亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

1.0 評估建模和仿真的使用風險

1.1 背景

建模和仿真被開發和用作支持系統分析、設計、測試和評估、采集、培訓和指導以及更多領域的支持技術。如今,各種各樣的建模和仿真 (M&S) 工具正在更廣泛的不同應用和問題領域中使用。 M&S 通常在實際系統無法滿足用戶需求(例如,風險、可用性)或在其他方面比實際系統更有效(例如,成本、有效性)時應用。但是,本質上,所有 M&S 工具都提供了一些基于不同類型近似的系統(例如實體、現象、過程)的抽象表示。因此,M&S 功能不能完全取代實際系統,更重要的是,它們的使用會帶來不確定性。

M&S 的驗證和確認 (V&V) 是專注于在整個生命周期內評估 M&S 系統和軟件工程過程領域。實施 V&V 是為了提供必要的證據,以獲取有關 M&S 假設、能力和與可接受性標準相關限制的知識。 V&V 不僅利用系統工程和軟件工程,還利用信息科學、認知和行為科學以及其他相關學科。

北約 (NATO) 建模和仿真小組 (MSG) 進行了一系列努力,包括 MSG-054,它為 M&S 的有效 V&V 制定了標準和指導文件。 MSG-054 的努力得到了電氣和電子工程師協會 (IEEE) 標準 1516.4?-2007 聯盟的驗證、確認和認可[5]。除了建立 IEEE 標準外,MSG-054 還開發了 V&V 復合模型,從中選擇 V&V 方法和技術,以匹配 V&V 工作的風險和資源限制,同時遵守相關政策、標準和指導 [6]。V&V 復合模型是可能的活動和環境的超集。

MSG-073 實現了驗證和確認的通用方法 (GM-VV) 的標準化,如圖 1 所示,它提供了一個通用框架來有效地開發一個論據,以證明接受和使用已識別的模型、仿真、基礎數據、結果、和目標(預期)操作環境中的能力。 GM-VV 成功完成了仿真互操作性標準辦公室 (SISO) 標準化流程,以提供完全接受的驗證、確認和認可 (VV&A) 指導文件 [3]。 GM-VV 的目的是為 V&V 提供一般適用的指導:

? 促進 M&S 界內對 V&V 的共同理解和交流;

? 適用于 M&S 生命周期的任何階段(例如,開發、使用和再利用);

? M&S利益相關者的接受決策過程導向;

? 由 M&S 利益相關者的需求和 M&S 使用風險承受能力驅動;

? 可擴展以適應任何 M&S 范圍、預算、資源和使用風險閾值;

? 適用于多種M&S 技術和應用領域;

? 將產生可追溯、可重復和透明的基于證據的接受論點;

? 可以在企業、項目或技術級別進行實例化;

? 促進 V&V 結果、工具和技術的重用和互操作性。

圖1: GM-VV參考框架

在這些先前的努力中,M&S 使用風險得到了認可,實際上是指南和標準中記錄的建議的驅動因素。盡管 M&S 界就該主題的重要性達成了共識,但沒有公認的方法可用于 M&S 使用風險的限定或量化,以說明項目特定的 M&S 要求和約束。此外,M&S 工具及其開發過程的復雜性日益增加,從而導致包括 M&S 使用風險在內的一系列風險。 M&S 使用風險與 M&S 結果的不當應用及此類應用對決策者的后果有關。

風險管理依賴于評估風險的影響(一旦實現)、定義減輕風險的方法以及評估減輕風險的成本。有效的風險管理需要識別風險和平衡額外投資以減輕風險的方法。這種評估是基于對風險實現的可能性和實現的影響的評估。識別和評估風險后,可以制定緩解策略。評估 M&S 使用風險的方法可用于確定開發目標的優先級、準備和響應資源可用性的變化,以及定制 V&V 活動。

1.2 MSG-139 目標、任務和成果

2014 年 9 月,北約合作支持辦公室 (CSO) 批準組建 MSG-139,建模和仿真 (M&S) 使用風險識別和管理。該任務組的主要目標是為 M&S 使用風險識別和分析,定義和部署具有相關方法和技術的通用方法。一套互補的、最先進的M&S使用風險識別、分析和緩解方法,通過以下方式促進未來北約和國家M&S項目的質量、可信度和效用保證:

? M&S使用風險識別的通用方法和指南;

? 對M&S使用風險問題和解決方案有共同的理解和知識;

? 一套M&S使用風險分析的方法和技術;

? 基于M&S使用風險而不是成本的替代方法和相關指導方針;

? M&S使用與M&S技術和系統生命周期范例無關的風險識別和分析解決方案。

報告結構

本文件報告了MSG-139在滿足上述目標方面的努力結果。具體來說,在第一章中,定義了問題,選擇和應用M&S使用風險方法論(MURM)的基本原理,并介紹了該方法的簡短歷史和概述。第二章從語義定義出發,推導了M&S使用風險方程,并給出了該方程的解,該方程在應用空間中以一個三維曲面表示。相關的數學證明和細節見附錄1和附錄2。第三章介紹了一個MURM的實現,并為從業者提供了建議和指導。在第4章中,一個基于實際應用的用例被提出,說明了在逐項需求的基礎上評估風險狀態的方法的有效性,同時也演示了為M&S的特定預期用途(SIU)降低風險的方法。

圖 2:建模和仿真使用風險方法論(MURM)建立在現有概念的基礎上

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

在作戰系統的框架,指揮和控制系統(C2)允許指揮官及其團隊在接近實時的管理:(i)電子系統,(2)傳感器,(3)電子戰(iv)效應器,為了生成態勢感知(SA)和確保戰術控制區域。

人工智能(AI)并不是什么新事物,但最近深度學習(Deep Learning)方面的進展已經引發了該領域的極大興奮。研究目標是開發基于人工智能和候選解決方案的新方法,以減少信息過載,提高態勢感知和支持決策過程。為了實現這一目標,重要的是在使用人工智能識別約束和目標,確定角色和人工智能更適合的問題,定義流程和開發實驗所需的工具,為績效評價定義度量,和描述適用的驗證和確認過程。

因此,必須開始進行分析和試驗,以核實所有有關問題都從操作、技術和工業的角度得到適當處理。其中一些分析/實驗必然需要終端用戶的支持,因為任何解決方案如果不符合用戶的概念和期望,就注定會失敗。此外,這些創新方法強烈依賴于真實數據的可用性,這對AI算法的適當訓練至關重要。

付費5元查看完整內容

該項目支持美國陸軍戰爭學院保持一個公認的領導者,并在與美國陸軍和全球陸軍應用有關的戰略問題上創造寶貴的思想。該項目于2018年由美國陸軍訓練與理論司令部總部要求,描述一個新的或修改過的作戰框架,以使陸軍部隊和聯合部隊在多域作戰(MDO)中對同行競爭者成功實現可視化和任務指揮。

由此主要形成一個在2019學年進行的學生綜合研究項目,該項目涉及4名美國陸軍戰爭學院學生和4名教員,由John A. Bonin博士領導。該項目研究了MDO的概念,即它如何影響任務指揮的理念和指揮與控制職能的執行。向MDO的過渡改變了陸軍指揮官和參謀人員在競爭連續體中進行物理環境作戰和信息環境作戰的傳統觀點。

該項目以第一次世界大戰期間美國陸軍引進飛機為案例,研究將新領域納入軍隊的挑戰。該項目還提供了對MDO的概述和分析,以及它正在改變我們的戰斗方式以及軍隊的角色和責任。這些變化將使聯合部隊能夠更有效地進行連續作戰,特別是在武裝沖突之下的競爭中。

向MDO的過渡將需要新的流程,該項目調查了多領域同步周期如何能帶來好處。物質系統、聯合專業軍事教育、聯合和陸軍理論以及總部人員結構將需要改變,因為領導人及其工作人員將需要不同的技能來在這個新環境中運作。

報告總結

陸軍新興的多域作戰(MDO)概念對最近修訂的陸軍任務指揮理論提出了新的挑戰。美國已經有75年沒有與同行競爭者作戰了;因此,個別軍種在概念上側重于打自己的對稱領域戰爭,而較少注意在其他領域支持其他軍種。隨著技術的變化和國防預算的縮減,各軍種正在迅速失去通過純粹的存在和數量來控制其領域的能力和實力。因此,各軍種需要從不同領域獲得不對稱的優勢,以便在其領域作戰中取得成功。

陸軍的指揮和控制方法是任務指揮。這種方法要求指揮官有能力理解、可視化、溝通和評估關鍵決策、風險以及關鍵情報和信息要求。多域作戰的任務指揮將要求指揮官在多個領域以及指揮梯隊之間和內部保持單領域的卓越和知識。同樣重要的是,指揮官必須創造、確保并維持對其自身決策過程的共同認識。風險分析和關鍵的情報和信息需求過程是必要的,以確保指揮官能夠設定條件,賦予下屬領導權力,并在多個領域的范圍內影響分布式行動。因此,為了滿足這些新的要求,需要有新的框架來理解和調整多領域的指揮關系和人員結構。

這些新的框架將需要一個多領域的同步化進程,為指揮官提供一個確定新需求并為其提供資源的方法。與使用軍事決策程序或聯合規劃程序的傳統作戰程序不同,這兩種程序都側重于單一領域的規劃,而多領域同步程序則是在整個規劃和執行周期中,從指揮官和參謀部之間的持續合作中演變而來,跨越所有領域和環境。這種演變創造了對關鍵決策、相關風險以及指揮官認為至關重要的關鍵情報和信息要求的共同理解。

這項研究支持美國陸軍戰爭學院繼續保持在創造與陸軍和全球陸軍應用相關戰略問題寶貴思想方面的公認領導地位。該研究考察了MDO概念的應用,即它如何影響任務指揮的理念以及指揮和控制功能的執行。第一次世界大戰期間飛機的引入提供了一個與當前情況相似的背景,因為1918年的陸軍在如何為大規模的地面行動提供最佳的指揮和控制,以對抗同行的對手,以及如何整合空中對陸地的支持。當陸軍試圖了解如何在多個領域進行整合時,從約翰-J-潘興將軍對飛機的整合中得到的啟示可以說明問題。威廉-米切爾在戰時和戰后的角色說明了我們在試圖執行MDO時可能面臨的一些挑戰,例如在未來大規模地面作戰行動中保衛網絡和空間領域

對MDO的概述和分析將提供陸軍對該概念的定義,并描述陸軍在競爭連續體中的作用。MDO概念將需要新的組織和人員框架來在沖突連續體的所有方面實施MDO。陸軍不能保持一個靜態的組織;陸軍必須既能在陸地領域贏得武裝戰斗,又能幫助塑造競爭以防止未來的沖突。

武裝沖突以下的行動歷來都是聯合部隊和陸軍的斗爭。陸軍在戰斗中指揮和控制的任務指揮方法將不足以組織在武裝沖突以下對對手的日常競爭。陸軍在競爭期間為聯合部隊執行重要的任務,特別是在信息環境中,這些任務在MDO下將會擴大。

目前的作戰流程專注于單一領域,對于支持特定領域以外的功能適用性有限。我們必須有新的流程,允許所有領域的資產同步,以優化我們的效率,同時將這些資產的風險降到最低。盡管適用于所有級別的指揮部,但擬議的流程主要集中在高級行動和戰略層面所需的規劃和數據收集。

從單一領域到多領域的重點變化,使得聯合部隊和陸軍的理論必須進行修訂和更新。聯合專業軍事教育課程和聯合學說將需要進行調整,以教導下一代領導人如何跨域整合。僅僅了解其他部門是不夠的;指揮官和參謀人員需要了解其他領域的能力如何支持他們的工作,以及他們在支持其他領域方面的要求是什么。長期以來,聯合部隊只是名義上的聯合,每個領域都在為贏得自己的戰斗而戰斗。MDO概念使聯合部隊能夠優化其有限的資源,既能應對危機,又能在最好的情況下防止競爭中的危機發生。

表3-1. 陸戰、空戰、海戰和信息戰的特點

圖3-3. 陸軍的指揮與控制方法。ADP 6-0

圖3-4. 多域作戰框架

圖3-5. 信息環境框架下的多域作戰

付費5元查看完整內容

在加拿大國防研究與發展部(DRDC)05da聯合情報收集和分析能力(JICAC)項目下,本科學報告提出了創新貢獻,為作戰提供先進的情報收集任務支持,作為情報需求管理和收集管理(IRM/CM)能力的一部分。它報告了新型收集任務優化工具的設計,旨在支持收集管理人員處理復雜任務和支持收集資產設施。它總結了新的研究和開發情報收集概念和自動決策支持/規劃能力,以支持/建議收集經理有效和高效的資源分配。以多衛星收集調度用例問題為重點,簡要報告了導致快速、自動和優化收集任務的新技術解決方案概念,提供服務水平的改善和增強及時的態勢感知。從人工智能和運籌學中借用的基本概念,目的是在各種任務、機會、資源能力、時間和成本約束下實現收集價值最大化。報告總結了技術成果,描述了新的快速、自動和優化的收集任務解決方案和原型推薦器,以安排真實/虛擬的多衛星星座。它應對了一些缺陷和挑戰,如短視(以單一任務為重點)或臨時性的情報收集任務分配方法,不適合集中式/分布式的開放和閉環資源管理方法或框架,以確保靜態/動態規劃或處理約束的多樣性/差異性和不確定性管理。本報告還旨在向加拿大軍隊情報指揮部(CFINTCOM)、空間總督(DG SPACE)、加拿大聯合行動指揮部(CJOC)和主要的軍事聯合情報、監視和偵察(JISR)利益相關者提供信息。

對國防和安全的意義

本科學報告提出了適用于天基情報、監視和偵察的多衛星情報收集調度問題的新型收集任務技術概念和技術發現。這項工作與雷達衛星星座任務(RCM)項目的后續舉措和加拿大軍隊(CF)在北極和北方的持久性聯合情報、監視和偵察方面的一些優先事項相吻合,以便及時提出增強情報收集任務的解決方案和工具。它提出了新的科學和技術方法,為低密度、高需求的可部署收集資產提供近乎最佳的情報收集。

1. 引言

針對適當的情報、監視和偵察(ISR)應用領域的具有成本效益的天基情報收集任務,對發展適當的國防情報需求管理和收集管理(IRM/CM)能力至關重要。因此,收集管理,特別是收集任務分配,對于保持加拿大領土、空中和海上領域的準確、及時和持久的態勢感知至關重要。典型的收集管理要求包括在資源有限的情況下進行適應性和響應性收集(CFINTCOM);收集任務分配;規劃執行;傳感器組合優化;支持聯合ISR(JISR)資產的動態執行新任務(CJOC);實時收集規劃以及有效的傳感器提示(DG SPACE),等等。最終的目的是有效地彌補信息需求和信息收集之間的差距,最佳的資源管理主要是由人員短缺、有限的收集任務自動化、成本效益、資源限制和低密度高需求的收集資產(衛星)在一個時間限制的不確定環境中的發展。通過多衛星收集調度問題(m-SatCSP)開展北極情報和監視的基于空間的圖像情報(IMINT),代表了一個典型的相關使用案例。

為處理情報收集任務的缺陷和挑戰而提出的解決方案[1]有很多。最近關于收集任務,特別是多衛星圖像采集調度的公開文獻,在 "多異質衛星任務的收集規劃和調度:調查、優化問題和數學規劃公式"[2]和 "QUEST--多衛星調度問題的新二次決策模型,計算機與運籌學"[3]。以下是對擬議方法的主要局限性的簡要總結。讀者可以參考后面的出版物[2],[3]以了解更明確的細節。基于低密度高需求的集合資產為前提,一般的問題在計算上是困難的。大多數研究貢獻主要限于同質衛星和單一星座情景,主要處理簡單的觀測點目標("點 "區域)任務,并提出新的任務聚類和預處理策略以減輕計算復雜性。已呈現的工作大多忽略了大面積覆蓋的復雜性、及復雜的任務結構、聯合價值任務構成、觀測結果和成像機會質量的不確定性以及常見的操作約束。這些制約因素包括最小任務覆蓋閾值、相互任務排斥、任務優先級和成像成本。目前的采集資產任務分配方案大多提供基于短視啟發式的策略,以規劃或分配采集器任務。在實踐中,最好的資源往往是短視推薦或局部選擇,以完成一個特定的任務,而忽略了其他約束條件(例如,為其他采集請求服務的時間窗口和成像機會)、追求的全局目標和持續進行的部分規劃解決方案質量。因此,ISR資源分配和動態重新分配是臨時性的,因為它們是以單一任務為中心的,而不是采用更全面的任務觀,關注整體任務,更好地利用替代機會,更有效地滿足整體收集要求。擬議的基本收集任務的部分解決方案沒有提供一個健全的資源管理框架,以確保適應性動態規劃或處理約束的多重性/多樣性和不確定性管理。它們也未能展示有價值的分布式規劃和融合的協同作用或整合,同時對支持可重構的傳感器網絡提出很少的指導。一方面,減少感知或高級信息融合與資源分配(RA)任務之間的差距,另一方面,規劃(任務分配)和執行(收集)監測之間的差距,仍然難以實現。

這項工作提出了新的研究和發展情報收集概念和自動決策支持/規劃能力,以支持/建議收集人員有效和高效的資源分配。它旨在開發自動咨詢調度組件和概念驗證原型,以實現有效的收集任務分配。以多衛星圖像采集(IMINT)調度為重點,介紹了導致快速、自動和優化采集任務的新技術解決方案概念,改善提供的服務水平,并增強及時的態勢感知。所設想的問題包括許多新的附加功能和完善的元素,這些元素在公開的文獻中主要是被忽視或忽略的。假設在低密度、高需求的收集資產條件下的m-SatCSP,新的特征包括收集資產的多樣性和敏捷性、任務抽象化、更多的包容性目標和更多的約束多樣性。重新審視的表述涉及抽象的情報收集任務,將單一目標區域(點)的重點明確地包括在大面積覆蓋范圍內,同時考慮多個或虛擬的異質衛星星座,脫離了傳統的同質情景。新的空間和時間依賴性,反映更現實的任務復雜性,放松相互獨立和可分離的假設。它抓住了成像質量、部分任務執行和成功概率等概念,擺脫了對有序行動執行或確定性結果的不現實的假設。該方法還重新審視了任務優先級利用的概念。因此,優先權被用作沖突解決機制,而不是基于優先權的有偏見的短視策略,強加任意的任務部分排序來管理高復雜性需求。設想的問題目標是要捕捉到超越通常區域覆蓋范圍特定任務的性能措施,引入收集質量,考慮到探測成功率、跟蹤質量和識別的不確定性,以提高收集的信息價值。基于最近提出的一個問題陳述,即m-SatCSP的背景[3],將情報請求映射到收集資產成像機會,以實現收集價值最大化,這項工作簡要地擴展了標準確定性問題決策模型,使用常規的混合整數二次規劃優化問題表述[5]。針對基于空間的ISR應用領域,新的優化模型降低了計算復雜性,使得在某些情況下利用精確的問題解決方法成為可能,同時提供了對最優解的約束。在公開文獻中大量報道的傳統特征約束的基礎上,推廣的模型引入了額外的規范,如合適的任務覆蓋閾值、可選的任務互斥、任務優先級、聯合值任務組成、成像/服務時間窗口,以及單個和平均軌道的熱約束。報告了在集中式和分布式決策背景下各種靜態和動態情景下的主要貢獻和創新之處。簡要介紹了為支持收集任務而明確開發的創新模型、求解器和概念驗證原型(推薦器)。

本科學報告總結了技術成果,描述了新的快速、自動和優化的收集任務(改善服務水平,增強態勢感知)解決方案和原型推薦器,為規劃多衛星真實/虛擬星座。它還旨在向CFINTCOM、DG SPACE和CJOC軍事組織通報主要發現,并確定最有希望的收集管理性能要求、技術和工具,容易對正在進行的主要軍事舉措產生潛在影響。這項工作是在2015年12月至2020年3月的DRDC聯合部隊發展(JFD)05da聯合情報收集和分析能力(JICAC)項目下進行的。

本報告概述如下。第2節簡要介紹了m-SatCSP問題陳述。它描述了問題的基本特征,并強調了開環和閉環設定以及集中式和分布式的決策背景。第3節和第4節分別總結了各自的開環(靜態)和閉環(動態)建議的貢獻。簡要介紹和討論了所開發的概念、模型特征、算法或求解器以及主要結果。第5節介紹了在JICAC下明確開發的概念驗證集合任務原型,以檢驗靜態/動態問題。第6節總結了核心貢獻、發現及其潛在影響。最后,在第7節中提出了建議。提出了一些進一步的技術解決方案開發和未來工作擴展的方向。

付費5元查看完整內容

引言

本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:

? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;

? 在 RTG 的北約成員國之間共享風險評估方法和結果;

? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。

軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。

北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。

本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。

圖一:網絡安全評估過程的五個主要步驟。

報告結構

第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。

執行總結

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。

絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。

付費5元查看完整內容

NATO Data Exploitation Programme

北約數據開發計劃旨在有效利用數據,開發保持北約軍事和技術優勢所需的技能、人力、敏捷流程、工具、服務和技術。

目標

  • 實現認知優勢(以及信息優勢和數據支持決策)
  • 在 IT 和熟練勞動力的支持下保持軍事和技術優勢
  • 單一邏輯 CIS 環境,促進聯盟范圍內的數據管理方法
  • 可信信息共享文化、數據治理、企業范圍的數據可用性
  • 積極利用數據基礎設施和資源來支持各級決策
  • 數據素養和批判性思維被認為是整個聯盟的核心要求
  • 越來越多的數據專業人員擁有有效利用的手段數據

實施計劃

  • 數據開發計劃實施規劃將于 2022 年初到期
  • 與數據利用框架戰略計劃(2022 年)密切相關
  • 聯盟范圍內的參與、協調與協作(北約企業和國家)
  • 有效交付需要立即實施行動

付費5元查看完整內容

摘要

有效的項目管理有賴于對風險的細致和精確的量化。根據Kaplan和Garrick(1981)的說法,風險是概率和影響。然而,影響往往是多維的,包括進度維度、安全維度、財務維度或技術維度等。本文打算介紹利用統計科學將多個風險維度合并為一個數值。在美國國家航空航天局(NASA)的許多項目中都使用了一種叫做MRISK的多維風險工具來評估和確定風險和緩解措施的優先次序。此外,本文將總結北約盟軍司令部轉型(ACT)目前的風險管理準則,并將告知北約ACT在風險評估和管理方面可以從統計科學中獲益的潛在方式。

MRISK工具是由博思艾倫咨詢公司在NASA蘭利研究中心開發的。我曾作為MRISK的開發者,通過這篇論文,我旨在提高對定量風險評估的認識,并介紹其在北約ACT的潛在應用。博思艾倫咨詢公司撰寫的MRISK原始論文是美國國家航空航天局的專利,并存放在美國國家航空航天局科學和技術信息(STI)庫中。本文所表達的觀點僅代表我個人,不代表我以前或現在的雇主的觀點或意見。

引言

所有的項目,無論其組織、復雜性、時間框架或目標如何,都會有風險。項目管理協會將風險定義為 "一個不確定的事件或條件,如果它發生,會對一個或多個目標產生積極或消極影響"。一個積極的風險被認為是一個機會,而一個消極的風險被認為是一個威脅。大多數情況下,風險管理意味著威脅管理。鑒于,不可能避免項目威脅,有效的項目管理必須包括成功管理它的方法。特別是考慮到減輕風險的缺陷最終會給聯盟帶來大量的資金,以及戰爭能力發展和進展的潛在滯后,它被證明是項目管理的一個重要組成部分。

風險管理包括風險識別、風險評估和風險應對。風險評估階段的目標是定性和/或定量地評估風險的概率和影響。傳統上,風險評估是定性進行的,這意味著它依賴于對單個風險的概率和影響的判斷。判斷可以基于過去的經驗、可比較的項目、或項目主題領域的專業知識。以這種方式進行的風險評估可以由一個人完成,也可以在一個有不同利益相關者和專家的團隊環境中完成。然而,僅僅是定性的風險評估并不總是充分的。

如果風險評估的主要目的是對風險進行優先排序,以確定哪些風險需要進一步研究和應對,那么定性評估就可能是足夠的。相反,如果風險評估需要高度的精確性和更多的結論性評價,那么定量評估與定性評估一起進行將對項目有益。

付費5元查看完整內容

第一章 引言

在北約內部和成員國使用建模和仿真 (M&S) 對支持國防訓練、能力發展、任務演練和采購過程中的決策支持提出了越來越高的要求 [1]。因此,M&S 是聯盟及其國家的一項重要能力。然而,當前的 M&S 系統對高度動態的軍事作戰環境的代表性有限,其中物理環境的狀態會影響部隊的行為(例如,天氣對地面車輛機動性的影響)以及軍事物理(動能)行為會影響環境狀況(例如,彈藥對建筑物、基礎設施等的破壞)。目前在仿真系統中實現動態元素時,它們通常以定制和預先編寫好的方式執行,這限制了仿真互操作性的能力和范圍。

圖 1-1:任務期間遭遇的動態環境

?2016 年,北約 MSG 探索小組 ET-045“分布式仿真的動態合成自然環境”成立,以調查分布式仿真中相關動態合成環境的主題是否需要進一步研究。這確定了實現相關動態地形的主要挑戰 [2]。結論是存在許多與相關動態合成環境 (DSE) 相關的未解決問題,這些問題將限制未來北約分布式仿真的可用性。這些問題中的大多數都屬于技術性質,包括沒有開放標準或未經過驗證的方法來實現跨分布式 M&S整合天氣、天氣影響和物理(動力)戰爭對環境的影響。為響應 ET-045 的調查結果,一項為期 3 年的任務組 (TG) 技術活動提案 (TAP) 已提交給 2017 年春季的北約 MSG 商務會議,即MSG-156,于 2017 年 9 月開始。

1.1 定義

本報告包含由 ET-045 定義的幾個常用術語,即:

? 合成環境 (SE) 是代表物理世界的元素集合,系統的(模擬)模型在其中存在并相互作用(即地形、天氣、海洋、空間)。它包括表示環境的元素、它們對系統的影響,以及系統對環境變量影響的模型數據。

? 動態合成環境(DSE) 是一種在模擬過程中元素可以改變的SE,例如雨水對地形表面的影響。這可能是由于環境內的交互(例如,影響地形條件的天氣)、來自模擬實體的交互(例如,武器效果或單位挖掘)或由于外部交互(例如,教練驅動的變化)。

ET-045 和 MSG-156 并不認為 SNE 一詞涵蓋了 SE 中的所有環境方面,因為還存在需要表示的非自然元素。因此,MSG-156 TG 決定在本報告中采用 SE。在此之后,TG 已經意識到,在下一版 AMSP-01 [3] 中,SNE 一詞將被合成物理環境 (SPE) 取代,這樣可以更好地捕捉范圍。由于 MSG-156 已經使用 SE 一詞撰寫了幾篇出版物和大部分報告,因此決定在本報告中繼續使用 SE。

圖 3-9:DSE 的概念解決方案架構

1.2 目標

MSG-156 任務組 (TG) 的目標定義為:

  1. 定義最佳實踐、所需方法、技術,并為在未來分布式仿真練習中實現相關動態 SE 所需的標準提供信息;

  2. 通過概念實驗,評估方法和技術。

1.3 工作計劃

為實現上述目標,MSG-156 定義了一個工作計劃,其中包括以下活動(見圖 1-2):

圖1-2:MSG-156工作計劃

a. 識別DSE要求:確定分布式仿真中 DSE 的功能要求,包括現實世界操作的哪些方面對于在仿真中表示至關重要;這將在第 2 章中討論。

b.調查現有解決方案:了解 DSE 的當前最先進技術,以確定需要解決的差距以實現相關 DSE;這將在第 2 章中進一步討論。

c.定義用例:確定相關的操作場景,作為評估支持 DSE 架構的方法和技術的基礎;這些用例將在第 3 章中進一步討論。

d. 定義解決方案概念:定義解決方案概念以在分布式仿真中實現相關 DSE。第 3 章介紹了一些相關動態效果的選定用例和概念圖,例如可通行性,小組將其用作開發解決方案概念的架構基礎。第 4 章和第 5 章更詳細地介紹了該小組討論的兩個主要主題,即動態地形和動態天氣,涵蓋相關的動態效果、數據源和現有標準。第 6 章將所有這些發現結合到 MSG-156 提出的 DSE 解決方案架構中。

e. 概念論證:對解決方案概念進行(部分)實施,使其可行性得到論證,并吸取實踐經驗,以及解決方案概念是否有效并滿足確定的要求,以及哪些領域需要進一步研究。第 7 章將更詳細地討論概念演示。

f. 撰寫技術報告:最后一項活動是撰寫這份報告,并將所有經驗教訓結合起來,為 M&S 社區提供實現相關 DSE 的建議;這包括確定合適的技術和方法,并就應制定的標準提出建議。

圖 3-5:地形和天氣對車輛通行性影響的概念模型圖

圖 3-6:由于武器效應引起的地形和物體變形的概念模型圖

圖 3-7:受天氣影響的飛行器飛行動力學概念建模圖

圖 3-8:受天氣影響的傳感器性能的概念建模圖

圖 8-1:動態綜合環境架構

執行總結

建模和仿真 (M&S) 的使用是北約聯盟及其伙伴國家在國防聯合、集體和聯盟訓練、能力發展、任務規劃和戰備以及決策支持方面的一項重要能力。防御作戰環境是高度動態的,其中物理環境狀態會影響部隊行為(例如,天氣對地面車輛機動性的影響),而物理(動力)作戰行為會影響環境狀態(例如,彈藥損壞建筑物、基礎設施等)。目前 M&S 的實踐、標準和技術主要是基于公共環境數據集和重復使用環境數據庫,在分布式仿真中實現外部世界環境的靜態表示。在當前仿真系統中表示動態元素的情況下,它們通常以預先編寫好的方式實現,并且特定于給定系統。這限制了分布式異構仿真系統的互操作性的能力和范圍,并影響了 M&S 在聯合訓練等應用中的使用,這需要對作戰環境進行通用和一致的表示,以確保公平的戰斗條件。

MSG-156 始于 2017 年,作為一個為期 3 年的任務組 (TG),旨在解決代表 M&S 系統中現實世界操作環境挑戰的需求與現有技術能力之間的差距,目的是研究如何將相關聯的動態合成環境 (DSE) 可以在未來的分布式模擬中表示。 TG 由來自北約伙伴國政府、研究機構和行業的主題專家 (SME) 組成,包括模擬和合成環境 (SE) 的開發者(提供者)和消費者(用戶)。

MSG-156 TG 開展的研究活動將為北約 M&S 總體規劃的主要目標之一提供信息,即“為仿真應用和支持材料開發一個北約標準互操作性架構”。

在調查了仿真系統中動態環境的現有功能,并調查了仿真和娛樂游戲中最先進的技術和算法之后,TG 開發了基于用例的概念建模圖,以確定 DSE 環境中所需的關鍵交互。建模和仿真即服務 (MSaaS) 概念構成了 DSE 概念解決方案架構的基礎。TG 研究了動態地形和真實天氣的細節,以將概念方法改進為詳細的解決方案架構,允許跨異構分布式模擬系統一致表示動態合成環境。

該解決方案架構的關鍵概念是共同服務負責在模擬練習中管理和分發環境數據。這意味著 M&S 聯盟將使用 Terrain Service 來獲取有關地形的信息,并使用 Wea??ther Service 來獲取有關天氣的信息。通過讓一項服務負責管理這些數據,可以緩解許多相關問題。此外,當對操作環境的合成表示進行動態更改時,特定的專業服務負責執行修改,從而消除在每個單獨系統中本地實施此類修改時可能出現的相關問題。這些數據修改服務將其更改傳達給地形服務,允許所有聯邦成員從那里訪問更新的數據。

隨著 DSE 概念架構的開發,MSG-156 進行了概念驗證演示,使用該體系結構部署、集成和執行了聯邦模擬和服務,這些模擬和服務由參與國使用不同行業合作伙伴提供的工具和產品進行。盡管可用的聯邦模擬和服務的數量有限,但演示證明了解決方案架構是可行的,并且這種架構將有助于確保可以在分布式模擬中以一致的方式進行動態更改和表示。概念演示還有助于確定架構的哪些方面需要進一步研究以達到技術準備水平 (TRL) 以支持操作模擬練習。

由于時間和規模的限制,在提議的基于 MSaaS 的 DSE 架構中使用的技術目前還沒有被證明足夠成熟以實施到操作模擬系統中。因此,任務組建議應該進行更大規模的實驗,以評估解決方案架構在更真實的測試用例中服務受到壓力的環境中的執行情況。

DSE 架構依賴于不同服務之間的標準化接口。盡管其中一些接口已經成熟,例如用于分發地理信息的 OGC 接口,但作為未來開放標準的一部分,還需要考慮進一步開發其他接口。此外,應探索新格式的選項,以共享 3D 內容,支持將 3D 模型內容分發和流式傳輸到仿真系統,或在仿真執行期間對 3D 模型內容進行動態更改。

事實證明,獲取真實世界的天氣數據對 TG 來說是一個挑戰。無法免費獲得所需的更高分辨率數據,國家 MOD 和氣象局之間的現有合同不包括為研究項目提供此類數據。如果未來的模擬演習需要天氣數據,則需要將這一要求包含在現有的國家合同中,或者最好讓北約為所有參與者提供對此類數據的訪問。

建議將 MSG-156 的輸出提交給新的 SISO 研究組 (SG),以評估和確定如何解決 DSE 的特定方面。這應包括審查現有的 SISO“環境數據和流程的重用和互操作 (RIEDP)”產品開發組 (PDG) 活動和“基于云的 M&S”(CBMS),因為這些可能已經涵蓋了一些所需的標準。 MSG-156 的輸出還應用于為作為 NATO MSG-193 專家組“聯邦任務網絡 (FMN) 中的建模和模擬標準”的一部分開展的活動提供信息。

最后,建議北約和/或成員國應考慮提供和托管 DSE 所需的關鍵服務。提供地形服務、氣象服務和各種修改服務將顯著減輕建立由 DSE 支持的未來分布式模擬練習的負擔。

付費5元查看完整內容

摘要

這項工作的目的是深入了解人工智能 (AI) 工具以及如何將它們應用于空中目標威脅評估。人工智能工具是包含人工智能元素的軟件產品。關于人工智能有多種不同的思想流派,并且可以在同一個工具中使用不同的方法。許多現代人工智能方法都涉及機器學習 (ML)。本參考文檔將涵蓋不同類型的 AI 和 ML 以及如何將它們應用于威脅評估。這項工作將介紹所有 ML 模型共有的元素,例如數據收集、數據準備和數據清理。該報告還將討論選擇適合不同問題的最佳人工智能類型

此外,這項工作將描述處理缺失數據或數據不確定性的方法。將提出實用的解決方案,包括通過數據插補填充缺失數據或修改人工智能工具的架構

最后,該報告將檢查人工智能工具的輸出與現有基礎設施的集成。將結合威脅評估過程及其可以改進的元素來描述 AI 工具。還將討論 AI 工具系統的通用架構

國防與安全的意義

威脅評估對于維護國家安全利益和維護各國主權具有重要意義。空中威脅評估對于一個有大片國土需要保護的國家(例如加拿大)很有價值。人工智能和機器學習都可以應用于威脅評估的研究領域。通過學習構建人工智能驅動的工具,加拿大的國防和安全將通過獲得持續的前沿研究得到改善。無論哪個國家開發出最有效和最可靠的威脅評估工具,在決策和威脅反應方面都將獲得優勢。通過利用前面提到的快速擴張的領域,加拿大可以獲得決定性的優勢

1 簡介

評估所有領域(如空中、網絡、陸地、海洋、太空)的威脅是維護任何國家安全的一個重要方面。威脅分析包括查看敵人過去、現在和預期的行動,以及這些行動對友軍資產或單位的影響。威脅評估還考慮了為減少、避免或消除風險而可能采取的任何防御措施[1]。在防空的背景下,空中目標威脅評估的任務需要識別、確定空中目標和優先排序,并管理任何必要的資源以應對威脅[2,3]。

當前的空中目標威脅評估任務由操作室中的一組高技能和經驗豐富的人員執行[3,4]。該任務涉及考慮先驗信息(例如,情報報告和評估標準)和獲取的信息(例如,從傳感器系統動態收集的運動學信息),以確定目標對某個感興趣點/區域(POI/AOI)。此信息(運動學和非運動學)稱為提示。這些信息的心理整合需要相當水平的戰術專業知識,包括有關威脅類型、軍事條令和基于經驗的評估啟發式的知識[4]。人工智能(AI)將允許根據防空作戰員(ADO)可用的線索以及他們的威脅評估決策[5]或專業知識來創建工具。

本報告全面概述了AI工具及其構建。這些方法是尖端的并且非常有效。本報告將清晰地展示人工智能工具的開發方式。它將展示哪些組件是必要的,如何獲取數據并使其對機器學習(ML)模型有用,以及AI工具如何與更廣泛的威脅評估環境進行交互

2 人工智能

本節將介紹人工智能的概念和許多現代人工智能算法。它將包含有關AI和ML主要主題的背景知識。它還將描述AI工具中經常出現的組件。

2.1 概述

從一個非常廣泛的角度來看,人工智能是人工系統“執行與智能生物相關的任務”的能力[6]。然而,這是一個非常寬泛的術語,涵蓋了許多系統。例如,它不區分人工智能系統、智能系統和自動化系統。關于什么構成人工智能,文獻和文化中有許多定義。本報告中使用的“人工智能系統”的定義是文獻和文化中各種來源的觀點的結合。

人工智能系統是一種具有以下能力的人工系統:

1.執行“有趣的”[7]任務,這些任務“通常與智能生物相關”[6]

2.“自學成才”[7,8]

早期的AI開發人員研究的問題在智力上對我們來說很困難,但對計算機來說卻相對簡單。這些問題可以用一組形式和數學規則來描述[9]。例如,國際象棋游戲由一組有限且嚴格的規則定義,這些規則可以編程到人工智能中。然而,人工智能很難處理使用人類直覺而不是使用一組正式的規則來處理的任務,例如圖像識別。人工智能的一種方法是基于知識的方法,它涉及嘗試設計形式語言和手工制作的邏輯推理規則,以使機器能夠推理和解決問題。另一種方法是讓計算機從經驗中收集知識,而不是讓人類對程序的行為進行硬編碼。

機器學習是通過從數據中發現模式來獲取知識的能力。因此,這些數據的表示會顯著影響機器學習算法的性能。換句話說,提供給機器的信息(即特征)會影響它解決問題的能力。然而,手工設計的特征受到人類知識的限制。讓機器發現哪種表示最好稱為表示學習。學習到的表示通常比手工設計的表現要好得多。本報告在2.3小節中探討了人工智能的機器學習方法。

2.2 AI 工具的組成部分

AI 工具的最終目標是通過減少操作員的認知和體力工作量來改善操作員的決策過程。為此,人工智能工具通過提供協作環境來補充操作員的角色。人工智能工具處理可用信息,從數據中獲得洞察力,并以有利于操作員體驗的方式呈現信息和洞察力。圖1顯示了AI工具流程的概覽。該模型基于[3]中提出的決策支持系統(DSS)架構。

1.操作員是與工具交互和監控工具、根據工具輸出做出決策并根據這些決策向相關個人報告的人。輸入工具的信息可以是靜態的或動態的。靜態信息(例如配置文件和靜態操作員首選項)在操作期間不會更改。動態信息,例如數據輸入和設備操作,在整個操作過程中不一定保持不變[3]。將操作員與咨詢能力聯系起來的箭頭強調了該工具的協作方面。

2.咨詢能力負責管理操作員和系統之間的交互。這包括管理操作員輸入(即靜態和動態信息),管理環境輸入(例如,約束和環境信息),促進操作員交互(例如,人機交互,人機界面)和顯示信息。要顯示的關鍵信息包括算法的結果和當前的操作限制。

3.領域知識由用于評估的規則和關系組成。例如,領域知識可能包括操作員對信息變化影響的意見。

4.算法組負責處理數據和執行評估或預測任務。可以考慮許多不同的算法和功能來實現算法組。該組將提供應用程序中的大部分AI功能,并且可以選擇或組合不同的AI或ML應用程序。

5.環境為人工智能工具提供操作約束。更具體地說,環境由檢測和測量目標的傳感器系統以及來自更高級別個人的任務概覽和命令組成。

雖然[3]對圖1中的大多數組件進行了詳細解釋,重點是咨詢能力部分,但本報告側重于架構的算法部分。

圖1:操作員、環境和人工智能工具的交互

上面介紹的AI工具被認為是基于第 2.1 節中介紹的定義的AI系統。評估的復雜性和重要性使其成為一項不容易解決的任務。人工智能工具的學習和適應方面可以通過機器學習方法來完成,這將在2.3小節中進行描述。

2.3 AI 中的機器學習

本節將討論機器學習和人工智能的結合。有許多不同類型的AI算法,ML是這些算法的一個子集。本節將描述使用ML從數據中學習的算法類型,以及這對AI工具有何用處。作者還在他們之前的工作中定義了機器學習中的許多基本概念[5]。

2.3.1 概述

根據柯林斯詞典,機器是“使用電力或發動機來完成特定工作的設備”[10]。在機器學習的背景下,機器就是計算機。更具體地說,是計算機中的程序完成了這項工作。正如[11]中所定義的那樣,“如果計算機程序在T中的任務(由P衡量)上的性能隨著經驗E提高,則可以說計算機程序從經驗E中學習某類任務T和性能度量P。”這個定義提出了機器學習問題的三個主要組成部分:任務T、性能度量P和經驗E。

1.任務是要解決的問題。例如,分類任務涉及確定某個輸入屬于哪個類別(例如,對象分類)。其他任務示例是回歸(例如,成本預測)、異常檢測(例如,欺詐檢測)和去噪(例如,信號處理)。

2.性能度量是用于評估ML算法性能的指標。例如,準確度是一種可用于分類任務的性能度量。準確率是模型正確分類的示例的分數。“示例”被定義為特征的集合,通常表示為向量,其中n為特征個數,每個元素為一個特征[9]。數據集是一組例子的集合。

3.經驗是指模型在學習過程中所接受的訓練類型。在無監督學習中,模型所體驗的數據集僅包含特征,并且由模型來學習數據的特征。例如,學習描述數據的概率分布可能很有用。聚類也可以使用無監督學習算法來執行。在監督學習中,模型體驗的數據集不僅包含特征,還包含與每個示例相關聯的標簽。無監督學習模型觀察幾個例子,而監督學習模型觀察幾個例子及其標簽。但是,在某些情況下,有監督和無監督之間沒有明確的區別。例如,半監督學習涉及從包含標記和未標記數據的數據集中學習。在強化學習中,模型不是從固定的數據集中體驗,而是模型與環境交互并從交互中學習。

為了了解模型在處理現實世界中的新數據時的表現如何,通常會分離出一部分數據集,以便僅在完成所有訓練后才能使用。這被稱為測試集,由于模型之前沒有看到測試集中的數據,因此測試集上的性能可以作為模型真實性能的指標。文獻提供了機器學習算法和模型的許多不同分類(例如,[12]提出了機器學習的五種范式:連接主義(例如,神經網絡、象征主義、進化論、貝葉斯和類比)。本報告并不是對機器學習中在空中目標威脅評估領域有用的不同方法的詳盡回顧。本報告重點關注三類特定的方法:監督機器學習、無監督機器學習和強化學習。

2.3.2 監督學習

在監督機器學習中,可以使用一組標記的訓練示例(即訓練集)。該模型的目標是能夠為示例分配正確的標簽,其中正確的標簽是與特定示例對應的標簽。通過基于一組標記的訓練數據最小化某個損失函數來調整模型。具體來說,迭代調整模型的參數,以減少訓練誤差。

1.模型:模型是根據樣本特征輸出標簽的算法。

2.參數:模型的參數根據選擇的模型而有所不同。例如,在神經網絡中,參數包括神經元的權重和偏差。

3.誤差:也稱為損失,誤差用于衡量模型的執行情況。可以針對特定應用設計和修改損失函數。

4.迭代調整:在訓練過程中,采用一定的方案來改變每次迭代的參數。具體來說,迭代調整模型的參數,以減少訓練誤差。一個例子是普通梯度下降法[13]:

其中θ是模型的參數,α是學習率(決定每次迭代調整多少參數的超參數),J(θ) 是模型在整個訓練集上的損失函數, 是相對于θ的梯度。可以使用各種修改來改進普通梯度下降算法,例如動量[13]。這種改進產生的算法包括Adagrad[14]和Adam[15]。

2.3.3 無監督學習

由于機器學習,許多研究和應用領域都取得了許多成功。圖像理解(例如,檢測[16]、分類[17])和自動化物理系統(例如,自動駕駛汽車[18])只是成功的兩個例子。這些成功的很大一部分歸功于監督學習和強化學習的使用。然而,這兩種范式都僅限于人類輸入和經驗:監督學習的訓練信號是目標標簽,而在強化學習中,信號是期望行為的獎勵[19]。使用人類設計的標簽和獎勵的一個弱點是由于訓練信號的稀疏性而導致的信息丟失。例如,盡管用于訓練監督學習和強化學習模型的數據通常具有豐富的特征(例如,圖像),但目標和獎勵通常非常稀疏(例如,表示圖片標簽的單個向量)[19]。無監督學習的動機是更好地利用可用數據來更好地理解數據。因此,無監督學習范式“旨在通過獎勵智能體(即計算機程序)來創建自主智能,以學習他們在不考慮特定任務的情況下觀察到的數據。換句話說,智能體“為了學習而學習”[19]。無監督學習算法的強大之處在于它能夠發現標簽無法完全表達的數據的潛在模式和結構。

2.3.4 強化學習

強化學習(RL)的思想是學習采取什么行動來獲得最大的回報。這種范式背后的一個共同動機是智能體與環境之間的交互(圖2)。根據對環境的觀察,智能體執行影響環境的動作。作為響應,會生成新的觀察結果,并且智能體會收到獎勵或懲罰。

圖 2:智能體-環境交互

RL的兩個重要區別特征是試錯搜索和延遲獎勵。與程序員指定輸出應該是什么的監督學習不同,RL智能體必須進行實驗以發現導致最高獎勵的動作。此外,行動可能會產生長期影響。因此,較早采取的行動可能會導致稍后的獎勵或懲罰。

在監督學習中,該模型嘗試從訓練示例中學習以泛化并在新示例上表現良好。雖然功能強大,但在處理涉及交互的問題時,監督學習是不夠的。例如,在未知環境中學習時,獲得包含代表智能體在所有可能情況下應采取的行動方式的示例的訓練集可能是不切實際的。在這些情況下,智能體必須使用自己的經驗和與環境的交互來學習。

RL系統[20]有四個主要組成部分:

1.策略:策略根據智能體的感知狀態定義智能體的行為。換句話說,它決定了當智能體處于當前狀態時要采取什么行動(或行動的什么分布)。

2.獎勵信號:獎勵信號表明智能體在某個時刻的表現如何。獎勵的概念是RL問題的核心概念,因為從長遠來看最大化獎勵數量是智能體的最終目標。獎勵的類型是特定于問題的。例如,在訓練RL智能體玩游戲時,它可能會因獲勝而獲得正獎勵,而因失敗而獲得負獎勵。結果,通過監控獎勵信號來學習策略。例如,如果當前策略給出的某個動作導致了懲罰,那么該策略可能會以某種方式改變,以便在情況再次出現時避免該動作。

3.價值函數:價值函數表示如果遵循當前策略,智能體在未來的預期表現如何。雖然獎勵被視為即時指標,但價值函數是長期指標。例如,在當前狀態下投資獲得負回報可能會導致總回報為正。價值函數引入了延遲獎勵的方面:某個狀態的價值是預期在長期內獲得的總折扣獎勵,其中每個收到的獎勵都根據最近收到的時間進行折扣。

4.環境模型:環境模型存在于基于模型的RL問題中。它指示環境如何根據智能體在特定狀態下的行為做出反應。然而,環境模型并不總是可用的。無模型方法解決了這一挑戰。

正式表示完全可觀察的環境(即智能體的觀察完全描述當前環境狀態的環境)以進行強化學習的流行方法之一是使用馬爾可夫決策過程(MDPs)。馬爾可夫過程是服從馬爾可夫性質的一系列隨機狀態S:在給定當前狀態的情況下,未來狀態獨立于過去狀態。

其中是第時間步的狀態,t是當前時間步,發生的概率。MDPs是馬爾可夫過程的擴展:除了表征馬爾可夫過程的狀態集S和狀態轉換集P之外,還有可能的動作集A和獎勵集R。

3 空中威脅評估——人工智能工具

本節將把空中威脅評估的任務與人工智能工具的能力聯系起來。 AI 能力將映射到威脅評估的每個階段,并將展示如何將其集成到現有能力中或改進現有能力

3.1 AI 工具在威脅評估中的優勢

如第 1 節所述,ADOs等操作人員面臨認知和身體挑戰,這些挑戰不利于其做出可靠決策的能力。人工智能工具將通過提供以下兩個主要好處來應對這些挑戰:

1.減少認知和身體負荷量:人工智能工具為操作員提供的支持和顯示將緩解導致操作員總壓力的眾多因素。這種好處是通過使用決策支持系統(DSS)的設計原則來提供的。

2.利用最先進的方法:人工智能的機器學習方法是一個非常受歡迎的研究領域,因此在方法的開發和改進方面做了大量工作。通過使用AI支持空中目標決策,該系統可以使用和利用最先進的方法。

3.2 威脅評估中的 AI 工具組件

如2.2小節所述,通用AI工具中有多個組件可以專門用于評估。威脅評估AI工具中的組件及其專業化如下:

1.操作員(Operator)是評估過程中的ADO。操作員將負責確保提供給AI工具的信息盡可能準確。然后,ADO將與該工具交互,以充分了解威脅情況,并獲得AI生成的威脅評估。

2.咨詢能力(Advisory?Capability)負責與ADO以及各種傳感器和數據庫系統進行交互。這將涉及從雷達和其他傳感器收集數據,以及解釋從情報報告中獲得的數據。咨詢能力還負責確保ADO可以有效地與計算機界面一起工作。更新界面可能涉及一個可以結合機器學習的動態過程。

3.領域知識(Domain Knowledge)將包括ADO的經驗以及他們用來進行準確評估的任何規則。在空中威脅評估中,這可能包括常見的高度、異常的飛行模式或敵軍作戰節奏的變化。

4.算法組(Algorithms)負責目標數據的處理和威脅評估。這將包括處理軌跡數據以獲得提示數據,并使用提示數據和領域知識來評估目標的威脅。可能的評估算法包括基于規則的方法[3、4]、貝葉斯方法[3]和本報告[5]中提供的AI技術。

5.環境(Environment)為人工智能工具提供操作限制和目標數據。更具體地說,環境包括檢測和測量目標的傳感器系統以及來自更高軍事指揮鏈的任務概覽和命令。

3.3 機器學習在威脅評估中的應用

由于機器學習方法的種類和成功率眾多且不斷增加,機器學習在威脅評估中的應用數量僅限于研究人員的知識和經驗。本報告將概述如何將三種主要機器學習范式應用于人工智能工具進行威脅評估的示例

3.3.1 監督學習

通過一組標記的過去目標示例,其中每個示例包含有關歷史目標及其相應威脅值標簽的信息,監督機器學習可用于將威脅值分配給目標。在[21]中,監督學習被用于構建多標準決策(MCDM)方法(EMCDM)的集成,以根據當時的線索值推斷目標在某個時間點的威脅值。EMCDM技術由各種MCDM方法組成,它們的輸出組合成一個單一的威脅值。MCDM方法的輸出基于作為輸入的提示值。用于訓練EMCDM技術的監督學習技術取決于集成技術的類型。例如,在加權組合EMCDM技術中,MCDM方法是使用監督學習調整的組合權重。在所有的EMCDM訓練中,示例集由標記的目標實例組成,其中目標實例被定義為目標在某個時間點的提示數據。

3.3.2 無監督學習

可以從目標中提取各種信息。因此,對于某個目標,可以為系統提供關于目標的大量線索,作為威脅評估的基礎。無監督學習可用于分析提示數據,以深入了解底層結構和模式。例如,無監督學習的一種用法是降維。通過降低提示數據的維數,系統可以處理更緊湊和簡潔的目標描述。換句話說,目標是以數據可以提供關于目標的大致相同信息但使用較少資源的方式轉換數據(例如,使用10個提示而不是50個提示)。

實現降維的一種方法是主成分分析(PCA)[23]。PCA旨在通過學習最大化新子空間中數據方差的線性變換,來表達低維子空間中的數據。最大化數據方差背后的直覺是假設更高的方差意味著更多的信息量。數據原本會有一定量的方差/信息。PCA嘗試使用低維子空間來近似數據,同時盡可能多地保留原始方差。PCA的結果之一是檢測和去除數據中的冗余,從而在沒有不必要的線索的情況下描述目標。然后可以將這些PCA生成的線索視為要使用的新的各種線索。然而,在應用過程中需要考慮基于PCA的假設(例如,方差足以描述信息量,主成分是正交的)。

自動編碼器[9]是經過訓練以將輸入重新創建為其輸出的神經網絡。自動編碼器通常由兩部分組成:編碼器和解碼器。編碼器網絡生成低維潛在特征。然后將潛在特征輸入到解碼器網絡中,該解碼器網絡嘗試輸出最初輸入到編碼器中的內容。通常存在約束和限制,以防止自動編碼器能夠完美地重新創建輸出(即,它只能提供近似值)。結果,模型被訓練為優先使用最有用的數據特征。因此,與PCA類似,自動編碼器可用于使目標提示數據更加簡潔,并且僅包含足以描述目標的提示數據。自動編碼器的其他用法也存在。例如,自動編碼器可用于去噪[24]應用程序。這在威脅評估中特別有用,因為目標數據(例如,傳感器數據、提示)本質上是含噪的。

除了降維之外,無監督學習的另一個用途是聚類。文獻中有大量關于用于聚類的無監督學習算法的工作,所有這些算法都用于威脅評估。在不關注特定算法的情況下,聚類的一種用途是將感興趣的目標與歷史目標進行聚類。這樣做的目的是發現感興趣的目標是否與歷史目標相似。如果有關于如何處理過去目標的知識,操作員可以在決定對當前感興趣的目標采取何種行動時考慮這些信息。

3.3.3 強化學習

可以將威脅評估過程建模為強化學習問題。例如,咨詢能力可以在操作期間使用RL來了解操作員希望如何顯示信息。這類似于社交網站知道在首頁上顯示哪些項目的方式。例如,如果RL模型有一個獎勵處理速度的策略,它可以測量從ADO開始評估到ADO提交威脅評估所花費的時間。這將允許模型因導致更短的威脅評估過程的行動而獲得獎勵,從而鼓勵更有效的交互選擇。如果某個深度為兩級的菜單項(即,它需要兩次單擊才能訪問)被頻繁使用,則模型可以將該菜單項放置為第一級深度項。如果該項目被非常頻繁地使用,則該項目應該在主屏幕上被賦予一個突出的按鈕位置。在空中威脅評估應用程序界面上工作的強化學習算法將能夠進行這些和其他更改,以檢查威脅評估的時間是否正在減少,在這種情況下,它將獲得獎勵。

有大量研究和許多資源可用于解決MDPs,這使得使用MDPs解決RL問題成為一個不錯的選擇[25]。

3.4 結構與流程

人工智能工具的結構需要考慮多種因素。該工具將在流程管道中運行,從數據收集和準備開始,到模型訓練,然后到模型預測,最后為用戶顯示結果。在AI工作流程中,可以更容易地將結構視為流程工作流[26]。一旦AI工具經過訓練,它就會不斷返回到周期的第一階段,并使用新數據和新見解進行重新訓練。這個過程使人工智能工具非常強大,可以隨著時間的推移保持準確性和有效性。

人工智能工具開發的第一階段是收集高質量數據。這些數據將存放在一個或多個可供AI工具訪問的數據庫中。人工智能工具將首先在數據庫中的現有數據上進行訓練,然后在生產時,它將主動監控任何操作數據庫中的最新數據,以便提供威脅評估。

除了收集數據,還必須確定最有效的機器學習或人工智能模型。該決定需要考慮可用數據的類型、數據的數量及其質量。與最終用戶面談也很重要,以確保所選模型將以對他們有用的格式輸出信息。這可能是一個要求,例如最終威脅評估值必須呈現為分類問題(例如,高、中、低)或回歸問題(例如,1.4、2.9、9.0)。要求也可能更嚴格,例如人工智能工具的推理必須能夠被人類操作員解釋。像這樣的要求可能會使現代機器學習研究的整個分支沒有吸引力,而是需要不同的模型。由于所選AI模型對整個工具的影響很大,因此必須在模型開發之前的早期階段收集最終用戶的需求。

一旦選擇了一個或多個模型類型,就必須對其進行訓練。在這個階段,由于上一步的需求分析,一些AI模型可能已經被淘汰。在此步驟中,將淘汰更多模型。在對數據進行訓練之前,通常很難判斷哪個機器學習平臺最有效。這意味著應該對多個模型進行數據訓練,并使用某種準確度指標進行比較。一旦確定了最準確的模型,該模型將被完全訓練并準備好在生產中使用。

下一階段是將模型部署到生產應用中。ADO獲得了一個功能性AI工具,可以連接到操作數據庫并協助威脅評估過程。輸出到ADO的最終值都將被處理和清理,最終格式將被確定。然后,隨著所有ADO將其威脅評估以及可用的線索提交給訓練數據庫,該工具將得到持續訓練。這將使該工具能夠與新出現的威脅和新情況保持同步。ADO還可以就AI工具提供的評估進行反饋。例如,如果AI工具提供“高”威脅評估,而ADO認為它應該是“中”,則ADO可以提供反饋信號,表明該工具不正確并且威脅等級太高。這將存儲在數據中并用于在線訓練,使其能夠不斷地向經驗豐富的ADO學習,也可以自學成型。

AI工具流程的最后階段是將工具轉移到精度維護。在這個階段,需要對工具進行監控,以確保準確性不會下降。該工具也將在此階段接收反饋并從ADO評估中學習。最后,人工智能工具的開發并沒有停留在這個最后階段;相反,它必須隨著威脅的演變、環境和要求的變化以及新的和更相關的數據變得可用,而相應地更新和改進。

圖3: AI工具中的模塊及其交互

圖 3 提供了AI工具中以下模塊的可視化表示:

1.數據庫組件

  • 存儲傳感器數據、操作員情報和來自歷史數據的人為威脅評估。

2.數據訪問和存儲模塊

  • 與數據庫交互以不斷地保存和讀取來自傳感器或人工操作員的數據。
  • 查詢數據庫以提供關于1個目標的完整信息集,用于預測威脅評估。

3.數據預處理模塊

  • 清理數據,處理缺失值,并正確格式化數據以用于訓練或訓練模型的推理。

4.ML 模型組件

  • 實現機器學習模型的AI組件。這就是將整個工具定義為AI工具的原因。所有其他組件都用于支持該組件。
  • 在訓練管道中,模型仍在開發中,可能會同時測試多個模型。
  • 在推理管道中,已經選擇了一個模型,并由數據預處理模塊提供數據,以便它可以進行預測。

5.數據后處理模塊

  • 在將推理步驟的結果顯示給用戶之前對其進行清理。
  • 可以從零到一之間的預測值映射到更易讀的值或類別評級(例如,低、中、高)。

6.可視化/操作員交互模塊

  • 負責所有操作員交互。提供數據的可視化和讀數,并以最佳方式傳達模型對威脅價值的預測。
  • 獲取操作員對分配的威脅值的反饋(例如,太高、太低、非常準確)。
  • 與數據訪問和存儲模塊通信,將操作員反饋存儲為有用的數據,以供未來訓練使用

3.4.1 人工智能工具集成

將ML組件集成到更大的AI工具中需要兩條不同的管道。第一個管道將是訓練管道,這是進行模型選擇、測試和訓練的地方。一旦確定了合適的ML模型,并且該模型已經針對所有當前可用的數據進行了訓練,它將在稱為推理管道的第二個管道中使用。

圖4顯示了訓練管道的可視化。第一步需要收集歷史威脅評估數據以及ADO威脅標簽(如果所需的ML模型使用監督學習算法)。接下來,這些數據將通過數據預處理模塊合并為格式良好的數據集。然后,這個大型數據集將被分成三個不同的集合:

1.訓練數據集:該數據集將是ML模型在訓練時唯一看到的數據集。它也將是三個數據集中最大的一個。通常在本節中描述的三組之間決定百分比分配。這取決于系統設計者的判斷。常見的比率是80/20或90/10,具體取決于可用訓練點的數量。這些點將用于訓練模型,但重要的是保留一個保留數據集,以確保您的模型不會過度擬合訓練數據(即,無法泛化到新的未見數據點)。

2.驗證數據集:這將在訓練進行時用作測試集。這些數據不會用于訓練模型,而是在訓練的非常時期結束時,將在這個小集合上測試模型。這對于確定模型何時得到充分訓練很有用。即使模型在訓練數據集上的損失可能會繼續減少,但如果驗證集上的損失已經趨于穩定,那么模型可能會過度擬合訓練數據集,應該停止訓練。

3.測試數據集:該數據集將為所有候選 ML 模型提供最終評估指標。它不會用于訓練,并且模型設計者也必須不要檢查此數據集。這將確保模型超參數不會根據此測試數據集進行調整。測試數據集的價值在于發現ML模型是否可以泛化到來自類似于訓練示例分布的看不見的數據點。如果測試數據集的損失遠高于訓練集和驗證集,則模型很可能對其訓練數據進行過擬合。如果有多個候選ML模型,則可以使用測試數據集上的損失和準確率來確定選擇哪個模型。

在模型訓練期間將使用訓練和驗證數據集,在模型評估期間將使用測試數據集。

圖4 :ML 模型訓練管道

一旦最佳候選ML模型經過訓練和選擇,它將用于AI工具的生產版本。該模型將用于實時提供在線推理/預測。候選模型的訓練和測試可以繼續進行,也可以納入新模型或研究。這將確保AI工具始終使用性能最佳的ML模型。

一旦經過訓練的模型展示了所需水平的能力,就該使用推理管道了。推理管道是ML組件,將在操作中使用的實際AI工具中使用。該管道的示意圖如圖5所示。

圖5:ML 模型推理管道

人工智能工具將被要求不斷監控傳感器和操作員的情報,以獲得最準確的現實畫面。該數據將組合成與每個空中目標相關的提示數據集。一旦一組提示數據可用,它將被提供給ML模型,以便進行預測。然后,該預測將通過本工作前面討論的AI工具的其他組件提供給ADO。一旦投入生產,該模型還將通過運行來自新威脅評估情況的示例和迄今為止ADO對預測的反饋來保持最新狀態。這種訓練可以以在線方式(即連續)完成,也可以通過批量訓練(即以設定的時間間隔一次對所有示例進行訓練)完成。該模型還將對其性能進行監控,以確保準確性和損失不會隨著操作現實的變化而隨著時間的推移而降低。如果檢測到性能下降,則人工干預和糾正可以使系統恢復到以前的性能水平。

3.5 威脅評估和人工智能流程

本小節將解釋威脅評估過程的背景以及傳統上它是如何完成的。它還將標志著傳統流程中的挑戰和通過智能決策支持系統(DSS)改進的機會。還將介紹AI工具及其與傳統DSS威脅評估的關系。

3.5.1 用于威脅評估的因素和結構

有關因素信息和分類的描述,請參見[21]。出于 AI 目的,因素數據應構造為包含m個因素的向量,其中m是觀察中的因素數量,每個條目是一個因素值。每個完整的向量都是一個樣本,如果有足夠大的樣本訓練數據集,就可以進行機器學習。

對于空中威脅評估,已經確定了16個因素來構成關于目標的最有價值的信息[4]。這些見表 1。

表 1:用于目標威脅評估的因素。

3.5.2 挑戰和機遇

威脅評估過程絕非易事。這是一項壓力極大的任務,需要做出復雜的決策。該過程的認知和物理性質是由于各種原因造成的,當它們結合起來時,會對操作員的決策過程產生不利影響。

操作員不僅必須處理來自各種來源的大量和類型的信息,而且還要同時管理多個任務。例如,操作員管理可能來自眾多媒體、顯示器和人員的音頻、口頭和視覺信息[4]。除此之外,他們還必須執行其他任務,例如監控指定監視區域內的空中目標、了解可用資源以及準備情況報告[4]。這種高度的多任務處理和信息過載給威脅評估任務帶來了認知復雜性和身體壓力。

除了大量數據之外,運營商還面臨著信息中固有的不確定性。運營商必須考慮到數據源的不完善性以及人類行為的不可預測性[3]。不確定性量化和感知在威脅評估過程(和戰術軍事行動一般[3],因為運營商依賴決策過程中的數據來獲取環境(和對手)的感知。

在時間限制下操作人員的工作也造成了相當大的壓力。需要時間來收集信息、處理信息并最大限度地減少不確定性。但是,空中目標正在高速移動,因此必須根據可用的融合做出決策此外,用于信息收集/處理和不確定性最小化的時間越多,制定后續決策和行動的時間就越少,對手收集/處理信息和行動的時間就越多。最后,錯誤決定的后果是嚴重的,甚至可能是災難性的。飛機的錯誤分類1988年造成290名平民死亡的事件[27]就是決策失誤的一個例子。操作員工作的重要性和不正確執行的后果增加了任務的壓力。

運營商在威脅評估過程中面臨的挑戰促使人們研究如何在不影響威脅評估可靠性的情況下減輕認知和物理工作量。更具體地說,有機會開發用于空中目標威脅評估的決策支持系統(DSS)[4]。圍繞DSS的設計原則(即DSS 所包含的內容)有許多著作。

DSS的關鍵要求之一是它不能取代運營商;相反,DSS是對運營商的補充。[3]將此要求描述為DSS充當“決策支持而非決策自動化”。這方面允許在威脅評估過程中操作員和系統之間的協作。讓人參與決策過程是至關重要的:人在環方面確保每個決策都有責任。軍事行動的合法性要求問責是其行動的組成部分,問責包括明確的合法性和道德標準。如果在這個過程中沒有操作者,那么誰應該為錯誤決策的后果負責的模糊性就會帶來法律和道德上的分歧。

除了確保操作員始終參與決策之外,文獻中還介紹了其他設計原則。[2]根據文獻及其實地工作,詳細列出了設計威脅評估系統的規則。顯著的設計特點包括:

1.透明度:DSS應該能夠證明其計算和后續建議的合理性[3,4]。因此,DSS應向操作員提供導致最終值[2]的中間計算以及每個提示對最終威脅值[4]的影響。消除DSS的黑盒特性的重要性在于建立對系統的信心和信任[3]。如果不知道決策/建議是如何生成的,人類不太可能接受自動化系統的決策/建議[29]。理解上的不透明為誤用和錯誤創造了機會[12]。由于使用機器學習方法來構建AI工具,因此這是這項工作的一個重要考慮因素。機器學習方法不限于人類定義的決策規則,因此可以表現出黑盒性質。因此,與傳統DSS相比,AI工具的透明度更為重要。

2.處理不確定性:DSS決策所依據的數據中有許多不確定性來源(例如,傳感器數據、威脅值計算中的參數)[2]。處理不確定性也是DSS的一個重要設計特征,因為它允許運營商調整他們對系統的信任級別。在[2]中,這個設計方面是通過使用提示數據的區間表示來實現的。

3.信息的有效和交互式顯示:使用圖形格式顯示信息很重要,因為威脅是一個模糊的概念[4]。應傳達給操作員的重要信息是威脅等級、威脅歷史、線索列表[4],以及與建議相關的不確定性[3]。除了顯示信息之外,系統還必須能夠提供操作員可以與之交互的媒介。這可確保操作員留在威脅評估過程中[3]。

本報告中提出的人工智能工具可作為空中目標威脅評估的DSS。人工智能工具的人工智能方面在于系統的運行方式。更具體地說,人工智能工具將把人工智能概念(例如,機器學習、適應)納入其操作中。

3.6 AI 工具

AI工具將能夠集成到空中威脅評估的所有階段。本小節將描述威脅評估的每個階段與AI工具的能力之間的關系。

空中威脅評估的階段如下[4]:

1.掃描并選擇提示。

2.比較、調整適合和適應。

3.計算威脅等級。

4.繼續處理。

關于1(掃描并選擇提示),AI工具將能夠使用所有可用的提示。這與人類操作員不同,后者僅審查18個可用于評估飛機的線索中的6到13個[4]。這些信息將通過各種傳感器從環境中收集,然后通過通常的情報報告或傳感器讀數方式進行報告。這些數據將被編譯到一個數據庫中,供AI工具訪問以從中進行學習和預測。

關于2(比較、調整擬合和適應),AI工具將對數據庫中可用的線索進行計算。該數據可以與ADO專家提供的感知數據(例如預期海拔)進行比較,并檢查實際數據是否一致。如果數據與預期不一致,人工智能工具會將差異與歷史示例進行比較,以提供對差異的解釋或調整。如果數據無法協調,則可能需要調整模型的擬合度,人工智能工具可以選擇將飛機作為不同類型(即軍用、民用)進行處理。

關于3(計算威脅評級),人工智能工具將使用可用的線索,如果它增強預測,可能還會使用這些線索的子集,來預測目標的威脅評級。 Liebhaber、Kobus 和 Smith 在[30]中發現威脅等級獨立于檢查的線索數量。

關于4(繼續處理),如果所有提示數據都可以充分解釋,人工智能工具將完成分析,或者它將繼續搜索和處理新的提示。這個過程將一直持續到模型通過基于解釋的輸出獲得ADO的批準,或者直到所有可用的線索都被處理并且模型擬合得到盡可能好的調整。

3.7 AI 工具在威脅評估中的挑戰

第3.5.2節概述的關于操作員對DSS的信任的關鍵點之一是用于生成威脅評估結果的模型的透明度。操作員很難對沒有提供理由和解釋的機器輔助預測有信心[4]。出于這個原因,已經創建了許多在計算和標準加權方面具有透明度的DSS方法。例如,許多MCDM方法可以為每個單獨屬性的權重以及它們如何對最終威脅評估做出貢獻提供充分的理由。這是MCDM DSS工具的優勢之一。不幸的是,這種透明性可能會導致工具缺乏復雜性和表現力。相反,機器學習工具可以同時基于所有數據點之間的非常深的聯系做出假設,這可能是以人類不會的方式。這種增加的復雜性往往會降低工具的透明度和可解釋性。

某些機器學習方法的結果仍然是透明的,并且以與自學的MCDM方法相似的方式工作。例如,線性回歸模型可以提供每個線索如何影響最終威脅評估評估的完整理由。該模型既受益于透明度,也受益于無需人類專家參與的自學。

其他一些機器學習模型并沒有從透明度中受益。最先進的機器學習模型之一是神經網絡。這是一個擁有大量研究的大領域,也是深度學習分支的新爆炸。這些方法不那么透明。在[31]中發現的2020年文獻調查探索了許多現有的試圖使神經網絡和深度神經網絡推理對最終用戶可解釋的工作,但是,局限性仍然存在。

現實世界的威脅評估變量通常包括決策過程各個級別的不確定性。對威脅評估準確性的最大影響之一來自根本沒有獲取的數據。這種丟失的數據可能是由于無法收集、傳感器故障、傳感器誤報或許多其他原因造成的。當數據完全丟失時,就很難就目標所擁有的威脅做出明智的決定。幸運的是,機器擅長執行計算,可以估計、替換或忽略丟失的數據。

在[22]中,探索了為每個決策結構預先計算不同查找表的選項。這將涉及根據每種可能的信息缺乏狀態訓練許多不同的模型,并將它們與完整狀態相關聯。這假設對于訓練有大量完整的示例可供借鑒。不幸的是,“為所有可能的輸入組合訓練網絡的天真的策略在復雜性上呈爆炸式增長,并且需要為所有相關案例提供足夠的數據”[32]。相反,[32]建議定義一個可以被認為是真實的基礎模型,然后將所有數據與該模型相關聯。

在許多可能的情況下,在訓練時沒有或只有很少的完整示例可用。在這種情況下,必須確定是僅使用完整數據進行訓練,還是以某種方式合并不完整的示例。在[32]中,發現用均值代替缺失輸入會導致比僅基于完整示例訓練網絡更差的性能。因此,尋求改變神經網絡架構或訓練方法的方法,以有效地合并(可能大量)不完整的數據示例。

使用不完整數據進行訓練的最有效方法之一來自[33]。本文證實,在訓練神經網絡中使用原始不完整數據可能是比在學習開始之前填充缺失屬性更好的方法。所采用的方法涉及對神經網絡架構的輕微改變,但應該與大多數現有架構兼容。該方法通過將第一個隱藏層中典型神經元的響應替換為其期望值來工作。高斯混合模型在每個神經元的輸出上進行訓練,以學習概率密度函數和期望值。這消除了通過單個值對任何缺失屬性進行直接插補的需要。 “隱藏層不是計算單個數據點的激活函數(對于完整的數據點),而是計算神經元的預期激活”[33]。該方法還取得了與其他現有方法可比的結果,這些方法可以從不完整的數據中進行預測,但需要完整的數據進行訓練。

另一種方法可以通過提高缺失數據插補的準確性來采取。[34]研究了文獻中許多可能的數據插補解決方案。它還指出,一些無監督學習聚類算法,如分類和回歸樹(CART)和K-means,已適用于缺失數據的問題。缺失數據插補的優點是不需要對實際的機器學習模型或平臺進行任何更改。當前存在或將來構建的任何基于完整數據提供準確預測的方法都將有效地處理通過插補生成的數據。數據插補的目標是以盡可能接近現有真實數據分布的方式填充缺失值。如果成功完成,則可以對新完成的數據使用現有的統計分析和機器學習工具。

4 AI工具的架構

在本節中,將討論AI工具的潛在架構。將涵蓋從面向操作員的界面到AI組件組合的設計。所提出的AI工具的整體架構可以在參考文獻[35]中看到,它需要三個主要組件,如圖6所示。

圖6:AI 工具的概念框架

未來的人工智能工具可能會將舊的基于模型或自上而下的方法與新的數據驅動的自下而上的方法結合起來。這種類型的系統允許人工智能工具擁有一個由數百或數千個專家派生規則以及數百萬條特定領域知識(如歷史傳感器數據)組成的知識庫[36]。一種可以結合領域專業知識和數據驅動學習的人工智能系統是回歸樹。圍繞回歸或分類樹構建用于空中威脅評估的AI工具將是一個不錯的選擇。回歸樹的另一個好處是它們的輸出可以被人類操作員解釋,并且可以解釋它的選擇。整個模型基于一系列決策或規則,這些決策或規則可以在操作員界面中作為理由提供。這使ADOs可以對AI工具提供的評估充滿信心,或者質疑為什么某個值的解釋與他們的解釋不同。

AI工具的前端組件將是所有ADO交互發生的地方。它將顯示可用信息和AI工具獲得的見解。它還將允許ADO與信息交互并形成自己的結論。此前端將需要分析ADO工作流程。在[4]中已經對美國海軍ADOs進行了采訪,并提出了許多不同的圖形顯示建議。前端應顯示計算出的軌道威脅等級,并為該評估提供證據和解釋。還應提供原始數據,以便ADOs可以確認AI工具的假設。盡可能以圖形方式呈現給用戶的概率,因為這會減少冒險行為[37]。前端還將通過使用強化學習來利用AI功能。應制定一項獎勵快速完成ADO活動的政策,例如將資源分配到目標軌道以保護資產。此RL算法將能夠決定用戶界面(UI)元素的放置位置以及UI上顯示的內容。如果將常見動作從菜單移動到主顯示屏增加了RL功能獲得的獎勵,那么ADO完成任務所用的時間將會減少。這確保了前端最終變得最優,并適合實際ADOs的工作流程。

人工智能工具后端的兩個不同元素之間存在區別。在AI中,該工具可以是正在學習的,也可以是經過全面訓練并準備好執行的。首先將檢查學習后端。無論是第一次訓練AI工具還是處于持續學習狀態,它都會利用學習后端。學習后端連接到包含歷史數據的知識數據庫,可用于提供數百萬對自下而上的人工智能技術有用的數據點。這是機器學習和決策樹將特別有效的地方。如果實施決策樹學習算法,它將能夠創建有助于根據歷史數據和決策對新目標進行分類的規則。這些規則還允許AI工具向ADOs解釋其輸出。

當工具準備好用于生產并與前端交互時,將使用正在執行的后端。這種執行就緒狀態將存儲自上而下或基于模型的人工智能的人類專家規則。該組件將是一個由學習后端輔助的專家系統。通過對ADOs的專業知識和對目標線索重要性的看法的采訪中獲得的數千條規則將使其成為AI組件。同時,通過將這些人工規則與通過機器學習在學習后端找到的規則相結合,可以優化值和預測。

一些功能性和非功能性需求可以從目前已知的用于威脅評估的AI工具中指定。更高級的要求應通過與未來ADO 客戶的面談來制定。

4.1 功能需求

1.當傳感器或智能數據更新時,人工智能工具應攝取數據并進行訓練或預測。

2.AI 工具應為 ADO 定義的感興趣區域內的所有目標提供評估預測。

3.界面應提供評估說明并允許 ADO 交互。

4.AI 工具應提供自動模型訓練或新數據的重新訓練。

5.AI 工具應與 ADO 請求時可用的任何數據子集一起使用,并在新數據可用時合并它。

4.2 非功能性要求

1.AI 工具應在數據可用后 100 毫秒內提取數據。

2.AI 工具必須處理每個實例和感興趣區域的數百個目標。

3.AI 工具應在 2 秒內提供 ADO 要求的特定威脅評估。

4.界面必須符合 ADO 偏好,并允許在 3 次點擊內訪問所有常用命令。

5.人工智能工具必須對缺失的數據做出強有力的反應,并繼續進行評估和學習。

4.3 未來步驟

本報告之后的下一步將是開發供ADOs用于空中威脅評估的AI工具。為完成此目標應采取的一系列步驟如下:

1.需求分析:人工智能工具開發人員應在威脅評估過程的每個階段與關鍵決策者坐下來。應采訪ADOs,以確保該工具滿足其工作模式和預期結果的所有要求。還應與流程早期的關鍵人員進行面談,以確保系統兼容性。這將包括傳感器和其他資產經理,他們可以確認系統輸出將如何格式化并提供給AI工具。人工智能工具完成分析后,需要以有用的格式輸出和存儲,因此依賴人工智能工具輸出的系統中的決策者應該分析他們的需求。

2.確定AI工具所需的組件:完成需求分析后,開發人員應決定哪些通用AI工具組件將需要,哪些可以省略(如果有的話)。可能還需要開發某些專門的組件來支持威脅評估和軍事環境所面臨的獨特挑戰。應該開發工具的架構,并為每個組件分配明確的職責。該架構還將受益于每個組件之間的嚴格輸入和輸出合同,以便數據可用于現有系統。

3.AI和ML組件的選擇和評估:架構和需求確定后,應該明確哪些類型的AI和ML適合該問題。每個可能涉及AI或ML的組件都需要提出和訓練多個候選人。然后將比較這些候選者,以確定哪個最有效地解決了獨特的要求。一旦選擇了最佳模型并選擇了正確的AI類型,所有模型將被移入生產環境并準備連接到AI工具中的其他組件。

4.文檔和培訓:一旦開發了最終的AI工具并通過代碼注釋和其他文檔工具正確記錄了文檔,就該開發外部文檔了。該文檔應傳達AI工具的實用性以及如何有效使用它及其功能。審查ADO要求將有助于為受眾塑造文檔。一旦開發了該工具,培訓會和從ADOs收集反饋將很有用。

5.集成到生產系統:人工智能工具將投入生產,以協助ADOs進行空中威脅評估。需要檢查智能管道中較早的系統和管道中較晚的系統之間的所有連接以確認兼容性。

6.監控和維護:隨著時間的推移,隨著新威脅或新情況的發現,人工智能工具將能夠得到更新和改進。無論是通過人工還是自動系統,持續監控AI工具以確保預測質量不會隨著時間的推移而降低,這一點很重要。通過使用新版本更新舊模型,也可以納入AI和ML研究的新改進。

5 結論

人工智能工具是執行通常由人類處理的復雜任務的最先進方法。這為提高人類操作員的效率和有效性提供了許多可能性,例如執行高腦力任務的ADOs。威脅評估就是這樣一項非常適合人工智能協助的任務。重要的是要承認,人工智能工具不會取代操作員做出關鍵決策:相反,它們將為決策者提供更準確的數據,以有效地做出關鍵和及時的決策。

將ML集成到AI工具中可以帶來許多過去只能通過人類設計才能實現的新可能性。ML可以讓AI工具在沒有人類教授或者面對不斷變化的情境要求或敵人能力的情況下,從數據中學習。它可以重新設計AI工具交互,使其對 ADOs盡可能有用。它可以幫助將新目標與歷史示例進行聚類,從而為ADOs提供更好的威脅心理模型。可以自動檢測異常數據或空中目標并向操作員報告。

熟練和經驗豐富的ADOs與AI工具的結合將實現更快、更準確和更強大的空中威脅評估。通過讓人工操作員參與進來,該工具將保持ADO的責任和專業知識,同時提高生產力和效率。結合處理不完整數據狀態的現代方法也將使該工具對數據不準確或不可用具有魯棒性。

因此,該工具應該有助于國防和威脅評估過程。

付費5元查看完整內容

本報告描述了北約第一個多領域小組IST-173所取得的成果。與會者包括來自不同小組和團體的科學家,以及來自北約機構和軍事利益攸關方、學術界和工業界的科學家,這為AI和軍事決策大數據這一主題創造了第一個利益共同體。該團隊在實踐中證明了一種新的STO方法的可行性,即任務導向研究,以激發公開對話、自我形成的研究合作和跨小組活動。此外,該方法還有助于為人工智能和軍事決策大數據這兩個主要能力領域聯合開發北約首個科技路線圖,以應對北約在這些領域面臨的作戰挑戰。由于新的組織(軍事利益相關者積極參與的多領域團隊)和這種創新方法的應用,確定了一些經驗教訓,應該支持軍事決策AI和大數據的進一步操作。

付費5元查看完整內容

【報告標題】

Human Factors and ISR Concept Development and Evaluation 人為因素和情報、監視、偵察 (ISR) 概念開發和評估

【報告來源】

北約技術報告

【出版時間】

2022年2月

【研究問題】

情報、監視和偵察 (ISR) 行動是關于收集信息并向操作員提供信息,而操作員又需要就其戰區的各種行動方案做出具體決策。可以肯定的是,ISR 行動是技術密集型的。然而,與此同時,ISR 行動是一個非常以人為本的過程。盡管如此,ISR 概念開發和評估 (CD&E) 過程中幾乎沒有人為因素 (HF) 研究。通過研究新的ISR技術和概念對不同操作環境下操作員性能的影響,研究人員可以提供更科學的建議,為高層政策和決策者提供關于所有ISR環境下未來ISR技術和能力的信息:包括空中、海面、地下和空間。就這一點而言,HF 研究方法應成為任何 ISR CD&E 過程的組成部分,為 ISR 指揮鏈各級的政策和決策者提供信息和建議。

【研究目的】
 北大西洋公約組織 (NATO) 研究和技術組織 (RTO) 人為因素和醫學 (HFM) 小組任務組 (RTG) 276 (NATO RTG HFM-276) 題為“人為因素和 ISR 概念開發和評估”,旨在識別和理解對有效 ISR 操作至關重要的 HF 問題。更準確地說,這項開創性工作的目標是:

1 確定有效 ISR 行動的關鍵 HF 問題(例如,態勢感知、工作量、組織結構、協調和協調機制、可視化、信任、信息共享和管理、領導力以及做決定);

2 使用行為理論模型來發展我們的研究方法并理解我們的發現;

3 就 ISR CD&E 操作中 HF 研究的使用和實施提出建議。

【結果、意義、影響】
 北約 HFM-276 任務組使用組織有效性模型開發了一組調查,以識別和了解對有效 ISR 行動至關重要的 HF 問題。該模型的核心是由任務、收集、處理、利用和傳播 (TCPED) 組成的 JISR 流程。源自該模型以及其他來源的數據收集計劃著眼于 ISR 行動中的一些 HF 問題的作用:基本 HF 知識、情況評估、工作量、組織結構、信任、信息共享、信息管理、領導力、文化、組織過程、組織靈活性、共享意識和責任、協調和協調機制、決策、能力、情報請求管理(IRM)、通信、元數據和應用系統。所有這些 HF 因素都會影響 ISR 操作概念并影響操作員的績效。此外,該報告總結了一些改進北約和非北約行動的 ISR CD&E 過程的實際影響,重點是開發應包含在 ISR CD&E 過程中的 HF 研究方法。這種 HF 方法將像技術和程序 ISR 概念開發的質量控制組件一樣工作。預計研究結果將有助于為 ISR 指揮鏈各級的政策和決策者提供信息和建議,以增強北約 ISR 規劃、任務執行和能力發展中的信息和決策優勢。它還有望幫助告知 ISR 與其他聯合流程的整合,例如在確定當前與 ISR 相關的 HF 差距以及與其他流程整合方面的聯合目標。

付費5元查看完整內容
北京阿比特科技有限公司