等挑戰,MDS 旨在支持關于 EMD 如何幫助軍事決策的討論。
圖1 軍事數據空間。
IMD 與軍方提供和消費的數據相對應,主要分為兩層:帶有真實/虛擬傳感器(來自空間/航空/地面/航海單元)的基礎設施和信息層,包括作戰、情報和后勤數據。
基礎設施包括傳感器(如雷達、聲納、照相機)和其他電子系統收集的數據,可探測和跟蹤空中、陸地或水中的物體;車輛傳感器可提供軍事單元和周圍的狀態;可穿戴/智能和物聯網(IoT)設備可通過 GPS 定位、地圖、健康測量、實時照相機(高分辨率、紅外線)等為戰場上的步兵提供支持。這些數據可用于監測和識別潛在威脅、協助鎖定敵軍目標以及監測步兵狀況。
除了來自真實/虛擬傳感器的原始數據外,IMD 還包括信息層,該層融合了從作戰到情報等各種來源收集的數據,以創建一個更可靠、更廣闊的作戰視圖,這也是 JADC2 和 COP 系統的目標。情報信息可幫助軍隊了解敵軍的能力和意圖,識別潛在威脅并制定作戰計劃。后勤數據提供有關物資、裝備和人員的信息,如運輸時間表、庫存水平和維護記錄。這些數據對于確保軍隊擁有有效執行任務的資源至關重要。
軍外數據是由真實/虛擬傳感器單獨或融合提供的數據子集,可描述軍事行動周圍的環境。因此,可定義用于支持軍事行動的兩個主要數據層:基礎設施(如交通系統、天氣、當局)和信息(如社交媒體、新聞、政府報告)。這些層產生了大量高度可變的信息,從用戶對實時事件(如事故、腐敗和恐怖主義)的感受和照片,到城市環境中的交通/天氣狀況和人們/駕駛員的行為。
信息和通信技術在城市地區的發展催生了智能城市的出現,智能城市通過增強流動性、安全性和健康解決方案來應對城市化帶來的挑戰。智能城市基礎設施包含傳感器,可捕捉有關車輛、交通、天氣和駕駛員行為的寶貴數據。傳感器和物聯網設備的激增也產生了大量數據,這使得利用云通信技術和人工智能應用開發智能系統成為可能。在大數據的推動下,數據融合應運而生,它整合了來自多個提供商的數據,以提高質量和覆蓋范圍,并減少海量數據流量。融合來自交通、天氣、攝像頭、醫療系統等的數據,不僅有可能支持民用應用,還能通過提供上下文數據支持戰略性軍事行動。在傳感器基礎設施有限的情況下,來自社交媒體和政府報告等媒體來源的數據可幫助了解當地行為,并識別影響犯罪、腐敗和毒品販運的因素。
社交媒體數據對于支持與緊急事件和災難相關的信息非常有價值,可通過捕捉獨特信息(如需要救援的群體的位置或隱藏人員的存在)來補充其他傳感器數據。建筑物上的固定傳感器和監控攝像頭可幫助進行人員跟蹤,以準確識別位置。社交媒體數據與其他數據源相結合,有助于敵情偵查和戰術規劃。與交通相關的傳感器數據,特別是交通監控攝像頭,在應急響應和軍事后勤方面發揮著重要作用。它可以檢測事故造成的擁堵和堵塞,從而改進軍事行動期間的路線規劃和交通管理。整合所有收集到的信息可增強態勢感知,促進城市環境中行動的有效規劃和管理。
針對近期發生的事件,如俄羅斯戰爭以及美國和巴西等國的反民主極端分子所帶來的挑戰,已經出現了多項舉措。其中一個例子是 ACLED(武裝沖突地點和事件數據)項目,該項目提供有關政治暴力和抗議事件的實時全球數據。另一個值得一提的項目是 DATTALION,這是一個廣泛的開源照片和視頻片段數據庫,記錄了俄羅斯對烏克蘭的戰爭。該數據庫的主要目的是反擊俄羅斯政府散布的錯誤信息。聯合國開發計劃署(UNDP)利用機器學習(ML)算法和大數據來檢測烏克蘭東部受損的基礎設施。語義損壞檢測器 (//tinyurl.com/semdam) 利用衛星圖像和地面照片對算法進行訓練,以識別建筑物、道路和橋梁的潛在損壞,協助地方當局和人道主義組織確定行動的優先次序。這些舉措極大地促進了 MDS,特別是 EMD,為分析和研究提供了寶貴的資源。
本節探討大數據在軍事領域的應用,重點從數據內(IMD)和數據外(EMD)兩個角度概述大數據在軍事行動中的重要意義,并探索利用其潛力的最新解決方案。
大數據在軍事領域的一些挑戰已在文獻中提出,并成為北約社區討論的主題,如作戰安全性、漏洞加固和數據可靠性[1]、[2]、[6],以及北約 IST160 和 IST-173。納入與外界幾乎沒有聯系的自主隔離(如 EMD)可能會限制大數據的自由流動,這就要求在保持系統自主性和保護性的同時,以創造性的方式利用大數據。在這一方向上,COP 和 JADC2 引導研究人員和行業使用和融合來自不同軍事實體的數據,以支持戰略決策。
Kun 等人[1]提出了在軍工企業構建大數據平臺、建立多級數據通道、實現全面數據管理和控制的詳細技術方案。該平臺有利于數據的收集、組織、處理和分析,將數據轉化為知識,以加強決策/服務支持、創新、質量控制和風險管理。Xu 等人[6]強調了數據科學在當代戰爭中實現信息優勢的重要性。他們的系統性綜述顯示,社會科學文獻對數據科學風險給予了極大關注,這可能會影響政治和軍事決策者。然而,與戰術層面相比,科學文獻缺乏對作戰和戰略層面風險的關注,這表明存在研究空白。這一差距可能是由于 IMD 與 EMD 之間缺乏聯系造成的,而 EMD 可以支持行動和戰略決策。
多傳感器數據融合(MSDF)方法是在戰術場景中提供快速高效的目標探測、跟蹤和威脅評估的一個實例,如文獻[4]所示。數據融合的另一個應用領域是基于位置的社交媒體(LBSM),它可以增強各個領域的知識,包括交通特征描述和事故檢測[7]。利用 LBSM 系統可以獲得更詳細的交通數據,有利于軍事后勤工作。在特定的軍事環境中,可以利用 LBSM 系統的潛力來提高數據可用性,并實現情境感知操作。
數據完整性對于維護對 MDS 的信任至關重要[9]。被篡改的數據會產生嚴重后果,影響民事和軍事決策過程,破壞對數據源的信心。社交媒體平臺上錯誤信息的泛濫就是這一挑戰的例證,這些錯誤信息往往被利用來施加政治影響,烏克蘭正在發生的沖突就是一例。為應對此類問題,Twitter 等平臺修訂了其政策,標記了許多與俄羅斯國家附屬媒體相關的推文,并檢測了數十億條與沖突相關的實時推文印象[10]。
與此同時,圖像認證的出現解決了人們對圖像完整性和來源驗證的擔憂。然而,包括人工智能軟件在內的先進圖像處理工具的興起使圖像驗證變得越來越棘手。雖然圖像驗證引入了水印、數字簽名和感知散列(pHash)等多種技術[11],但每種技術都有其優勢和局限性。例如,水印可提供真實性和所有權保護,但可能會影響圖像質量,而且容易受到高級處理技術的影響。相比之下,pHash 可以靈活地進行圖像操作,并對內容變化敏感,因此特別適合在社交媒體平臺上使用。在數據完整性和圖像認證的背景下考慮這些挑戰和解決方案至關重要。
首先,大數據的時空融合是為了支持軍事決策。由于缺乏所討論的可用 IMD,多數據融合(MDF)框架[12]被實例化,用于收集、準備和處理 EMD,并將其融合以提供豐富的信息。為了證明時空數據的豐富性,MDF 利用基于云的系統共享數據的公共可用性獲取了交通系統數據。不過,該框架可擴展到其他各種數據類型。其目標是提高數據質量、改進 C2 系統和軍事后勤,并支持城市地區的 COP/JADC2,從而創造出將融合 EMD 與來自不同領域的可用 IMD 結合使用的新方法。下文圖 2 介紹了 MDF 的主要功能。此外,還通過分析數值結果討論了融合大數據的好處。
對于數據采集,圖 2 (1)配置了一組參數(如區域、請求頻率)和數據源,MDF 為此收集各種格式的數據,并將其存儲在文件中。在準備階段(2),通過將不同的地物名稱和類型轉換為統一的表示方法,對輸入數據集進行標準化。這包括各種數據映射,以生成統一的數據類型,例如將描述性映射為數值或降低數據粒度。此外,還啟動地圖匹配,將所有地理定位數據(可能具有不同的精確度)融合到同一個路網中。MDF 對所有收集到的數據進行預處理,并從收集到的區域獲取 Shapefile (SHP)。請注意,根據應用目標和可用數據類型,框架可能會應用不同的特征提取方法,如自然語言處理(NLP)(情感分析、關鍵詞提取、詞法化、詞干化和自動摘要)或圖像處理(圖像分割、邊緣檢測和對象檢測),以從非結構化數據類型中提取信息。在使用案例中,我們沒有使用 NLP 算法,因為數據是無文本圖像和基于交通的數據。不過,建議的數據融合框架具有多功能性,可以處理各種數據類型,包括可以應用 NLP 技術的文本數據。
圖2 數據融合框架工作流程。
第三階段實現時間/空間數據融合和數據導出。為確保數據完整性,需要事先過濾非信任信息或有偏見的信息,例如,根據信息在不同數據源或圖像認證機制中的出現情況,使用驗證信息的方法,如第四節B部分所述。時間數據融合是通過對任意時間窗口(如每分鐘、每小時、每天)內的數據進行分組來實現的。為了進行空間融合,MDF 利用地圖匹配,根據底層道路網絡在規定的精確度下對 GPS 點進行對齊。由于不同數據源的 GPS 報告精度各不相同,因此必須這樣做,才能將所有地理定位數據映射到相同的道路網絡中。
最后,在圖 2 (4)中,豐富的數據以不同的格式輸出,為軍事和民用領域提供了多種可能性。MDF 的輸出通過創建不同類型的統計數據和可視化效果來支持時空分析,從不同的空間和時間方面描述可用信息的特征。
表I 按數據來源分列的道路覆蓋情況。
之前的工作[11]介紹了一種利用 Twitter 和 Facebook 來確保圖像完整性的圖像認證系統。該系統采用卷積神經網絡(CNN)和全連接層(FCC)進行特征提取,采用位置敏感散列(LSH)進行散列構建,并采用對比度損失最大化原始圖像和篡改圖像之間的差異。該模型的輸出是每個圖像 1024 位的固定長度向量表示。
為解決在城市軍事行動和民用系統中保持圖像完整性的重要性,提出了圖像事實檢查器(IFC),如圖 3 所示。它能檢測虛假圖像,確保數據的可信度,并作為當局主導的認證系統,打擊錯誤信息。系統會生成帶有徽標或圖標的驗證版照片,表明其已通過 IFC 系統驗證。此外,IFC 還提供了圖像的感知散列(pHash)字符串表示,可將其納入描述或在其他網站上共享。數據融合系統是 IFC 的一個可能的終端用戶,它可以在應用時空融合和生成豐富數據之前對抓取的圖片進行驗證。
圖3 Image-Fact-Checker (IFC)。
建立一個能提供即時真實信息的自動化系統是一個相對較新的概念,因此通過比較來評估其有效性具有挑戰性。然而,由于創建令人信服的偽造圖像的人工智能生成模型的興起,實施圖像認證系統現在變得至關重要。添加這一系統作為驗證層有助于防止或減少虛假信息的傳播,尤其是考慮到不斷發展的互聯網法規會對缺乏反虛假信息措施的平臺進行處罰。一種有效的方法是將 IFC 系統與政府機構連接起來。IFC 方法具有通用性和可擴展性,可提高個人的意識和信任度。
圖 4(左)是通過 DATTALION 從普通社交媒體用戶那里收集到的兩張未經驗證的圖片。這些圖片只是更大數據集中的一小部分。用戶通常不愿意相信這些來源,因此有效利用這些來源具有挑戰性。然而,當這些圖像經過 IFC 機制處理后,其可靠性就會提高,因為任何進一步的篡改都很容易被檢測出來。如圖 4(右圖)所示,應用 IFC 后,每張圖片都會收到 pHash 和相關信息,如圖片描述、提取的特征、位置、事件日期、抓取日期、發布者 ID。這些經過處理的圖像將存儲在 IFC 數據庫中,供今后查詢。該數據庫有多種用途:重復檢測、完整性驗證以及滿足特定最終用戶的要求。
圖4 使用IFC提取圖像細節。
數據融合的第一個挑戰是尋找和獲取軍事和民用領域的可用數據。出于隱私/安全考慮,信息可能無法廣泛獲取或獲取途徑有限。在軍事領域(IMD),數據受到更多限制,這為探索可用的民用數據(EMD)以支持戰略性信息決策提供了機會。第二個值得注意的挑戰是融合多種數據源,這些數據源可能具有不同的結構(結構化、半結構化和非結構化數據)、標準、數據類型(如文本、圖像、視頻)、測量單元、粒度和時空覆蓋范圍。因此,需要深入了解如何準備和處理不同的數據集,并將其融合為一個數據集。
處理社交媒體中的圖像和文本需要進一步的程序,如特征提取方法(如 NLP 和圖像處理),以提取可用信息。盡管數據融合面臨諸多挑戰,但將從不同角度(如指揮部、用戶、記者、政府、傳感器)描述同一空間和時間的不同數據源結合起來的好處,可以加強軍事行動的規劃和戰略階段,為 COP 和 JADC2 系統提供支持。
數據安全與隱私: 保護敏感的軍事信息對國家安全至關重要。需要強大的加密、安全的數據存儲和訪問控制來降低風險。建議采用的技術包括公鑰基礎設施(PKI)安全、受保護內核、數據加密、防火墻和入侵檢測。然而,如何在數據共享、有利于信息融合和安全/隱私措施之間取得平衡,對軍方來說仍是一項具有挑戰性的任務。
數據完整性: 被操縱的數據會給民用和軍用決策帶來風險,并降低對數據提供者的信任度。在生成內容的人工智能模型不斷進步的幫助下,篡改圖像迅速傳播,參與度不斷提高,這凸顯了對智能綜合解決方案的需求。通過社交媒體分享的圖片能夠快速傳達復雜的想法,從而為救援行動提供支持,使人們能夠立即采取行動,如在城市發生事故/災難時改變交通路線。圖片還能喚起情感聯系,增強讀者對新聞事件的理解。然而,烏克蘭戰爭等危機擴大了錯誤信息的傳播,這就需要 snopes.com 和 norc.org 等人工事實核查機構的參與,以打擊錯誤信息。然而,在戰爭期間或為打擊腐敗政府而進行基于人工的實時核查可能會耗費大量時間,這就為設計自動系統來驗證圖像和處理虛假信息創造了機會。
雖然這項工作的主要重點在于數據視角,以及確保使用來自不同來源的可信數據來支持軍事行動的相關性,但同樣重要的是要認識到網絡在有效提供數據和服務方面的重要性。在以網絡為中心的軍事行動中,利用高頻、甚高頻、超高頻、衛星通信、Wi-Fi 和 LTE 4-5G 等各種技術進行無線通信至關重要。有些技術擅長長距離覆蓋,但帶寬有限、延遲高,而且容易受到干擾。另一些則以可靠性為先,覆蓋范圍較短,帶寬較大,延遲較低。
以信息為中心的網絡(ICN)和軟件定義網絡(SDN)等網絡范例對于優化數據傳播和網絡協調至關重要[13],尤其是在網絡資源有限的情況下。在軍事網絡中,尤其是在戰術邊緣,數據傳播過程中會出現資源有限和安全問題等挑戰。為解決這些問題,軍方可能會探索包括民用網絡在內的各種基礎設施,以獲取和融合非軍事數據。以歐洲 5G COMPAD 聯盟為例,目前正在考慮采用 5G 技術。然而,由于硬件通信系統成本高昂、帶寬和互操作性有限,因此具有挑戰性。這就需要定制參考架構來滿足軍事通信需求。
在最近的烏克蘭-俄羅斯沖突中,俄羅斯對烏克蘭基礎設施的攻擊導致互聯網中斷,暴露了通信網絡的脆弱性。SpaceX 的 Starlink 衛星互聯網星座提供了一種解決方案,證明了在戰時利用民用網絡基礎設施的價值。盡管該技術有望提高互聯網在數據和緊急通信方面的可靠性,但它在網絡安全、覆蓋范圍、可靠性和成本效益方面仍面臨挑戰。
由于隱私、安全以及軍事機構為防止濫用和限制 IMD 的可用性而施加的限制,為人工智能研究訪問軍方擁有的大數據帶來了挑戰。此外,人工智能功能可能會受到對抗性攻擊的影響,對抗性攻擊會通過改變造成錯誤分類來欺騙人工智能模型。快速梯度符號法(FGSM)和語義攻擊等技術分別有助于識別和減輕計算機視覺和 NLP 中的此類攻擊。Yuan等人[14]對攻擊、對策和基于應用的分類標準進行了全面評述。
要檢測對抗性攻擊,一種有效的方法是使用具有與主人工智能模型不同特征的輔助人工智能模型。這一想法源于早期的衛星通信。當時,人們使用電報等輔助系統來防止對衛星通信的中間人攻擊或干擾攻擊。由于帶寬有限,輔助系統只能傳輸與完整衛星數據相對應的摘要數據,用于偵測攻擊和應急通信。同樣,在人工智能中防范對抗性攻擊時,傳統的 ML 可以作為輔助系統,產生與主要 CNN 方法一致的結果。對抗性攻擊依賴于計算機視覺深度學習模型中的梯度技術,而傳統的 ML 方法則使用不同的方法,這些方法對這些攻擊操作大多具有免疫力。
在軍事領域使用人工智能的另一個問題是需要共享敏感數據來訓練模型。在這方面,聯邦學習(FL)作為一種訓練 ML 模型的技術已經出現,在這種技術中,數據不會暴露,從而確保了數據的安全性和隱私性[15]。雖然它不能被視為對抗惡意攻擊的防御技術,但這種方法隱藏了敏感數據和模型或參數的一部分。這種技術對于建立在人工智能基礎上的新興軍事應用非常有價值。
本文探討了大數據在軍事領域的應用。研究了與整合不同數據源、確保數據安全、隱私和完整性以及聯網和利用人工智能相關的機遇和挑戰。文章引入了 MDS 概念,以豐富和引導討論,強調納入民用數據的潛力,以提高軍事行動戰略決策所需的信息質量和數量。此外,文章還包括兩個實際使用案例,說明了數據融合的好處以及實施圖像認證機制以保持數據完整性的重要性。這些發現凸顯了大數據在軍事領域的重要意義,并強調了在該領域開展進一步研究和探索的必要性。
人工智能(AI)領域的不斷進步以及在關鍵部門整合AI系統的工作正在逐步改變社會的各個方面,包括國防部門。盡管人工智能的進步為增強人類能力和改善各種決策提供了前所未有的機會,但它們也帶來了重大的法律、安全、安保和倫理問題。因此,為了確保人工智能系統的開發和使用是合法的、道德的、安全的、有保障的和負責任的,政府和政府間組織正在制定一系列規范性文書。這種方法被廣泛稱為 "負責任的人工智能",或道德的或值得信賴的人工智能。目前,負責任的人工智能最引人注目的方法是開發和運作負責任或道德的人工智能原則。
聯合國裁研所的 "在國防中實現負責任的人工智能 "項目首先尋求對負責任的人工智能系統的研究、設計、開發、部署和使用的關鍵方面建立共同的理解。然后,它將審查負責任的人工智能在國防部門的運作情況,包括確定和促進良好做法的交流。該項目有三個主要目標。首先,它旨在鼓勵各國采用和實施能夠在開發和使用人工智能系統中實現負責任行為的工具。它還試圖幫助提高透明度,促進國家和其他關鍵人工智能行為者之間的信任。最后,該項目旨在建立對負責任的人工智能關鍵要素的共同理解,以及如何將其付諸實施,這可以為制定國際公認的治理框架提供參考。
本研究簡報概述了該項目的目標。它還概述了項目第一階段的研究方法和初步結果:制定共同的原則分類法和對各國采用的人工智能原則進行比較分析。
毫無疑問,今天圍繞人工智能(AI)的最復雜的治理挑戰涉及國防和安全。CIGI正在促進戰略制定:人工智能對軍事防御和安全的影響項目將這一領域的主要專家與來自國防部的40多名公務員和加拿大武裝部隊的人員聚集在一起,討論人工智能對國家安全和軍事領域的力量倍增效應。
這一努力依賴于一系列的四次研討會,以產生關于數據驅動技術如何引發巨大的技術重組的前瞻性思考,這將對加拿大的國防規劃產生深遠影響。具體來說,這些研討會集中在數據治理和政策(道德、云計算、數據準備和互操作性);決策(可信賴性、人機一體化、生物技術和問責制);模擬工具(培訓、兵棋推演、人機合作、機器人、自主和可信的人工智能);以及信息時代的加拿大情報(將人工智能用于情報)。CIGI還主辦了一個研究生研討會,以激勵整個加拿大在全球公共政策、計算機科學和安全等領域學習的新興學者。
本文探討了在人工智能(AI)和機器學習背景下的軍事特定能力的發展。在加拿大國防政策的基礎上,本文概述了人工智能的軍事應用和管理下一代軍事行動所需的資源,包括多邊參與和技術治理。
維持先進軍事能力的前景現在與人工智能的武器化直接聯系在一起。作為一項通用技術,人工智能代表著一種力量的倍增器,有能力重塑戰爭規則。事實上,在核彈頭仍然是一種單一的技術應用的情況下,人工智能有能力支持許多不同類型的武器和系統。正如北大西洋公約組織(NATO)的指導意見所指出的,人工智能和其他 "智能 "技術現在對加拿大及其盟國的未來安全至關重要。
新技術在改變戰爭的性質方面有著悠久的歷史。從馬匹和盔甲的使用到航空母艦和戰斗機的引進,人工智能和機器人只是代表了軍事技術發展的最新階段。常規武器與人工智能和機器學習的融合,必將重塑決策的性質和軍事戰略轉型中的武力應用。
即使當代人工智能系統的能力被限制在機器學習算法的狹窄范圍內,這種限制可能不會持續太久。與神經科學、量子計算和生物技術相重疊的發現領域正在迅速發展,代表了 "智能機器 "進化的未知領域。在這些新的研究領域中的科學和技術發現給加拿大的國防帶來了巨大的風險,但同時也代表著巨大的機遇。
顯而易見的是,新興技術已經成為高度緊張的地緣政治競爭的基礎,它與一系列商業產業和技術平臺相重疊。中國、俄羅斯、美國和其他國家和非國家行為者正在積極追求人工智能和其他前沿技術的軍事應用。競爭的領域包括云技術、高超音速和新導彈技術、空間應用、量子和生物技術以及人類增強。
盡管技術創新一直塑造著國家間沖突的性質,但新興和顛覆性技術(EDT)的規模和速度是前所未有的。加拿大的國防政策反映了這種擔憂,它呼吁使加拿大武裝部隊(CAF)適應不斷變化的地緣政治環境。加拿大國防規劃已著手擴大和發展加拿大武裝部隊,在新的軍事平臺整合中納入下一代偵察機、遙控系統和天基設施。
基于對不斷變化的技術環境的廣泛評估,加拿大國防部(DND)認識到,這個新時代的特點是全球力量平衡的變化。這包括在快速發展的創新經濟中大國競爭性質的變化。就像石油和鋼鐵為工業時代設定條件一樣,人工智能和機器學習現在也可能為數字時代設定條件。
這種規模的破壞是由技術和制度變化的融合所驅動的,這些變化可以以新的和不可預測的方式觸發復雜的反饋回路。在這個新的環境中,人工智能技術將迫使世界各國軍隊投射力量的能力倍增。確定軍事人工智能發展中的護欄對于避免未來危機至關重要。應用減少風險的措施來識別和減輕軍事人工智能可能帶來的一系列風險將是關鍵。事實上,在這些能力完全嵌入世界上目前和未來的軍隊之前,治理人工智能可能會更容易。
從整體上看,這種轉變預示著從初級機器到數據驅動技術和精密電子的巨大轉變。這種物理、數字和生物技術的加速融合代表了一場巨大技術革命的早期階段。在全球范圍內管理這些新興和顛覆性的技術,對于減少未來沖突的風險至關重要。
從人工智能和機器人到電池存儲、分布式賬本技術(DLT)和物聯網(IoT),新興和顛覆性技術(EDT)現在正在激起一個商業創新的新時代。這一巨大的技術變革景觀正在醞釀一場社會和經濟變革,對中央銀行的發展具有巨大影響。正如北約最近的一份報告所指出的(北約新興和顛覆性技術咨詢小組2020),這些技術包括:
→ 人工智能和機器學習。人工智能/機器學習的發展及其對創新的潛在影響。這包括神經形態計算、生成式對抗網絡,以及人工智能從已經收集或尚未收集的數據中揭示出意想不到的見解的能力。
→ 量子技術。正在進行的從量子過程研究中獲得的知識轉化為量子技術的應用,包括量子計算、量子傳感、量子密碼系統,以及在量子尺度上對材料的操縱和開發。
→ 數據安全。用于保障和損害通信、數據交易和數據存儲安全的算法和系統的設計,包括量子證明加密方法、區塊鏈和分布式賬本架構,以及更廣泛的網絡安全領域。
→ 計算功能的硬件。微型化、電力采集和能源儲存方面的進展,包括在全球范圍內提供數字化關鍵基礎設施所需的物理系統(物聯網)和機器人的廣泛使用及其對全球系統和流程的持續影響。
→ 生物和合成材料。從原子/分子層面的材料設計、合成和操作到中觀和宏觀尺度的創新,支持生物工程、化學工程、基因層面的操作、增材制造和AI介導的生成設計。
正如蒸汽機和印刷術激發了工業革命一樣,人工智能和機器人技術現在也在軍事技術的性質和全球力量平衡方面引發了巨大變革。人工智能的興起并非沒有歷史先例,但伴隨著人工智能的變化表明,需要對國防規劃進行更精確的調整,以適應一個數據驅動的時代。
在大國競爭和多極體系的背景下,人工智能已經成為競爭的一個特別焦點。中國、俄羅斯、美國和其他許多國家都在積極追求人工智能能力,并把重點放在國防和安全方面。例如,中國希望到2030年在人工智能方面領先世界,并期望通過利用大量的豐富數據,擴大其在人工智能產業化方面的領先優勢(Lucas和Feng,2017年)。
事實上,數據和數據驅動的技術現在占據了全球經濟的制高點。整個全球數據經濟的競爭已經與大國競爭密不可分(Mearsheimer 2021)。盡管美國和中國的經濟深深地相互依存,但中國在整個歐亞大陸不斷擴大的投資將很快使其成為世界貿易的中心。
技術優勢仍然是北約國家的關鍵支柱,但中國正在迅速趕超。即使美國在人工智能發現方面建立了強大的領先優勢,中國也越來越有可能在人工智能驅動的應用產業化方面占據主導地位。中國不僅有先進的商業能力,而且還有一個連貫的國家戰略。中國的技術部門正在達到專業知識、人才和資本的臨界質量,正在重新調整全球經濟的指揮高度(Lucas and Waters 2018)(見圖1)。
中國產業部署的大部分技術創新都是 "漸進式 "的,而不是 "顛覆式 "的,但現在這種情況正在改變。將新興市場聚集在其軌道上,中國前所未有的經濟擴張現在對世界經濟產生了引力(The Economist 2018)。標志性項目,價值數萬億美元的 "一帶一路 "倡議(世界銀行2018年)為圍繞電動汽車、電信、機器人、半導體、鐵路基礎設施、海洋工程以及最終的人工智能的廣泛戰略轉變提供了一個全球平臺(McBride和Chatzky 2019年)。
毫不奇怪,中國已經是國際專利申請的世界領導者(世界知識產權組織2020)。隨著自主機器(Etzioni和Etzioni 2017)、可再生能源基礎設施、量子通信(?iljak 2020)、增強型腦機接口(Putze等人2020)和天基武器(Etherington 2020)的出現,重新思考加拿大國家安全,特別是加拿大國防的性質的壓力正在增加。鑒于技術創新的步伐不斷加快,以及亞洲作為世界貿易中心的崛起(Huiyao 2019),來自國外的技術的影響可能是巨大的。
圖1:按購買力平價計算的國內生產總值預測(以萬億美元計)
人工智能的概念已被廣泛討論,但該術語的精確定義仍然是一個移動的目標。與其說人工智能是一項具體的技術或特定的創新,不如說它是一個材料的集合。事實上,即使人工智能技術已經成為廣泛的主流商業應用的基礎,包括網絡搜索、醫療診斷、算法交易、工廠自動化、共享汽車和自動駕駛汽車,人工智能仍然是一個理想的目標。
盡管人工智能領域的研究始于20世紀40年代,但隨著機器學習和計算機處理能力的改進,過去十年對人工智能興趣的爆炸性增長已經加速。人工智能的持續進步被比喻為在人腦中發現的多尺度學習和推理能力。當與大數據和云計算相結合時,預計人工智能將通過將 "智能 "人工智能和機器學習系統與第五代(5G)電信網絡(即物聯網)上的大量聯網設備連接起來,使數字技術 "認知化"。
作為人工智能的一個子集,機器學習代表了人工智能的最突出的應用(見圖2)。機器學習使用統計技術,使機器能夠在沒有明確指令的情況下 "學習",推動許多應用和服務,改善一系列分析和物理任務的自動化。通過使用數據自動提高性能,這個過程被稱為 "訓練 "一個 "模型"。使用一種算法來提高特定任務的性能,機器學習系統分析大量的訓練數據集,以便做人類自然而然的事情:通過實例學習。
今天,機器學習的最常見應用是深度學習。作為更廣泛的機器學習家族的一部分,深度學習利用人工神經網絡層來復制人類智能。深度學習架構,如深度神經網絡、遞歸神經網絡和卷積神經網絡,支持一系列廣泛的研究領域,包括計算機視覺、語音識別、機器翻譯、自然語言處理和藥物設計。
圖2:人工智能的層級
安全人工智能位于新興和顛覆性技術(EDT)星座的中心,包括機器人學、基因組學、電池存儲、區塊鏈、3D打印、量子計算和5G電信。在研究層面,美國仍然是人工智能的全球領導者。目前,國家科學基金會每年在人工智能研究方面的投資超過1億美元(國家科學基金會2018年)。國防高級研究計劃局(DARPA)最近宣布投資20億美元用于一項名為AI Next的計劃,其目標是推進上下文和適應性推理(DARPA 2018)。
與過去的原子武器或隱形飛機的技術發展不同,沒有國家會壟斷軍事人工智能。研究人員和領先的商業企業之間廣泛的全球合作意味著人工智能和機器學習的進步可能會在全球范圍內擴散。事實上,人工智能發展的大多數技術進步是由工業界而不是政府推動的。除了市場主導的技術公司,世界各地廣泛的網絡集群正在孵化新一代的商業創新(Li and Pauwels 2018)。因此,許多未來的軍事應用將可能是為商業產業開發的技術的改編。
幸運的是,加拿大一直是人工智能研究前沿的領導者,并繼續通過2017年推出的泛加拿大人工智能戰略下的幾個項目培育一個強大的人工智能生態系統。加拿大政府積極參與人工智能咨詢委員會和各種國際伙伴關系,包括2020年啟動的全球人工智能伙伴關系;人工智能國防伙伴關系,其第二次對話在2021年舉行;以及重疊人工智能驅動的安全和規劃的多邊協議(五眼,北約)。事實上,加拿大的國防政策,"強大、安全、參與"(SSE),反映了加拿大政府對增加年度國防開支的承諾,重點是技術。
目前的聯邦預算包括對人工智能發展的實質性承諾,承諾在10年內投入4.438億美元(Silcoff 2021)。在政府2021年的預算中,1.85億美元將支持人工智能研究的商業化;1.622億美元將用于在全國范圍內招聘頂尖的學術人才;4800萬美元將用于加拿大高級研究所;五年內4000萬美元將旨在加強埃德蒙頓、多倫多和蒙特利爾的國家人工智能研究所的研究人員的計算能力;五年內860萬美元將幫助推進人工智能相關標準的發展和采用(加拿大政府2021年,148)。
人工智能是一個影響廣泛的商業和軍事技術的模糊領域。像電力或化石燃料一樣,人工智能的廣泛應用意味著人工智能和其他通用技術有能力重新配置現代軍隊的步伐和組織(Bresnahan和Trajtenberg 1995)。從整體上看,人工智能代表了國家安全性質的結構性轉變。出于這個原因,SSE設想了一個未來的軍事態勢,更加注重開發、獲取和整合先進的變革性技術,包括網絡和自主系統。
即使加拿大在傳統聯盟(北美防空司令部、北約和五眼聯盟)中的持續作用仍然是國家安全的基礎,EDT正在從根本上改變沖突的性質。正如格雷格-菲夫(2021年)所觀察到的,人工智能作為戰爭工具的崛起與升級加拿大國家安全架構,特別是加拿大情報部門的日益增長的需求相重疊。技術變革和信息爆炸的復合周期,新的技能組合和新的數據分析戰略對國防規劃的演變變得至關重要。
在數字時代,戰爭正日益成為基于知識的戰爭。隨著沖突進入信息領域,軍事規劃開始重新聚焦于信息/虛假信息行動、網絡行動、情報行動和政治或經濟影響行動。事實上,這種混合戰爭作為一種戰爭工具由來已久,其目的是利用宣傳、破壞、欺騙和其他非動能軍事行動,從內部破壞對手(Bilal 2021)。
網絡仍然是潛在對手、國家代理人、犯罪組織和非國家行為者的一個關鍵目標。這包括對通信、情報和敏感信息的嵌入式監視和偵察。正如Amy Zegart(2021年)所解釋的那樣,技術正在通過極大地擴展數據和信息的獲取,使情報的性質民主化。事實上,今天驅動戰略情報的大部分信息實際上是開放源碼情報(OSINT)或在公共領域。
現代軍隊正變得嚴重依賴安全、及時和準確的數據。隨著數據的急劇膨脹,消化它變得不可能。這種數據爆炸正在推動對新的分析模式和新型網絡工具的需求。在數字時代,安全和情報人員需要新的平臺、新的工具和跨領域工作的新OSINT機構。在這方面,人工智能可能特別有幫助。
隨著數據的重要性增加,在廣闊的數字領域的對抗性競爭也在增加。人工智能和機器學習可以通過篩選巨大的數據庫來極大地提高加拿大的國家情報能力。人工智能不是銀彈。人工智能系統不能產生意義或提供因果分析。然而,人工智能和機器學習可以極大地增強人類在管理數據和數據驅動的分析方面的情報能力。
隨著決策者為數據驅動的世界調整其安全態勢,人工智能有望改變軍事沖突的既定模式。DND/CAF面臨的關鍵挑戰之一是數據驅動的網絡重塑指揮和控制系統的速度(Thatcher 2020)。集中式系統的優勢在于其協調人類活動的效率。在指揮系統中,人員和傳感器推動威脅檢測,將信息向決策堆棧上移,以便決策者可以做出適當的反應。數字技術深刻地加速了這個過程。
人工智能在軍事領域的應用可能被證明對傳統的指揮和控制系統具有挑戰性。例如,在美國,五角大樓的第一位首席軟件官最近辭職,以抗議技術轉型的緩慢步伐。在離開國防部職位后的一次采訪中,尼古拉-沙伊蘭告訴《金融時報》,美國未能對技術變革和其他威脅作出反應,使國家的未來面臨風險(Manson 2021)。
除了變化的速度緩慢,軍事指揮和控制系統的集中性意味著單點故障提供了脆弱的攻擊點。指揮機關和自動或人類控制者往往容易受到利用不良或欺騙性信息的對抗性技術的影響,甚至自上而下的決策在適應復雜的突發挑戰方面也會很緩慢。
神經形態計算、生成式對抗網絡(GANs)、人工智能決策支持、數據分析和情報分析方面的新創新在增強軍事行動的結構和進程方面可能會產生巨大影響。機器學習算法的快速發展已經在商業和軍事領域引發了一波投資熱潮。
超越對損耗和動能攻擊的傳統關注,轉向基于加速和適應的新方法,數據驅動的技術可能是促成國家安全性質徹底轉變的關鍵。人工智能不是一種單一的技術。相反,它是一類可以在一系列軍事和商業應用中整合的技術。這些技術不斷演變的基礎是數據。
數字技術現在由數據推動,并將繼續推動創造越來越多的數據驅動的技術--特別是人工智能。數據是訓練人工智能和先進機器學習算法的基礎。數據既是大規模運行的數字系統產生的 "操作廢氣",也是機器對數據輸入作出反應的過程,它現在推動了機器的 "自主性"。
數據驅動的技術支撐著現代社會的核心社會和經濟功能,涵蓋了基礎設施、能源、醫療保健、金融、貿易、運輸和國防。隨著5G網絡的全球推廣,預計在高度健全的全球信息網絡中創建、收集、處理和存儲的數據將出現爆炸性增長。根據市場研究公司IDC的數據,目前全球數據正以每年61%的速度增長(Patrizio 2018)。預計到2025年,數據將達到175 zettabytes(一萬億吉字節),改變數字經濟的性質和規模(同上)。
出于這個原因,DND/CAF將數據提升到國家資產的水平是明智的。這對經濟增長和加拿大國防都至關重要。將數據作為國家資產加以保護和利用,將意味著重新思考目前構成當代數據架構的大型集中式數字基礎設施。可以肯定的是,網絡時代的數據安全應該是分散的和聯合的,以避免集中式系統的脆弱性。
關于技術破壞的傳統預測往往會犯一個錯誤,即假設這種規模的系統變化只是以一對一的方式取代舊技術。在現實中,這種規模的顛覆往往會不成比例地取代舊的系統,使其具有巨大的新的架構、界限和能力(Arbib和Seba 2020)。
正在進行的人工智能武器化正在助長一場全球軍備競賽,有望重塑加拿大國防戰略的輪廓。事實上,世界上許多國家在人員系統自動化、設備維護、監視系統以及無人機和機器人的部署方面已經遠遠領先(斯坦利和平與安全中心、聯合國裁軍事務廳和史汀生中心2019)。從美國到俄羅斯到以色列再到中國,軍事研究人員正在將人工智能嵌入網絡安全舉措和支持遠程手術、戰斗模擬和數據處理的機器人系統。
以先進的物流、半自動車隊、智能供應鏈管理和預測性維護系統的形式將人工智能應用于軍事行動代表了人工智能的近期應用(Perry 2021)。然而,能夠在陸地、海洋、空中、太空和網絡領域針對個人(無論是否需要人類干預)的自主武器的演變代表了軍事沖突的可能未來(見圖3)。事實上,近100個國家的軍隊目前擁有某種程度的武裝或非武裝無人機能力(Gettinger 2019)。
圖3:全球無人機激增
商業無人機技術在采礦、農業和能源領域的縱橫捭闔,正在助長無人機技術的廣泛擴散。正如最近亞美尼亞和阿塞拜疆之間的沖突所表明的那樣,一群相對便宜的自主和半自主無人機可以被利用來壓倒傳統的軍事系統,使一系列當代平臺變得過時(Shaikh和Rumbaugh 2020)。輕型、可重復使用的武裝無人機,如土耳其的Songar(Uyan?k 2021)可以配備一系列有效載荷,包括迫擊炮、手榴彈和輕機槍。最近對沙特阿拉伯的Abqaiq石油加工設施(Rapier 2019)和俄羅斯的Khmeimim空軍基地(Hambling 2018)的攻擊反映了軍事無人機在不同戰場環境中的應用越來越多。
致命自主武器系統(LAWS)被定義為可以在沒有人類授權的情況下選擇和攻擊目標的武器,它被設計為在獨立識別目標之前在指定的行動區域內長期徘徊。多個無人機或機器人可以并行運作,以克服對手的防御或摧毀一個特定目標。開發人員傾向于將致命性武器系統分為三大類,即觀察、定位、決定和行動(OODA)循環(見圖4)。這些類別包括。"循環中的人"、"循環中的人 "和 "循環外的人"。這種區分也被框定為 "半自主"、"受監督的自主 "和 "完全自主 "的技術系統。不幸的是,受監督的致命性自主武器系統和完全自主的致命性自主武器系統之間的區別,可能只是一個軟件補丁或一個監管程序。
圖4:OODA環
隨著致命性自主武器系統和其他數據驅動的技術變得更便宜和更廣泛,它們可能會給廣泛的國家和非國家行為者提供平臺和工具,以新的和破壞性的方式利用人工智能和機器學習。除了收緊OODA循環外,軍事人員將需要了解人工智能在加速OODA循環方面的影響,以確定在特定情況下哪種模式最合適。
鑒于EDT的范圍和規模,認為我們可以簡單地保持從上個世紀繼承的系統和做法是錯誤的。正如英國查塔姆研究所2018年的一份報告所警告的那樣,美國、英國和其他核武器系統正變得越來越容易受到網絡攻擊(Unal and Lewis 2018)。這些擔憂是有根據的。人工智能和EDT的擴散一起,幾乎肯定會通過利用人工智能和自主系統的規模效應,為小國和非國家行為者帶來好處。
對于許多北約國家來說,網絡平臺已經成為多領域行動的關鍵--海、空、陸、網絡和空間。大規模的網絡使得在復雜環境中可視化和協調大量資源成為可能。在5G電信和云計算的基礎上,信息系統現在可以有效地收集、傳輸和處理大量的戰場數據,提供實時數據分析。
連接設備正在成為協調空襲、駕駛無人機、消化戰斗空間的實時視頻和管理高度復雜的供應鏈的關鍵。在英國,國防數據框架提供了一個結構,以解決軍事組織與數據驅動的企業需求相一致的挑戰(Ministry of Defence 2021)。從戰略到通信到后勤到情報,數字平臺現在是協調復雜軍事行動的基礎。數據現在是所有作戰領域的命脈。
在一個數字化的戰斗空間中,每個士兵、平臺和資源現在都是一個復雜軍事網絡中的節點。從20世紀90年代以網絡為中心的美國軍事行動開始,數字技術已經成為先進武器、戰術和戰略的基礎。從戰場態勢感知和自主無人機到精確制導彈藥和機器驅動的心理行動,網絡正在使戰爭進入網絡時代。
在集中式機構對工業時代至關重要的地方,平臺和網絡正在成為數字時代的關鍵。人工智能本質上是一種 "自下而上 "的技術,依靠不斷 "喂養 "大量的數據來支持機器學習作為 "學習引擎"。隨著數字生態系統的激增,網絡平臺和它們所依賴的數據管理系統成為管理不斷擴大的資源和人員的關鍵。
與金融部門一樣,DND應該尋求區塊鏈等DLT,以加速加拿大軍隊的數字化轉型。通過在分散的網絡中橫向分配數據,CAF區塊鏈可以幫助減少官僚化系統固有的限制和脆弱性。DLT提供了一個高度分散的驗證系統,可以確保所有的通信和數據傳輸免受對手的攻擊,同時消除集中式節點的潛在故障。
人工智能在軍事規劃中的應用正在迅速推進,許多國家在部署無人機和機器人方面已經取得了很大進展。事實上,無人機技術的全球擴散正在順利進行中。
世界各地的軍隊正在加速開發或采購攻擊型無人機(見圖5)。俄羅斯的 "閃電"(BulgarianMilitary.com 2021)、西班牙的Rapaz8以及英國、9美國10和以色列11的各種無人機項目共同代表了軍事技術新時代的早期階段。與工業時代的軍事技術不同,無人機可以以低成本獲得,并需要相對較少的技術技能。
無人機群技術涉及微型/迷你無人機/無人駕駛飛行器或無人機群,利用基于共享信息的自主決策。事實上,當代軍用無人機已經可以被設計成在沒有人參與的情況下定位、識別和攻擊目標。利用蜂群技術,數以百計的非武裝無人機可以從現場收集信息,同時用各種武器(即火器、火炮和/或彈藥)引導數以千計的無人機。
正如簡短的視頻 "Slaugherbots "所展示的那樣,完全自主的武器將使瞄準和殺死獨特的個人變得非常容易和便宜。在面部識別和決策算法的基礎上,國家和非國家行為者都可以廣泛使用致命性武器。數以千計的相對便宜的無人機配備了爆炸性的彈頭,有可能壓倒防空系統,攻擊基礎設施、城市、軍事基地等等。
圖5:無人機對比
無人機群壓倒加拿大軍事設施的威脅,以及對關鍵基礎設施的網絡攻擊或在衛星傳感器檢測到威脅時自動發射的高超音速導彈,代表了一個令人不安但越來越可能的未來。從復雜性科學和對昆蟲的研究中產生的,使用無人機來支持 "集群情報 "代表了一個加速戰爭節奏的新工具集。
為了應對這種不斷變化的環境,DARPA提出了 "馬賽克戰爭"的概念。馬賽克戰爭的中心思想是,模塊化系統可以成為應對高度網絡化環境的廉價、靈活和高度可擴展的工具。就像馬賽克中的瓷片一樣,單個作戰平臺可以被設計成高度可配置的。編隊利用分散的代理在 "殺戮網 "上進行重新配置。殺戮網的目標是避免 "單體系統 "的結構僵化。
與傳統戰爭中需要的復雜棋局不同,馬賽克戰爭利用數字網絡,利用模塊的靈活性和增強的決策(時間壓縮)加快動態響應時間。像自然界中的復雜系統一樣,殺傷性網絡使用算法來消除單點故障,通過模塊化設計加速反應時間。
從主導地位(預測)轉向加速反應(適應),"馬賽克戰爭 "旨在支持混合軍事單位,利用 "決策棧 "上下的橫向網絡。人工智能、無人機、傳感器、數據和人員結合在一起,為地面上的作戰指揮官提供支持,使小型編隊能以更快的速度獲得情報、資源和后勤資產。
像 "馬賽克戰爭 "這樣的模塊化系統表明,未來的戰爭將越來越多地利用現在驅動戰爭游戲和模擬的計算、數據分析和算法。推動高度流動、游戲化和不可預測的環境,未來的人工智能系統可以將戰爭加速到一個隨著結果范圍的擴大而變得極其密集的計算速度和節奏。
DARPA最近的AlphaDogfight(2019-2020年)為這一新現實提供了一個窗口。使用復雜的F-16飛行模擬器讓計算機與有經驗的人類飛行員對決,試驗的目的是為DARPA的空戰進化計劃推進人工智能開發者。毫不奇怪,F-16人工智能代理通過積極和精確的機動性擊敗了人類飛行員,而人類飛行員根本無法與之相提并論,五局為零。
人工智能的武器化也在激起對抗人工智能系統的新戰略和方法。正如網絡行動(無論是間諜活動還是攻擊)可以指示計算機網絡或機器以它們不打算的方式運行,對手也可以對人工智能系統使用同樣的策略。這個過程被稱為對抗性機器學習,旨在找出機器學習模型的弱點并加以利用。攻擊可能發生在開發或部署階段,包括通過提供欺騙性輸入(例如,"毒化"數據)或針對模型本身來誤導模型。
這些方法在國家安全環境中特別危險,因為在許多情況下,它們是微妙的,人類無法察覺。此外,具有挑戰性的是,對手不一定需要對目標模型的具體知識或直接訪問其訓練數據來影響它。隨著人工智能系統變得更加普遍,更多的人可以接觸到,對手的吸引力和攻擊機會將增加。
攻擊者可能試圖修改訓練數據或測試數據。這是通過創造對抗性樣本來實現的,這些樣本被故意 "擾亂 "或改變并提供給模型,從而導致錯誤。例如,通過改變洗衣機圖像的分辨率,研究人員能夠欺騙一個模型,將機器分類為 "安全 "或 "擴音器"(Kurakin, Goodfellow and Bengio 2017)。對人的眼睛來說,對抗性圖像看起來幾乎是一樣的。
在國家安全方面,對手可能會試圖使用同樣的技術來暗示武器系統實際上是一個社區中心。如果這是在孤立的情況下發生的,那么這個問題很可能被識別和解決。如果對手的樣本被長期大規模使用,這可能成為一個重大的挑戰,并影響對情報收集系統的信任。
此外,一些對手可能并不精確--或有技能--并可能試圖迫使一個模型對整個類別而不是特定類別進行錯誤分類。由于我們在國家安全環境中越來越依賴計算機圖像,并不總是能夠實時或在有爭議的空間進行驗證,因此在這種攻擊中出現誤判的風險是很大的。
高后果的人工智能系統并不是對抗性攻擊的唯一目標。受對抗性樣本影響的人工智能系統可以包括生物識別,其中假的生物特征可以被利用來冒充合法用戶,語音識別中攻擊者添加低量級的噪音來混淆系統(Zelasko等人,2021)和計算機安全(包括在網絡數據包中混淆惡意軟件代碼)。
由于DND/CAF尋求通過部署人工智能系統來提高效率--如軍艦上的語音助手(McLeod 2019)--必須在部署前評估對抗性使用的風險并制定對策。
除了改變輸入,另一種攻擊方法可用于逆向工程模型以獲取訓練數據(Heaven 2021)。由于機器學習模型對訓練數據的表現比新的輸入更好,對手可以識別目標模型預測的差異,并與包括個人身份信息在內的已知數據相匹配(Shokri等人,2017)。隨著機器學習即服務變得越來越多--而且在許多情況下,被用作開發更復雜的能力的基礎--DND將需要仔細審查國家安全系統的數據泄漏風險。這甚至適用于看似無害的系統,如語音助手。
人工智能系統的弱點的例子很多(Hadfield-Menell等人,2017)。這些例子包括吸塵器將收集到的灰塵彈回它剛打掃過的地方,以便它能收集更多的灰塵,或者數字游戲中的賽艇在原地循環以收集分數,而不是追求贏得比賽的主要目的。雖然這些例子沒有生命危險,但同樣的技術--被稱為獎勵黑客(當一個模型被指示使其目標函數最大化,但卻以非故意的方式進行)--可以被用于更嚴重的效果。
從旨在用固定的訓練數據解決 "單步決策問題 "的機器學習過渡到解決 "順序決策問題 "和更廣泛的數據集的深度機器學習,將使對抗性攻擊更難發現。這種威脅是如此之大,以至于美國情報高級研究項目活動正在資助一個項目,以檢測木馬人工智能對已完成系統的攻擊。令人擔憂的是,政府可能會在不知情的情況下操作一個產生 "正確 "行為的人工智能系統,直到出現 "觸發 "的情況。例如,在部署過程中,對手可能會攻擊一個系統,并在更晚的時候才導致災難性的故障發生。這些類型的攻擊可能會影響到圖像、文本、音頻和游戲的人工智能系統。
正如對抗性樣本可以用來愚弄人工智能系統一樣,它們可以被納入訓練過程中,以使它們對攻擊更加強大。通過對最重要的國家安全人工智能系統進行清潔和對抗性數據的訓練--要么給它們貼上這樣的標簽,要么指示一個模型將它們分離出來--更大的防御是可能的。但是,復雜的對手很可能會自行躲避這種防御方法,而使用額外的戰術進行深度防御將是必要的。
GANs有各種各樣的用例,從創建深度假說到癌癥預后(Kim, Oh and Ahn 2018)。它們也可用于防御對抗性攻擊(Short, Le Pay and Ghandi 2019),使用一個生成器來創建對抗性樣本,并使用一個判別器來確定它是真的還是假的。一個額外的好處是,使用GANs作為防御,實際上也可能通過規范數據和防止 "過度擬合 "來提高原始模型的性能(IBM云教育2021)。
對抗性攻擊和防御模型進行基準測試--如使用GANs--是一種全面的對策,可以對AI系統進行比較。這種方法為制定和滿足安全標準提供了一個量化的衡量標準,并允許評估人工智能系統的能力和限制。
作為這個測試和評估過程的一部分,博弈論可能有助于建立對手的行為模型,以確定可能的防御策略。由于人工智能系統無法在傳統的信息安全意義上進行 "修補",因此在部署前應仔細分析針對國家安全人工智能系統的對抗性攻擊的風險,并定期進行審查。此外,訓練有素的模型--特別是那些關于機密數據和最敏感應用的模型--應該得到仔細保護。
數據驅動的戰爭的速度和范圍表明,我們正在進入一個新的時代,其中致命性武器系統的潛力--無論是否有人類參與--都可能極大地改變全球力量平衡。從殺手級無人機和人機合作到增強的軍事決策(殺手2020),人工智能技術將使世界各國軍隊投射力量的能力大大增加。正在進行的人工智能武器化也與空間武器化相重疊(《經濟學人》2019年),因為低地球軌道(LEO)日益成為軍事監視、遙感、通信、數據處理(Turner 2021)和彈道武器(Sevastopulo和Hille 2021)的操作環境。
人工智能與低地軌道和致命性自主武器系統的興起,代表了全球安全性質的一個關鍵轉折點。為此,世界各地的學術研究人員、技術企業家和公民都對人工智能的軍事化所帶來的危險表示擔憂。正如他們正確地指出的那樣,在規范負責任地開發和使用人工智能的規范和法律方面缺乏國際共識,有可能造成未來的危機。
除了我們在科幻小說中經常看到的對人工智能的夸張描述,重要的是建立適當的制衡機制,以限制人工智能技術可能提供的權力集中。關于管理人工智能和其他數字技術的共同國際規則和條例將塑造未來幾十年的戰爭和沖突的輪廓。在軍事人工智能的發展中制定護欄,對于減少未來沖突的可能性至關重要。
加拿大和其他北約國家積極參與這一討論可能是未來全球和平與安全的關鍵。在發動戰爭的條件(jus ad bellum)和戰爭中的人工智能行為(jus in bello)方面,規范人工智能使用的戰爭法仍有待確定。鑒于美國和中國之間不斷擴大的競爭,需要制定關于致命性自主武器系統的使用及其擴散的條約是再及時不過了。
正如北約所觀察到的,加拿大及其盟國應尋求促進、參與和建立合作機會,以支持開發和應用人工智能和其他EDT的廣泛、全面的架構(北約新興和顛覆性技術咨詢小組2020)。盡管面臨著艱巨的挑戰,全球治理在規范軍事人工智能方面可以發揮重要作用。盡管對人工智能及其武器化有不同的看法,但過去的談判可以作為未來條約的基礎,特別是在定義戰爭規則方面。這包括關于常規武器、核軍備控制、生物和化學武器、地雷、外層空間和平民保護的條約(見圖6)。
到目前為止,《聯合國特定常規武器公約》(CCW)已經監督了一個討論應對自主武器帶來的人道主義和國際安全挑戰的進程。已經提出了一系列監管致命性自主武器系統的潛在方案,包括《特定常規武器公約》下的一項國際條約,一個不具約束力的行為準則,宣布各國承諾負責任地開發和使用致命性自主武器系統。在聯合國之外,2013年發起了 "停止殺手機器人 "運動,目標是完全禁止致命性自主武器系統。
聯合國秘書長安東尼奧-古特雷斯強調了人工智能和其他數字技術的風險和機遇(聯合國2020),并呼吁禁止致命性自主武器系統(古特雷斯2021)。不幸的是,聯合國成員國,特別是聯合國安理會的觀點存在分歧,一些國家認為監管是民族國家的專屬權限,而另一些國家則側重于更多部門的做法。除了人工智能的武器化,在圍繞人權、算法偏見、監控(公共和私人)以及國家支持的或國家支持的網絡攻擊等問題上也存在廣泛的分歧。
對于世界上的主要軍事大國來說,缺乏互信仍然是追求人工智能集體軍備控制協議的一個重大障礙。即使相當多的國家支持提供新的具有法律約束力的條約,禁止開發和使用致命性自主武器,但世界上大多數主要軍事大國都認為人工智能的武器化具有重大價值。鑒于這些分歧,致命性自主武器系統的多邊管理將需要建立信任措施,作為打開政治僵局的軍控進程的手段。
走向平凡的監管 也許制定管理人工智能的政策和監管制度的最具挑戰性的方面是難以準確地確定這些制度應該監管什么。與生物和化學武器不同,人工智能大多是軟件。事實上,人工智能是一個移動的目標:40年前被定義為人工智能的東西,今天只是傳統的軟件。
人工智能是一個模糊的技術領域,影響著廣泛的商業和軍事應用。例如,機器學習算法是搜索引擎(算法排名)、軍用無人機(機器人技術和決策)和網絡安全軟件(算法優化)的成分。但它們也支撐著平凡的行業,甚至兒童玩具(語義分析、視覺分析和機器人技術)、金融軟件和社交媒體網絡(趨勢分析和預測分析)。
與屬于這些平凡的監管領域的產品和流程一樣,人工智能技術不是被設計成最終實體,而是被設計成在廣泛的產品、服務和系統中使用的成分或組件。例如,一個 "殺手機器人 "不是一種特定技術的結果。相反,它是人工智能 "成分 "重新組合的結果,其中許多成分也被用來檢測癌癥或增加駕駛者的安全。
雖然人們傾向于使用一個專門的不擴散鏡頭來監管人工智能,但雙重用途的挑戰仍然存在。與核擴散或轉基因病原體不同,人工智能不是一種特定的技術。相反,它更類似于一個材料或軟件成分的集合。與大多數二元的核不擴散鏡頭相比,可以在食品監管中找到更相關(盡管不那么令人興奮)的監管模式的靈感,特別是食品安全和材料標準(Araya和Nieto-Gómez 2020)。
鑒于對人工智能進行全面監管存在重大的概念和政治障礙,治理仍然是一項艱巨的挑戰。一方面,如果我們把人工智能理解為一系列復制人類活動的技術實踐,那么就根本沒有一個單一的領域可以監管。相反,人工智能的治理幾乎重疊了每一種使用計算來執行任務的產品或服務。另一方面,如果我們將人工智能理解為大幅改變人民和國家之間權力平衡的基礎,那么我們就會面臨重大挑戰。
幸運的是,這并不是民族國家第一次面臨影響全球安全的新技術。在第二次世界大戰之后,世界上最強大的國家--美國、英國、蘇聯、中國、法國、德國和日本--對核武器、化學制劑和生物戰的全球治理進行監督。當時和現在一樣,世界必須采取集體行動來治理人工智能。
與冷戰時期一樣,包括定期對話、科學合作和分享學術成果在內的建立信任措施可以幫助減少地緣政治的緊張。為管理軍事人工智能帶來的風險制定一個共同的詞匯,可以為隨著時間的推移制定更有力的人工智能多邊條約提供基礎。
在這方面,經濟合作與發展組織(OECD)已經公布了其關于人工智能的建議,作為一套政府間標準,于2020年2月啟動了人工智能政策觀察站。加拿大和法國政府還與經合組織一起領導了一個全球人工智能伙伴關系(GPAI),旨在成為一個人工智能政策的國際論壇。GPAI的成員專注于以 "人權、包容、多樣性、創新和經濟增長原則 "為基礎的負責任的人工智能發展。
除了GPAI,一些歐洲國家已經呼吁歐盟成員開始一個關于負責任地使用新技術的戰略進程--特別是人工智能。美國已經邀請盟國討論人工智能的道德使用問題(JAIC公共事務2020)。北約已經啟動了一個進程,鼓勵成員國就一系列道德原則和具有軍事用途的電子技術關鍵領域的國際軍備控制議程達成一致(Christie 2020;NATO 2020)。認識到EDT對全球安全的深遠影響,北約于2019年12月推出了EDT路線圖(北約科技組織2020)。
從整體上看,二十一世紀需要進行正式監管。從長遠來看,這很可能包括尋求與禁止生物武器、化學武器和殺傷人員地雷一樣的人工智能條約。然而,鑒于人工智能的創新速度和世界超級大國之間日益擴大的分歧,就人工智能的全球治理進行談判的機會之窗可能正在關閉。
圖6:人工智能的全球治理
即使在工業時代即將結束的時候,技術創新也在加速進行(Araya 2020)。自從大約80年前誕生以來,人工智能已經從一個神秘的學術領域發展成為社會和經濟轉型的強大驅動力。人工智能在戰爭中的整合被一些軍事分析家描述為一個不斷發展的 "戰場奇點"(Kania 2017)。在 "技術奇點"(Schulze-Makuch 2020)的概念基礎上,人們越來越多地猜測,人工智能和機器人將超越人類的能力,有效地應對算法驅動的戰爭。
人工智能和其他EDT的演變正在將先進的數據、算法和計算能力匯集起來,以 "認知 "軍事技術。在這種新環境下,現代軍隊正變得嚴重依賴提供安全、及時和準確數據的網絡。數據已經成為數字系統的 "作戰用氣 "和驅動 "智能機器 "的原料。隨著數據重要性的增加,在廣闊的數字領域的對抗性競爭也在增加。事實上,數據的真正價值在于其推動創新的數量和質量。
正如北約關于EDT的年度報告(北約新興和顛覆性技術咨詢小組2020)明確指出,要想跟上技術變革的步伐,就必須在技術的開發、實驗和應用方面保持靈活性和快速迭代。整個CAF的創新能力必須是一個更廣泛的創新生態系統的一部分,該系統有效地整合了公共和私人生態系統的研究和實施。這包括與加拿大工業界合作利用雙重用途的GPT的明確目標,以便利用已經存在的技術。
這種多領域的合作在歷史上被定義為國家創新體系(NSI)(OECD 1997)。事實上,NSI政策和規劃可以采取多種形式,從松散的協調到高度整合的伙伴關系。在美國(Atkinson 2020)、中國(Song 2013)和歐洲(Wirkierman, Ciarli and Savona 2018)應用的各種NSI規劃模式表明,在最大化政府-產業-研究伙伴關系方面可以找到大量的經濟和社會回報。政府應通過稅收優惠、采購和研究資金以及戰略規劃,努力建設加拿大的技術能力。但它不能單獨行動。
國家創新必然取決于機構參與者在一個共享的生態系統中進行合作。出于這個原因,一個協調的加拿大國家統計局將需要在推動長期創新的過程中,人們和機構之間的技術和信息的相互流動。鑒于EDT的許多創新是由工業界主導的,推進公私伙伴關系對加拿大軍隊的發展至關重要。對于國防部/加拿大空軍來說,要推進適合數字時代的軍隊,政府、工業界和學術界將需要以更綜合的方式進行合作。
建立一個強大的加拿大創新生態系統將意味著更廣泛的公私合作和持續的知識和資源的再培訓、培訓和孵化。盡管開發尖端人工智能需要人力資本投資,但大多數人工智能應用現在可以通過開源許可獲得,即使核心學習算法可以在公共平臺和整個學術生態系統中獲得。這種 "開放一切 "環境的影響是對封閉的等級制度和深思熟慮的官方機構的實質性挑戰。
政府程序和規劃將需要適應加速的創新生命周期,以配合EDT積極的淘汰周期。除了與網絡技術相關的巨大的不對稱安全風險外,向數據驅動型軍隊的轉變將需要大量關注數據安全和數據治理。與進行傳統的國家間沖突所需的大量成本和規劃不同,網絡攻擊的破壞性影響可以由僅有一臺個人電腦的小團體對關鍵基礎設施發動。鑒于未來不斷增加的挑戰,大型官僚機構(公司、政府、學術和軍事)的設計變化是不可避免的。
除了對新的和不同的知識、資源和專長的需求,加拿大政府和加拿大軍方將需要平衡硬實力和不斷變化的地緣政治格局的需求。在美國占主導地位的時代之外,二十一世紀正被一個以技術民族主義和后布雷頓森林體系為特征的多極體系所塑造。面對一個快速發展的數字時代,國際合作將是確保和平與安全的關鍵。信息共享、專家會議和多邊對話可以幫助世界各民族國家及其軍隊更好地了解彼此的能力和意圖。作為一個全球中等國家,加拿大可以成為推動這一努力的主要伙伴。
國際治理創新中心(CIGI)是一個獨立的、無黨派的智囊團,其經同行評議的研究和可信的分析影響著政策制定者的創新。其全球多學科研究人員網絡和戰略伙伴關系為數字時代提供政策解決方案,目標只有一個:改善各地人民的生活。CIGI總部設在加拿大滑鐵盧,得到了加拿大政府、安大略省政府和創始人吉姆-巴爾西利的支持。
機器學習是現代戰爭系統的關鍵組成部分。本文探討了人工智能的 7 個關鍵軍事應用。
機器學習已成為現代戰爭的重要組成部分,也是我(Nicholas Abell)作為陸軍退伍軍人和數據科學家的主要興趣點。與傳統系統相比,配備人工智能/機器學習的軍事系統能夠更有效地處理大量數據。此外,人工智能由于其固有的計算和決策能力,提高了作戰系統的自我控制、自我調節和自我驅動能力。
人工智能/機器學習幾乎被部署在所有軍事應用中,軍事研究機構增加研發資金有望進一步推動人工智能驅動系統在軍事領域的應用。
例如,美國國防部 (DoD) 的國防高級研究計劃局 (DARPA) 正在資助一種機器人潛艇系統的開發,該系統預計將用于從探測水下水雷到參與反潛行動的各種應用。此外,美國國防部在 2017 財年在人工智能、大數據和云計算方面的總體支出為 74 億美元。預計到 2025 年,軍事 ML 解決方案的市場規模將達到 190 億美元。
以下是機器學習將在未來幾年證明其重要性的七種主要軍事應用。
來自全球不同國家的國防軍隊正在將人工智能嵌入陸地、海軍、空中和太空平臺上使用的武器和其他系統中。
在基于這些平臺的系統中使用人工智能,可以開發出更少依賴人工輸入的高效作戰系統。它還增加了協同作用,提高了作戰系統的性能,同時需要更少的維護。人工智能還有望使自主和高速武器能夠進行協作攻擊。
軍事系統通常容易受到網絡攻擊,這可能導致機密軍事信息丟失和軍事系統損壞。然而,配備人工智能的系統可以自主保護網絡、計算機、程序和數據免受任何未經授權的訪問。
此外,支持人工智能的網絡安全系統可以記錄網絡攻擊的模式,并開發反擊工具來應對它們。
人工智能有望在軍事后勤和運輸中發揮關鍵作用。貨物、彈藥、武器和部隊的有效運輸是成功軍事行動的重要組成部分。
將人工智能與軍事運輸相結合可以降低運輸成本并減少人力工作負荷。它還使軍用艦隊能夠輕松檢測異常并快速預測組件故障。最近,美國陸軍與 IBM 合作,使用其 Watson 人工智能平臺來幫助預先識別 Stryker 戰車的維護問題。
正在開發人工智能技術以提高復雜戰斗環境中目標識別的準確性。這些技術使國防軍隊能夠通過分析報告、文檔、新聞提要和其他形式的非結構化信息來深入了解潛在的作戰領域。此外,目標識別系統中的人工智能提高了這些系統識別目標位置的能力。
支持人工智能的目標識別系統能力包括基于概率的敵人行為預測、天氣和環境條件匯總、潛在供應線瓶頸或漏洞的預測和標記、任務方法評估以及建議的緩解策略。機器學習還用于從獲得的數據中學習、跟蹤和發現目標。
例如,DARPA 的競爭環境中的目標識別和適應 (TRACE) 計劃使用機器學習技術在合成孔徑雷達 (SAR) 圖像的幫助下自動定位和識別目標。
在戰區,人工智能可以與機器人手術系統 (RSS) 和機器人地面平臺 (RGP) 集成,以提供遠程手術支持和疏散活動。美國尤其參與了 RSS、RGP 和其他各種用于戰場醫療保健的系統開發。在困難條件下,配備人工智能的系統可以挖掘士兵的病歷并協助進行復雜的診斷。
例如,IBM 的 Watson 研究團隊與美國退伍軍人管理局合作開發了一種稱為電子病歷分析器 (EMRA) 的臨床推理原型。這項初步技術旨在使用機器學習技術來處理患者的電子病歷,并自動識別和排列他們最嚴重的健康問題。
模擬與訓練是一個多學科領域,它將系統工程、軟件工程和計算機科學結合起來構建計算機模型,使士兵熟悉在軍事行動中部署的各種作戰系統。美國正在越來越多地投資于模擬和訓練應用。
美國海軍和陸軍都在進行戰爭分析,啟動了幾個傳感器模擬程序項目。美國海軍已經招募了 Leidos、SAIC、AECOM 和 Orbital ATK 等公司來支持他們的計劃,而美國陸軍的計劃得到了包括 SAIC、CACI、Torch Technologies 和 Millennium Engineering 在內的公司的支持。
威脅監控和態勢感知在很大程度上依賴于情報、監視和偵察 (ISR) 工作。ISR 行動用于獲取和處理信息以支持一系列軍事活動。
用于執行 ISR 任務的無人系統既可以遠程操作,也可以按照預先定義的路線發送。為這些系統配備人工智能有助于防御人員進行威脅監控,從而提高他們的態勢感知能力。
具有集成 AI 的無人駕駛飛行器 (UAV) - 也稱為無人機 - 可以巡邏邊境地區,識別潛在威脅,并將有關這些威脅的信息傳輸給響應團隊。因此,使用無人機可以加強軍事基地的安全,并提高軍事人員在戰斗中或偏遠地區的安全性和效率。
人工智能在軍事技術硬件和軟件的大規模采用,向我們展示了現代戰爭中令人難以置信和可怕的范式轉變。毫不奇怪,世界上最大的軍隊比其他任何事情都更加關注這項技術,而這場技術競賽的獲勝者可能會比美國在研制原子彈后擁有更多的全球影響力。 (作者:Nicholas Abell,美國陸軍退伍軍人)