本文介紹先進雷達波形發生器(ARWG)。ARWG 是軟件定義電子戰系統系列的一部分。它是在商用 AMD-Xilinx Gen3 射頻片上系統中以 ZCU208 評估板的形式實現的。它提供了一個靈活的平臺,用于生成用戶定義的雷達脈沖,具有脈沖內調制、近乎實時的自定義波形生成、脈沖到脈沖頻率靈活性、用戶定義的幅度、頻率和相位調制以及復合脈沖群生成等復雜功能。它包括多個用戶界面,包括串行命令行界面和基于 Python 的圖形用戶界面。ARWG 通過千兆以太網接口與支持的個人電腦 (PC) 相連,因此可以與駐留在 PC 中或跨網絡的強大應用程序進行交互。本文討論了 ARWG 的基本設計和主要功能,并展示了示例功能。
圖 軟件定義電子戰系統(SDEWFoS)參考架構
ARWG 是在 ZCU208 評估板外形尺寸的 Xilinx Gen3 RFSoC 上以裸機配置實現的。這包括 Zynq PS 中的高級精簡指令集計算機機 (ARM) Cortex A53 四核微處理器,以及可編程邏輯 (PL) 分區中的 XCZU48DR-2FSVG1517 Ultrascale+ 現場可編程門陣列 (FPGA)。這有助于實現強大的 SW-HW 代碼設計,在 PS 中使用靈活的 C 編程語言實現以控制為中心的容延流程,在 PL 中實現以數據為中心的低延遲組件。采用行業標準接口,包括高級可擴展接口(AXI)4 和賽靈思 SW 驅動程序。定制 SW 采用標準 C 語言編寫,包括應用程序和硬件抽象層 (HAL) 驅動程序,并盡可能遵循賽靈思嵌入式驅動程序的慣例。本設計的 PL 中使用的所有 IP 模塊都是定制設計的,采用高速集成電路硬件描述語言 (HDL/VHDL) 編寫,并使用寄存器傳輸層 (RTL) 設計方法;不過,未來的擴展可以輕松采用任何方法生成的 IP,例如 Vitis HLS 或 MathWorks HDL Coder。
主要設計組件如圖 3 所示。關鍵的信號發生組件是 “通道”,由四個發生器(頻率調制發生器 [FMGEN]、二進制相移鍵控發生器 [BPSKGEN]、自定義 1 和自定義 2)、信號選擇器和信號調制器(相位、振幅和噪聲)組成。最終確定的 ARWG 設計將包括四個通道;本中間設計只有一個通道。存儲器訪問組件包括散點采集直接存儲器訪問(SG-DMA)外設和定制信號發生器選擇器。RFDC 是 Xilinx Gen3 IP,可將數字信號轉換為射頻信號。四個定制數控振蕩器 (NCO) 控制器 IP 實例可在每個數模 (DAC) 磁瓦上獨立動態調整 RFDC 振蕩器載波頻率 (CF)。NCO 控制器具有低延遲特性,可在接到 SW 命令后不到 2 μs 的時間內調整 CF。最后,本設計還包括四個 Xilinx AXI 定時器;這些定時器可執行時間敏感型功能,如復雜脈沖生成和診斷功能。實際射頻輸出由 XM655 子卡5 提供,該子卡為下游射頻消耗提供 SMA 平衡-非平衡(平衡)射頻連接。完整的 ARWG Vivado IP 集成塊設計見附錄 A。
圖 4 ARWG 時鐘配置,包括 ZCU208 CLK104 外設、RFDC 采樣時鐘和 AXI 流時鐘
在飛速發展的人工智能(AI)領域,大型語言模型(LLM)在理解和生成自然語言方面展現出了前所未有的能力。然而,它們在專業領域的能力,尤其是在復雜和跨學科的系統工程領域的能力,仍然較少被探索。本文介紹了 SysEngBench,這是一個新穎的基準,專門用于在系統工程概念和應用的背景下評估大型語言模型。SysEngBench 將包含一整套源自核心系統工程流程的任務,包括需求分析、系統架構設計、風險管理和利益相關者溝通。SysEngBench 利用各種真實世界和合成生成的場景,旨在評估大型語言模型解釋復雜工程問題和生成創新解決方案的能力。
利用 SysEngBench 對大型語言模型進行的評估揭示了他們在系統工程背景下的現有能力和局限性。這些發現為今后的研究和開發提出了建議,旨在提高大型語言模型在系統工程學科中的實用性。SysEngBench 有助于理解人工智能對系統工程的潛在影響。
為 SysEngBench 選擇的框架是一個簡單的多選題基準。該基準目前涵蓋系統工程入門,但將擴展到未來工作中討論的系統工程子領域。
所使用的數據來源包括海軍研究生院 SE 3100 課程的幻燈片。該課程的教學大綱包括學習該課程后獲得的以下知識:
定義系統工程,包括其目的和范圍以及系統工程師的角色。
定義系統架構,包括其目的和范圍以及系統架構師的角色。
在系統的整個生命周期中恰當地應用系統工程流程的基本要素。
根據用戶需求和操作目標,提出、闡述和記錄系統要求;將其轉化為技術要求。
創建反映利益相關者目標的系統價值層次。
使用 IDEF0、FFBD 等建模工具和其他技術完成系統功能分析,以支持需求工程。
開發、評估和記錄備選系統架構。整個課程中的一項補充性共同努力將是獲得對國防部(DoD)系統工程應用的共同理解。
多選題是在一些人工智能輔助下創建的,但每道題都由人類系統工程師對半合成數據集的正確性進行審查。更復雜的問題將考察大型語言模型在系統工程的 "灰色 "范圍內進行推理的能力,特別是在有多種配置可以滿足要求的高維交易空間。
在過去幾年中,大型語言模型(LLM)的能力迅速提高,OpenAI 的 GPT-4 就是最突出的例子。本案例研究探討了 GPT-4 用于協助研究任務的兩種方式:數據分析和撰寫執行摘要。我們之所以選擇這些任務,是因為它們在國防分析研究所(IDA)的項目中很常見,而且經常被作為適合大型語言模型的任務提出。首先,使用 GPT-4 完成了數據清理、探索、建模和可視化等任務。將其質量和速度與人類完成相同任務進行了比較。發現單獨使用人工智能時,分析質量不夠高,但有了人類伙伴后,分析質量大大提高。使用 GPT-4 節省了約 60% 的數據分析任務時間,并為該領域節省大量成本提供了機會。然后,使用 GPT-4 為三份公開的 IDA 出版物生成了執行摘要(EXSUM),并將其與人工生成的執行摘要進行了比較。發現大型語言模型生成的內容提要往往無法為技術性較強的論文提供適當的背景,但考慮到其生成速度和詳盡程度,大型語言模型仍然提供了節省時間和成本的機會。
利用無人地面飛行器(UGV)進行自主導航和未知環境探索極具挑戰性。本報告研究了一種利用小尺寸、低重量、低功耗和低成本有效載荷的測繪和探索解決方案。本文介紹的平臺利用同步定位和繪圖功能,通過尋找可導航路線來有效探索未知區域。該解決方案利用多種傳感器有效載荷,包括輪子編碼器、三維激光雷達、紅-綠-藍相機和深度相機。這項工作的主要目標是利用 UGV 的路徑規劃和導航功能進行測繪和探索,從而生成精確的 3D 地圖。所提供的解決方案還利用了機器人操作系統。
傳感器信息推薦系統是一個概念驗證應用程序,用于測試強化學習算法在推薦軍事分析員當時可選擇的正確信息源方面的有效性。該系統有多種方式向用戶傳播數據并向推薦服務器提供反饋。本報告介紹了傳感器信息推薦系統,該系統由數據源、推薦服務器、戰術突擊工具包服務器和安卓團隊感知工具包實例組成。本報告介紹了在獨立環境中部署這些組件以進行測試和開發的步驟。
系統架構如圖 1 所示。推薦服務器從部署的傳感器接收數據,并通過 TAK 服務器將傳感器推薦的信息對象發送給 ATAK。
圖 1 傳感器信息推薦系統工作流程中的 TAK 服務器
本文通過機器學習方法提出了一種雷達任務選擇的主動方法,并將其設計在雷達調度流程之前,以提高雷達資源管理過程中的性能和效率。該方法由兩個過程組成:任務選擇過程和任務調度過程,其中任務選擇過程利用強化學習能力來探索和確定每個雷達任務的隱藏重要性。在雷達任務不堪重負的情況下(即雷達調度器超負荷工作),將主動選擇重要性較高的任務,直到任務執行的時間窗口被占滿,剩余的任務將被放棄。這樣就能保證保留潛在的最重要任務,從而有效減少后續調度過程中的總時間消耗,同時使任務調度的全局成本最小化。本文對所提出的方法進行了數值評估,并將任務丟棄率和調度成本分別與單獨使用最早開始時間(EST)、最早截止時間(ED)和隨機偏移開始時間EST(RSST-EST)調度算法進行了比較。結果表明,與EST、ED和RSST-EST相比,本科學報告中提出的方法分別將任務丟棄率降低了7.9%、6.9%和4.2%,還將調度成本降低了7.8倍(EST為7.8倍)、7.5倍(ED為7.5倍)和2.6倍(RSST-EST為2.6倍)。使用我們的計算環境,即使在超負荷的情況下,擬議方法所消耗的時間也小于 25 毫秒。因此,它被認為是提高雷達資源管理性能的一種高效實用的解決方案。
雷達資源管理(RRM)對于優化作為飛機、艦船和陸地平臺主要傳感器的現代相控陣雷達的性能至關重要。報告》討論了雷達資源管理,包括任務選擇和任務調度。該課題對國防科技(S&T)非常重要,因為它與現代相控陣雷達的大多數應用相關。它對當前的海軍雷達項目尤為重要,該項目探索了雷達波束控制的人工智能(AI)/機器學習(ML)方法。所提出的算法有可能升級未來的艦船雷達,從而做出更好的決策并提高性能。
本報告概述了我們在基于模型的自適應目標跟蹤以及識別來自電磁干擾(EMI)源的衛星欺騙和干擾攻擊方面所做的研究工作。我們假設可以利用不同電磁干擾源的射頻(RF)特征來識別和跟蹤主動和被動電磁干擾源。射頻信號被輸入一個基于模型的深度神經網絡(DNN),該網絡可對不同物體進行分類和跟蹤。
我們的初步結果表明,對于有源電磁干擾源,即使用不同調制方案發射射頻信號的源,使用 DNN 識別電磁干擾源射頻調制方案的準確性在很大程度上取決于射頻信號的質量,而射頻信號的質量又是信道的函數。特別是,如果信道是視距信道,且信噪比(SNR)較大,則調制類型的分類準確率很高(> 95%)。另一方面,如果信道參數未知和/或波動較大,信噪比較低,則分類準確率較低(< 60%)。調制類型識別的性能使我們得出結論,在現實世界中基于調制類型的目標跟蹤將非常困難。因此,這項研究的主要工作集中在使用有源雷達對無源信號源進行分類,并以人員計數系統為原型。
我們沒有使用模擬,而是在實驗室建立了一個小規模的測試環境來驗證假設。我們提出的人員計數系統使用多個發射天線,通過發送毫米波雷達啁啾掃描環境。物體反彈回來的信號由多個接收天線接收、處理并存儲到數字數據庫中。然后,我們對數字數據進行特征提取,并將特征輸入卷積神經網絡,以進行物體分類和跟蹤。在這些實驗中,我們將行走的人視為移動物體。我們的初步結果表明,在有限的環境中(如實驗室環境),卷積神經網絡可以利用射頻信號準確識別不同的物體(> 95%)。
圖 4. 從射頻信號中提取特征。特征/物體包含已識別物體的數量、其多普勒速度、其 x、y、z 位置和相對信噪比。
作者正在研究分布式雷達在穿墻感應中的應用。這項技術的預期操作場景是在建筑物外的(安全)遠程距離內探測和識別建筑物內的人員和武器裝備。本研究使用的雷達結構和信號處理算法類似于美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)實施的埋藏和隱蔽表面目標探測的設計;目前的雷達發射和接收頻率更高。
在這項研究中,實驗是在ARL的阿德爾菲實驗中心(ALC)507號樓("沙盒 "區域)進行的,使用的是室內低金屬兩層夾板結構。用來測試分布式雷達的受控環境與用來測試ARL針對電子目標的諧波雷達的低金屬環境相同。
圖1 步進頻率雷達收發器:(a)賽靈思的RFSoC與Alion/HII的雷達固件,以及(b)定制的發射器/接收器(Tx/Rx)濾波器和放大器PCB,由28VDC供電
本研究中收集的數據表明,在低矮的金屬建筑中,相互成直角的天線對能夠探測到多個移動目標,而這些目標從建筑外是看不到的。隨時間變化的距離圖顯示了目標所遵循的路徑;在一個頻道中跟蹤的目標路徑的模糊性可以通過在另一個頻道中跟蹤同一目標來緩解。仍需努力將同時收集的數據的IQ振幅一致地結合起來,以解決多個目標。一個目標是在二維(下行和上行)圖像上繪制目標位置,也許是以視頻動畫的形式疊加在場景的俯視圖上(即被成像的建筑物的典型平面圖)。在對移動目標進行成像時,發射器和接收器天線的雙穩態配對是否具有優勢(與標準的單穩態發射器天線配對相比)還有待確定。
各軍種和部門的指揮官總是盡其所能獲得信息并與他們的部隊共享,因為信息是戰爭經濟中的資本。隨著陸軍內部、聯合部隊和商業部門的技術不斷發展,一個清晰的網絡架構有利于與其他網絡的有效整合,避免通信工作的脫節。本專著通過組織、訓練和理論以及設備的角度研究了無線電在第一次世界大戰期間在美國陸軍中的實施情況,以評估美國陸軍如何整合一項新的信息技術。為了更好地理解無線電在第一次世界大戰期間和戰間時期的實施,本專著還借鑒了兩位理論家丹尼爾-卡尼曼和赫爾南多-德索托的作品。隨著信息技術在民用社會中越來越普遍,假定對民用系統的熟悉可以轉化為操作人員天生就懂得如何整合和操作軍事系統是很危險的。整個聯合部隊共享信息的速度越快,效率越高,軍隊在戰場上發揮所有資源的效率就越高。為了充分利用不斷發展的通信技術來實現高效的信息共享,美國國防部(DOD)應該實施并保持一個慎重的過程,使整個聯合部隊的網絡架構、政策和理論標準化,以指導操作人員的培訓并為系統開發提供依據。
本報告總結了迄今為止在路線偵察領域的本體開發的進展,重點是空間抽象。我們的重點是一個簡單的機器人,一個能夠感知并在其環境中導航的自主系統。該機器人的任務是路線偵察:通過觀察和推理,獲得有關條件、障礙物、關鍵地形特征和指定路線上的敵人的必要信息。路線偵察通常是由一個排的騎兵和非騎兵進行的。這項研究探討了機器人執行部分或全部必要任務的合理性,包括與指揮官進行溝通。
這是一項具有挑戰性的對抗性任務,即地形穿越加上信息收集和解釋。偵察的解釋方面需要考慮語義學--確定相關的信息和確定它如何相關(即有意義)。語義信息在本質上是定性的:例如,危險是一個定性的概念。為了將危險與某些特定的區域聯系起來,我們需要一種方法來指代該區域。這意味著至少能夠給空間的某些部分附上定性的標簽。
Kuipers在他的空間語義層次的早期工作中指出了空間的定性表示對機器人探索的重要性。例如,層次結構的拓撲層次包含了 "地方、路徑和區域的本體",歸納產生了對較低層次的因果模式的解釋。
最近,Izmirlioglu和Erdem為定性空間概念在機器人技術中的應用提供了以下理由:
對于負責路線偵察的無人地面車輛(UGV)來說,其架構中的不同模塊將消費和產生語義信息:負責語義感知和目標識別、計劃和執行、自然語言對話等的模塊,加上主要負責維護信息的語義世界模型。例如,在美國陸軍作戰能力發展司令部陸軍研究實驗室的自主架構中,語義/符號世界模型被用來 "實現符號目標(例如,去接近一個特定的物體)",*其中接近是一個語義概念。
一個關鍵問題是如何在世界模型和其他模塊之間分配維護和處理不同類型語義信息的責任。從語義世界模型的角度來看,這取決于有多少符號推理是合適的。例如,假設要接近的物體位于一個給定區域的某個位置,而不是靠近該區域的外部邊界。一旦機器人靠近物體,就可以推斷出機器人在物體的位置附近,而且也在同一區域內。如果有公制信息,就可以用幾何例程得出這個結論。在沒有公制信息的情況下,是否會出現在純粹的定性空間中推斷有用的情況?
本報告不涉及這個問題。我們的目標是確定什么應該被代表,而把如何代表和在哪里代表留給未來的工作。
以下片段取自FM7-92中對路線偵察的描述。空間表達是彩色的,周圍有一些文字作為背景。
路線偵察的結果是一份報告,以圖表的形式,并附有文字說明。FM7-92給出了一個例子,我們可以從中提取一些更必要的概念:
讓我們把這段關于路線偵察的描述中提到的概念建立一個綜合清單,重點放在空間概念上,并盡可能地保留軍事術語:
1)必須指定環境中的位置、路線、區域和感興趣的物體。稱這些為 "實體"。
2)這些實體之間的空間關系是相關的(例如,一個地點在另一個地點的北邊)。值得注意的是,不同類型的實體之間的關系是被指定的。
a. 物體(例如,障礙物)在位置或區域。
b. 一些地點在空間上與路線有關(例如,沿著路線,毗鄰,或靠近道路)。
c. 地點可能代表更大的區域(例如,雷區的位置)。
d. 道路和小徑可以與路線相關:它們可能相交、重疊(部分疊加),或平行運行。
a. 一些地點相對于其他地點或區域有方向性的定位(例如,一個防御性的位置)。
b. 有些區域是由其與另一個區域或地點的關系來定義的,這可能不是一種局部的關系(例如,觀察和火力場是由一個潛在的遠程位置來定義的,該位置有一條通往路線上的一個區域的線路)。
4)路線可能被障礙物阻擋,障礙物可能是明確的物體或更大的區域(例如,一個障礙物與一個雷區)。
6)有時,描述物理基礎設施(如道路、橋梁)及其屬性是很重要的。
路線偵查收集和解釋不同種類和不同來源的信息:
背景知識。這包括關于環境特征的類型和預期成為任務一部分的物體的信息,包括道路、障礙物、溝壑、橋梁等等。
任務規范。確定偵查的區域和路線,以及當時可獲得的任何信息。
環境。通過空間分析(包括幾何學、拓撲學等)、感知、地圖衛星數據的離線圖像處理和其他類型的分析,確定環境的相關特征。
任務執行期間的通信。我們假設指揮官或人類操作員在偵察過程中可以向UGV提出詢問或命令,提供新信息或集中注意力。
如前所述,一份報告。
原則上,所有這些信息都以某種抽象的形式組合在一個語義世界模型中。我們把環境的物理屬性和特征稱為 "實體"。把我們用來表示這些實體和它們之間關系的抽象概念稱為 "概念"。
不同類型的實體的概念。層次結構在語義表征中很常見,用來捕捉關于世界上遇到的實體類型的一般知識。一個類型就是一個概念,類型被組織在一個層次中:MRZR是一種輕型的、戰術性的、全地形的車輛,它是一種輪式地面車輛,它是一種地面車輛的類型,等等。屬性和關系可以與一個給定的概念相關聯,而下級概念則繼承這些屬性。在路線偵察中,如果有信息說某一地區有一條道路,但沒有更多的細節,仍然可以從道路的概念中推斷出它的預期屬性:它比它的寬度長得多;它在人們感興趣的地點之間通向;在其他條件相同的情況下,它可能比周圍的地形行駛得快。從實用的角度來看,這意味著如果有可能將某物歸類為一個已知的概念,那么語義世界模型就不需要記錄關于該物的每一條相關信息。
用于實體的目的和用途的概念。一個代表道路典型用途的概念可以進一步區分其長度和寬度的語義,這反過來又導致了跨越和沿途、穿越和跟隨等概念之間的區別。這將使UGV能夠以不同的方式對待 "偵察道路對面的區域 "和 "偵察前方的道路 "的命令。前方的道路也是一個語義概念:它取決于對過去去過的地方的了解。
代表部分信息的概念。有時可能會有定性的信息。想象一下,任務規范的一部分是關于雷區在計劃路線上存在的信息,但不知道具體位置,或者知道雷區的位置,但不知道其范圍。這種無知可以很容易地在代表實體的概念中得到體現。
新概念適用于新環境。另一個交流的例子可能是信息性的。想象一下,當一輛UGV穿越一條東西走向的道路時,它與遠程指揮官進行交流,指揮官問道:"道路北側是什么?"* 需要識別的物體可能不在道路和地形的邊界上(與 "建筑物的一側 "形成對比),而是在以道路邊緣為界的某個感興趣的區域內,距離UGV的位置向北不遠,向東和向西也有一些距離。這個區域可能沒有事先作為一個概念被劃定;相反,它是在當前的背景下構建或推斷出來的。這是一個有趣的例子,一個概念不是從公制數據中抽象出來的,而是被強加在公制數據上的。
背景中的概念的適應和組合。想象一下,對一張地圖的分析產生了對代表區域、道路等等的概念的分解。這些概念可能直接適用于某些目的。例如,與道路相聯系的概念在推理兩點之間的導航時是有用的。然而,在其他情況下,這些概念可能需要調整或與其他概念相結合。例如,如果一條道路被指定為 "危險區域",那么這個區域的概念可能會超出道路的邊界,延伸到周圍的地形。
網絡物理系統(CPS)由相互作用的計算和物理組件組成。該項目旨在開發創新的驗證技術以保證網絡物理系統的安全行為。混合系統[5]是一個富有表現力的數學模型,有助于描述涉及連續和離散狀態及其演變的復雜動態過程,這使得它們特別適合于為CPS建模。在這個項目中,我們專注于開發混合系統可達性分析的新技術,即自動探索給定動態系統的狀態空間并計算系統軌跡的包絡,給定其不確定參數的邊界的技術。為了減輕系統的復雜性,我們的目標是發展組合方法,即把系統分析分解為各部分的分析方法。考慮到這一總體目標,我們在這個項目中的活動可以大致分為以下幾個研究方向:
以線性微分方程為特征的系統的可達性方法。雖然現代線性代數軟件包對數萬維的矩陣是有效的,但基于集合的圖像計算卻僅限于幾百維。在[9]中,我們提出了分解到達集的計算,使集的操作在低維度上進行,而像指數化這樣的矩陣操作則在全維度上進行。我們的方法適用于密集型和離散型的設置。對于一組標準的基準,它顯示出與各自的最先進的工具相比,速度提高了兩個數量級,而在精度上只有少量的損失。對于密集時間的情況,我們展示了一個超過10,000個變量的實驗,大約比以前的方法高兩個數量級。這些算法為JuliaReach[10]奠定了基礎,JuliaReach是一個用于基于集合的動態系統可達性分析的工具箱。JuliaReach由兩個主要包組成。Reachability,包含連續和混合系統的可達性算法的實現,以及LazySets,一個獨立的庫,實現最先進的凸集計算算法。該庫同時提供了具體的和懶惰的集合表示,后者代表了將集合計算延遲到需要時才進行的能力。我們擴展了[8]中的這些結果,增加了對任意大小分區和任意低維集合表示的支持。在一個相關的工作中[11],我們沿著復雜度的不同維度擴展了這些結果,即提出了一種有效處理混合系統離散轉換的組合方式。
偽造方法。混合系統的證偽是與驗證相對應的,目的是找到違反給定安全屬性的軌跡。這是一個具有挑戰性的問題,目前偽造算法的實際適用性仍然受制于其高時間復雜性。在[13]中,我們試圖利用我們已經開發的可達性算法的力量來提高偽造技術的可擴展性。特別是,我們從現有的偽造問題的編碼作為一個非線性優化問題開始[25],并提出了一個擴展,通過增加用可達性算法獲得的線性狀態約束來減少優化問題的搜索空間。我們在一些標準的混合系統基準上展示了我們方法的效率,證明了在速度和可偽造實例數量上的性能提升。在[12]中,我們通過將非線性優化問題分解為兩個更簡單的優化問題,并以交替的方式解決它們來增強這種算法。
并行方法。如上所述,可達性分析技術是目前驗證網絡物理系統安全屬性的最先進技術的核心。在這個主旨中,我們研究了如何利用現代CPU中強大的并行多核架構來擴展此類技術。在文獻[18]中,我們首次提出了一套并行狀態空間探索算法,利用多核CPU,能夠對CPS的線性連續和混合自動機模型進行可達性分析,從而解決了這一限制。為了證明在多核處理器上實現的性能加速,我們在幾個基準上對所提出的并行算法進行了實證評估,比較其關鍵性能指標。
庫普曼算子理論。非線性動力系統的可達性分析是一項具有挑戰性和計算成本的任務。同時,如上所述,計算線性系統的可達狀態,通常可以在高維度上有效地完成。在[6]中,我們探討了利用這兩類系統之間的聯系的驗證方法,該方法基于Koopman算子的概念[23]。Koopman算子將非線性系統的行為與嵌入高維空間的線性系統聯系在一起,并增加了一組所謂的可觀察變量。盡管新的動態系統有線性微分方程,但初始狀態集是用非線性約束條件定義的。由于這個原因,現有的線性系統可達性方法不能直接使用。我們提出了第一個可達性算法,以處理這種未曾探索過的可達性問題的類型。我們的評估考察了幾種優化方法,并表明所提出的工作流程是驗證非線性系統行為的一個很有前途的途徑。
可達性分析的混合方法。這些方法[7]通過用較簡單的動力學(如常數或仿生動力學)來近似非線性動力學。這一步使我們有可能利用現有的線性動力學混合系統的算法的力量。在[20]中,我們提出了基于動力學比例模型轉換的混合方法的改進。該轉換旨在減少線性化域的大小,從而減少超近似誤差。我們在一些非線性基準實例上展示了我們方法的效率。
在線驗證。在這個研究方向中,我們的目標是將可達性分析應用于在線環境中。換句話說,我們考慮的環境是,可達性分析所提供的信息被實時用于指導自主系統的控制算法。這反過來又對可達性分析的性能效率提出了特別嚴格的時間限制。在[14]中,我們提出了一種方法,利用深度神經網絡在有限的時間內對可達集進行保守的近似。我們提供了基于統計模型檢查方法的概率性保證。該方法被評估為自主車輛在模擬環境中幾個動作的彈性安全架構的一部分。我們的評估表明,可達性分析可以在幾分之一秒內完成,并且比傳統的非線性可達性工具要好兩個數量級。我們還提出了另一種方法[1],通過將障礙證書[22]的計算泛化到動態變化的初始條件,以及在運行時使用生成的安全集來對抗先前未知的、可能與時間有關的不安全集,從而有效地進行實時可達性分析。這些方法得到了[15]的補充,在那里我們探討了如何將可達性分析作為模型預測控制[17]的一部分來支持動態避障。
通過驗證進行規劃。在我們的早期工作[16]中,我們通過提供從PDDL+(一種描述規劃領域的形式主義)到混合系統的轉換方案,在彌合混合自動機的規劃和驗證領域之間的差距方面邁出了第一步。這使得模型檢驗工具能夠在混合規劃領域得到應用。通過這種方式,我們可以解決最先進規劃器范圍之外的PDDL+領域。在這個項目中,我們將[19]中的這些想法改編為時態規劃,并將我們的方法納入到細化循環中。我們還提出了一個基于抽象的放松[21],用于推理線性數字規劃問題。
混合系統的Event-B。在這個研究方向上,我們考慮了Event-B[2]和混合系統之間的協同作用。我們在這一領域的成果包括開發了一個通用的混合鐵路信號系統模型[3],該模型可以進一步完善,以捕捉特定的鐵路信號系統。另外,在[4]中,我們提出了一種網絡物理系統的多元開發方法,該方法建立在基于細化和證明的建模語言Event-B及其對混合系統建模的擴展。為了提高該方法中所產生的Event-B模型的低演繹驗證自動化程度,這項工作描述了一種在證明過程中整合可達性分析的新方法。此外,為了提供更全面的網絡物理系統開發和基于仿真的驗證,我們描述了將網絡物理系統Event-B模型轉化為Simulink的機制。
隨機常微分方程(RODEs)。顧名思義,這些是在其向量場函數中包含隨機過程的常微分方程(ODEs)。它們已經在廣泛的應用中使用了很多年,但一直是隨機微分方程(SDEs)的影子存在,盡管能夠對更廣泛的、通常在物理上更充分的干擾進行建模。在[24]中,我們研究了包含維納過程的RODEs在有限時間跨度和無限時間跨度上的安全驗證問題。更詳細地說,我們研究了p-安全問題,其中我們確定了滿足安全規范的概率至少為p的初始狀態集。基于確定概率測量大于p的樣本路徑集,我們提出了一種將ODEs的隨機可達性減少為對抗性可達性的方法,以解決有限時間范圍內的p-安全問題。這種方法允許將擾動的ODEs的可達性計算方法有效地提升到RODEs。在這個方法中,有限時間范圍內的p-安全問題被簡化為具有時間變化的擾動輸入的ODEs的內部逼近魯棒的后向可達集問題。然后,我們將該方法擴展到無限時間跨度的p-安全問題。最后,我們在幾個例子上演示了我們的方法。