在北約內部和成員國使用建模和仿真 (M&S) 對支持國防訓練、能力發展、任務演練和采購過程中的決策支持提出了越來越高的要求 [1]。因此,M&S 是聯盟及其國家的一項重要能力。然而,當前的 M&S 系統對高度動態的軍事作戰環境的代表性有限,其中物理環境的狀態會影響部隊的行為(例如,天氣對地面車輛機動性的影響)以及軍事物理(動能)行為會影響環境狀況(例如,彈藥對建筑物、基礎設施等的破壞)。目前在仿真系統中實現動態元素時,它們通常以定制和預先編寫好的方式執行,這限制了仿真互操作性的能力和范圍。
圖 1-1:任務期間遭遇的動態環境
?2016 年,北約 MSG 探索小組 ET-045“分布式仿真的動態合成自然環境”成立,以調查分布式仿真中相關動態合成環境的主題是否需要進一步研究。這確定了實現相關動態地形的主要挑戰 [2]。結論是存在許多與相關動態合成環境 (DSE) 相關的未解決問題,這些問題將限制未來北約分布式仿真的可用性。這些問題中的大多數都屬于技術性質,包括沒有開放標準或未經過驗證的方法來實現跨分布式 M&S整合天氣、天氣影響和物理(動力)戰爭對環境的影響。為響應 ET-045 的調查結果,一項為期 3 年的任務組 (TG) 技術活動提案 (TAP) 已提交給 2017 年春季的北約 MSG 商務會議,即MSG-156,于 2017 年 9 月開始。
本報告包含由 ET-045 定義的幾個常用術語,即:
? 合成環境 (SE) 是代表物理世界的元素集合,系統的(模擬)模型在其中存在并相互作用(即地形、天氣、海洋、空間)。它包括表示環境的元素、它們對系統的影響,以及系統對環境變量影響的模型數據。
? 動態合成環境(DSE) 是一種在模擬過程中元素可以改變的SE,例如雨水對地形表面的影響。這可能是由于環境內的交互(例如,影響地形條件的天氣)、來自模擬實體的交互(例如,武器效果或單位挖掘)或由于外部交互(例如,教練驅動的變化)。
ET-045 和 MSG-156 并不認為 SNE 一詞涵蓋了 SE 中的所有環境方面,因為還存在需要表示的非自然元素。因此,MSG-156 TG 決定在本報告中采用 SE。在此之后,TG 已經意識到,在下一版 AMSP-01 [3] 中,SNE 一詞將被合成物理環境 (SPE) 取代,這樣可以更好地捕捉范圍。由于 MSG-156 已經使用 SE 一詞撰寫了幾篇出版物和大部分報告,因此決定在本報告中繼續使用 SE。
圖 3-9:DSE 的概念解決方案架構
MSG-156 任務組 (TG) 的目標定義為:
定義最佳實踐、所需方法、技術,并為在未來分布式仿真練習中實現相關動態 SE 所需的標準提供信息;
通過概念實驗,評估方法和技術。
為實現上述目標,MSG-156 定義了一個工作計劃,其中包括以下活動(見圖 1-2):
圖1-2:MSG-156工作計劃
a. 識別DSE要求:確定分布式仿真中 DSE 的功能要求,包括現實世界操作的哪些方面對于在仿真中表示至關重要;這將在第 2 章中討論。
b.調查現有解決方案:了解 DSE 的當前最先進技術,以確定需要解決的差距以實現相關 DSE;這將在第 2 章中進一步討論。
c.定義用例:確定相關的操作場景,作為評估支持 DSE 架構的方法和技術的基礎;這些用例將在第 3 章中進一步討論。
d. 定義解決方案概念:定義解決方案概念以在分布式仿真中實現相關 DSE。第 3 章介紹了一些相關動態效果的選定用例和概念圖,例如可通行性,小組將其用作開發解決方案概念的架構基礎。第 4 章和第 5 章更詳細地介紹了該小組討論的兩個主要主題,即動態地形和動態天氣,涵蓋相關的動態效果、數據源和現有標準。第 6 章將所有這些發現結合到 MSG-156 提出的 DSE 解決方案架構中。
e. 概念論證:對解決方案概念進行(部分)實施,使其可行性得到論證,并吸取實踐經驗,以及解決方案概念是否有效并滿足確定的要求,以及哪些領域需要進一步研究。第 7 章將更詳細地討論概念演示。
f. 撰寫技術報告:最后一項活動是撰寫這份報告,并將所有經驗教訓結合起來,為 M&S 社區提供實現相關 DSE 的建議;這包括確定合適的技術和方法,并就應制定的標準提出建議。
圖 3-5:地形和天氣對車輛通行性影響的概念模型圖
圖 3-6:由于武器效應引起的地形和物體變形的概念模型圖
圖 3-7:受天氣影響的飛行器飛行動力學概念建模圖
圖 3-8:受天氣影響的傳感器性能的概念建模圖
圖 8-1:動態綜合環境架構
建模和仿真 (M&S) 的使用是北約聯盟及其伙伴國家在國防聯合、集體和聯盟訓練、能力發展、任務規劃和戰備以及決策支持方面的一項重要能力。防御作戰環境是高度動態的,其中物理環境狀態會影響部隊行為(例如,天氣對地面車輛機動性的影響),而物理(動力)作戰行為會影響環境狀態(例如,彈藥損壞建筑物、基礎設施等)。目前 M&S 的實踐、標準和技術主要是基于公共環境數據集和重復使用環境數據庫,在分布式仿真中實現外部世界環境的靜態表示。在當前仿真系統中表示動態元素的情況下,它們通常以預先編寫好的方式實現,并且特定于給定系統。這限制了分布式異構仿真系統的互操作性的能力和范圍,并影響了 M&S 在聯合訓練等應用中的使用,這需要對作戰環境進行通用和一致的表示,以確保公平的戰斗條件。
MSG-156 始于 2017 年,作為一個為期 3 年的任務組 (TG),旨在解決代表 M&S 系統中現實世界操作環境挑戰的需求與現有技術能力之間的差距,目的是研究如何將相關聯的動態合成環境 (DSE) 可以在未來的分布式模擬中表示。 TG 由來自北約伙伴國政府、研究機構和行業的主題專家 (SME) 組成,包括模擬和合成環境 (SE) 的開發者(提供者)和消費者(用戶)。
MSG-156 TG 開展的研究活動將為北約 M&S 總體規劃的主要目標之一提供信息,即“為仿真應用和支持材料開發一個北約標準互操作性架構”。
在調查了仿真系統中動態環境的現有功能,并調查了仿真和娛樂游戲中最先進的技術和算法之后,TG 開發了基于用例的概念建模圖,以確定 DSE 環境中所需的關鍵交互。建模和仿真即服務 (MSaaS) 概念構成了 DSE 概念解決方案架構的基礎。TG 研究了動態地形和真實天氣的細節,以將概念方法改進為詳細的解決方案架構,允許跨異構分布式模擬系統一致表示動態合成環境。
該解決方案架構的關鍵概念是共同服務負責在模擬練習中管理和分發環境數據。這意味著 M&S 聯盟將使用 Terrain Service 來獲取有關地形的信息,并使用 Wea??ther Service 來獲取有關天氣的信息。通過讓一項服務負責管理這些數據,可以緩解許多相關問題。此外,當對操作環境的合成表示進行動態更改時,特定的專業服務負責執行修改,從而消除在每個單獨系統中本地實施此類修改時可能出現的相關問題。這些數據修改服務將其更改傳達給地形服務,允許所有聯邦成員從那里訪問更新的數據。
隨著 DSE 概念架構的開發,MSG-156 進行了概念驗證演示,使用該體系結構部署、集成和執行了聯邦模擬和服務,這些模擬和服務由參與國使用不同行業合作伙伴提供的工具和產品進行。盡管可用的聯邦模擬和服務的數量有限,但演示證明了解決方案架構是可行的,并且這種架構將有助于確保可以在分布式模擬中以一致的方式進行動態更改和表示。概念演示還有助于確定架構的哪些方面需要進一步研究以達到技術準備水平 (TRL) 以支持操作模擬練習。
由于時間和規模的限制,在提議的基于 MSaaS 的 DSE 架構中使用的技術目前還沒有被證明足夠成熟以實施到操作模擬系統中。因此,任務組建議應該進行更大規模的實驗,以評估解決方案架構在更真實的測試用例中服務受到壓力的環境中的執行情況。
DSE 架構依賴于不同服務之間的標準化接口。盡管其中一些接口已經成熟,例如用于分發地理信息的 OGC 接口,但作為未來開放標準的一部分,還需要考慮進一步開發其他接口。此外,應探索新格式的選項,以共享 3D 內容,支持將 3D 模型內容分發和流式傳輸到仿真系統,或在仿真執行期間對 3D 模型內容進行動態更改。
事實證明,獲取真實世界的天氣數據對 TG 來說是一個挑戰。無法免費獲得所需的更高分辨率數據,國家 MOD 和氣象局之間的現有合同不包括為研究項目提供此類數據。如果未來的模擬演習需要天氣數據,則需要將這一要求包含在現有的國家合同中,或者最好讓北約為所有參與者提供對此類數據的訪問。
建議將 MSG-156 的輸出提交給新的 SISO 研究組 (SG),以評估和確定如何解決 DSE 的特定方面。這應包括審查現有的 SISO“環境數據和流程的重用和互操作 (RIEDP)”產品開發組 (PDG) 活動和“基于云的 M&S”(CBMS),因為這些可能已經涵蓋了一些所需的標準。 MSG-156 的輸出還應用于為作為 NATO MSG-193 專家組“聯邦任務網絡 (FMN) 中的建模和模擬標準”的一部分開展的活動提供信息。
最后,建議北約和/或成員國應考慮提供和托管 DSE 所需的關鍵服務。提供地形服務、氣象服務和各種修改服務將顯著減輕建立由 DSE 支持的未來分布式模擬練習的負擔。
美國在太空的成功以及在這一領域不斷升級的軍事任務,需要在太空和陸地上有一個永久和強大的醫療支持裝置。這項研究試圖回答這個問題:載人軍事空間任務的醫療支持需要如何組織、培訓和裝備,以實現國家安全戰略(NSS)的目標,將空間作為一個安全領域加以推進?假設是有必要建立一個專門針對美國防部空間作戰的醫療支持結構。使用了情景規劃研究方法,并對四種情景進行了比較。這四種模式包括使用目前的空軍醫療服務,目前的NASA醫療支持,兩者的混合,和一個完全獨立的醫療服務。關鍵的發現是,這些設想在很大程度上是基于美國防部選擇如何組織其空間資產。是否使用太空部隊、太空軍團或其他一些變革組織將極大地改變特定醫療支持結構的可行性。此外,與美國宇航局的合作,特別是在美國防部載人航天行動的早期階段,將是至關重要的。此外,美國防部缺乏一個可持續的空間醫學專家的培訓管道。建議包括:在美國空軍航空醫學院(USAFSAM)與德克薩斯大學醫學部(UTMB)合作開發一個培訓管道,利用美國宇航局的醫療支持進行早期的國防部載人任務,包括載人航天任務中的醫生,在可能的情況下提供任務中的醫療支持,并保持對空間醫療支持的靈活性和適應性。
建模和仿真被開發和用作支持系統分析、設計、測試和評估、采集、培訓和指導以及更多領域的支持技術。如今,各種各樣的建模和仿真 (M&S) 工具正在更廣泛的不同應用和問題領域中使用。 M&S 通常在實際系統無法滿足用戶需求(例如,風險、可用性)或在其他方面比實際系統更有效(例如,成本、有效性)時應用。但是,本質上,所有 M&S 工具都提供了一些基于不同類型近似的系統(例如實體、現象、過程)的抽象表示。因此,M&S 功能不能完全取代實際系統,更重要的是,它們的使用會帶來不確定性。
M&S 的驗證和確認 (V&V) 是專注于在整個生命周期內評估 M&S 系統和軟件工程過程領域。實施 V&V 是為了提供必要的證據,以獲取有關 M&S 假設、能力和與可接受性標準相關限制的知識。 V&V 不僅利用系統工程和軟件工程,還利用信息科學、認知和行為科學以及其他相關學科。
北約 (NATO) 建模和仿真小組 (MSG) 進行了一系列努力,包括 MSG-054,它為 M&S 的有效 V&V 制定了標準和指導文件。 MSG-054 的努力得到了電氣和電子工程師協會 (IEEE) 標準 1516.4?-2007 聯盟的驗證、確認和認可[5]。除了建立 IEEE 標準外,MSG-054 還開發了 V&V 復合模型,從中選擇 V&V 方法和技術,以匹配 V&V 工作的風險和資源限制,同時遵守相關政策、標準和指導 [6]。V&V 復合模型是可能的活動和環境的超集。
MSG-073 實現了驗證和確認的通用方法 (GM-VV) 的標準化,如圖 1 所示,它提供了一個通用框架來有效地開發一個論據,以證明接受和使用已識別的模型、仿真、基礎數據、結果、和目標(預期)操作環境中的能力。 GM-VV 成功完成了仿真互操作性標準辦公室 (SISO) 標準化流程,以提供完全接受的驗證、確認和認可 (VV&A) 指導文件 [3]。 GM-VV 的目的是為 V&V 提供一般適用的指導:
? 促進 M&S 界內對 V&V 的共同理解和交流;
? 適用于 M&S 生命周期的任何階段(例如,開發、使用和再利用);
? M&S利益相關者的接受決策過程導向;
? 由 M&S 利益相關者的需求和 M&S 使用風險承受能力驅動;
? 可擴展以適應任何 M&S 范圍、預算、資源和使用風險閾值;
? 適用于多種M&S 技術和應用領域;
? 將產生可追溯、可重復和透明的基于證據的接受論點;
? 可以在企業、項目或技術級別進行實例化;
? 促進 V&V 結果、工具和技術的重用和互操作性。
圖1: GM-VV參考框架
在這些先前的努力中,M&S 使用風險得到了認可,實際上是指南和標準中記錄的建議的驅動因素。盡管 M&S 界就該主題的重要性達成了共識,但沒有公認的方法可用于 M&S 使用風險的限定或量化,以說明項目特定的 M&S 要求和約束。此外,M&S 工具及其開發過程的復雜性日益增加,從而導致包括 M&S 使用風險在內的一系列風險。 M&S 使用風險與 M&S 結果的不當應用及此類應用對決策者的后果有關。
風險管理依賴于評估風險的影響(一旦實現)、定義減輕風險的方法以及評估減輕風險的成本。有效的風險管理需要識別風險和平衡額外投資以減輕風險的方法。這種評估是基于對風險實現的可能性和實現的影響的評估。識別和評估風險后,可以制定緩解策略。評估 M&S 使用風險的方法可用于確定開發目標的優先級、準備和響應資源可用性的變化,以及定制 V&V 活動。
2014 年 9 月,北約合作支持辦公室 (CSO) 批準組建 MSG-139,建模和仿真 (M&S) 使用風險識別和管理。該任務組的主要目標是為 M&S 使用風險識別和分析,定義和部署具有相關方法和技術的通用方法。一套互補的、最先進的M&S使用風險識別、分析和緩解方法,通過以下方式促進未來北約和國家M&S項目的質量、可信度和效用保證:
? M&S使用風險識別的通用方法和指南;
? 對M&S使用風險問題和解決方案有共同的理解和知識;
? 一套M&S使用風險分析的方法和技術;
? 基于M&S使用風險而不是成本的替代方法和相關指導方針;
? M&S使用與M&S技術和系統生命周期范例無關的風險識別和分析解決方案。
本文件報告了MSG-139在滿足上述目標方面的努力結果。具體來說,在第一章中,定義了問題,選擇和應用M&S使用風險方法論(MURM)的基本原理,并介紹了該方法的簡短歷史和概述。第二章從語義定義出發,推導了M&S使用風險方程,并給出了該方程的解,該方程在應用空間中以一個三維曲面表示。相關的數學證明和細節見附錄1和附錄2。第三章介紹了一個MURM的實現,并為從業者提供了建議和指導。在第4章中,一個基于實際應用的用例被提出,說明了在逐項需求的基礎上評估風險狀態的方法的有效性,同時也演示了為M&S的特定預期用途(SIU)降低風險的方法。
圖 2:建模和仿真使用風險方法論(MURM)建立在現有概念的基礎上
本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:
? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;
? 在 RTG 的北約成員國之間共享風險評估方法和結果;
? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。
軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。
北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。
本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。
圖一:網絡安全評估過程的五個主要步驟。
第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。
絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。
北約正在進行一項名為聯邦任務網絡(FMN)的重大舉措,旨在在北約成員國和伙伴國家之間建立一個共同的技術和培訓基礎,以便在聯盟行動需要時,他們的部隊能夠對關鍵信息系統進行互操作。FMN不是網絡;它是一套互操作的標準和實踐。作者正在領導MSG-193專家團隊的工作,該團隊一直致力于支持在FMN中納入適當的建模和仿真 (M&S) 標準和實踐。本文總結了FMN規范是如何制定的,包括MSG-193作為“M&S辛迪加”在過程中的作用。然后,該論文強調了NMSG的科學技術與FMN支持的軍事行動之間的文化差距,以及如何有效彌合這種差距。FMN開發的第5和第6螺旋(階段)將是建模和仿真的主要重點,包括任務演練、培訓和決策支持。本文最后總結了當前針對這些螺旋的建議中的M&S技術。
澳大利亞皇家海軍 (RAN) 最近推出了一項開發和使用機器人、自主系統和人工智能 (RAS-AI) 的戰略,該戰略將通過一項運動計劃來實施。蘭德澳大利亞研究團隊正在通過建立證據基礎來支持 RAN 的這項工作,以幫助識別和塑造基礎活動。本報告概述了近期和長期(到 2040 年)海上 RAS-AI 技術的現狀和軌跡,并對近期、中期和長期可能執行的任務進行了高級審查根據相關的技術和非技術推動因素。
本報告并沒有研究人工智能在海上行動中更廣泛的整合,而是關注支撐無人平臺的任務和技術的進步,包括無人空中、水面和水下航行器。除了概述近期和長期 RAS-AI 任務的關鍵技術推動因素外,該報告還指出了在 RAS-AI 能力發展中應考慮的三個關鍵原則:(1)關注多種技術(新系統和“遺留”系統),而不是單一的技術解決方案; (2) 考慮國防和商業 RAS-AI 系統的互補性進展; (3) 監測非技術因素,例如不斷發展的監管、法律、政策和道德框架,這些框架可能會顯著影響未來的技術采用路徑。
無人機行業現在正處于黃金時期,它的增長有望呈指數級增長盡管人道主義救援人員已經使用這種技術10年了,但市場的擴大和技術的發展正在推動越來越多的組織裝備這種設備。無人駕駛飛機(Unmanned Aerial Vehicles,簡稱UAVs),也被稱為遠程駕駛飛機或“無人機”,是一種通過遠程控制或自主飛行的小型飛機。
這份報告關注的是非武裝民用無人機和無人機的使用情況。未來的報告可以探討無人水下航行器和地面無人機的影響和發展。2014年,人道主義協調廳在其人道主義應對政策文件中強調了無人機在人道主義行動中的不同用途,這表明無人機技術的使用越來越多。從理論上講,瑞士地雷行動基金會(Swiss Foundation for Mine action)在其報告《人道主義行動無人機(2016)4:測繪》中對無人機在人道主義行動中的應用進行了6類總結;向偏遠或難以到達的地點運送基本產品;搜索和救援(SAR);支持損害評估;提高態勢感知;監測變化(如城市和營地的增長、農業使用或道路或基礎設施的建設)。這份報告將揭示人工智能驅動的無人機是如何改進和修改這些用途的。
無人機的迅速采用可以通過現代無人機帶來的機遇和它們可以利用的日益增長的人工智能(AI)相關能力來解釋。一方面,它們的使用通過自治得到簡化和授權。另一方面,視覺分析性能的改進使得依賴于無人機圖像成為可能。這份報告旨在強調人工智能提高無人機能力的程度。
由于深度學習方法的普遍化,無人機可以進一步捕捉它們運行的環境,從而允許越來越復雜的任務。這項技術還可以顯著改善無人機的視覺識別和圖像分析。由于人工智能算法的使用需要較高的計算能力,因此它的應用往往發生在飛行后。這一表現將通過三個案例研究加以強調:
用于北加州野火應急響應的無人機(2018年11月)
聯合國兒童基金會在馬拉維使用無人機應對颶風“伊代”(2019年3月)
報告還探討了無人機未來的潛在功能。
本報告總結了 IST-144-RTG 在基于內容的多媒體分析 (CBA) 方面的研究進展,該研究由來自 NLD、NOR、美國和英國的團隊進行。這些科學家匯集了來自異構媒體源(文本、視頻和圖像)和人類評估的信息檢索策略。因此,可以通過基于內容的信息檢索和多媒體分析來利用多個異構數據源,以提供及時準確的數據概要,并結合人類直覺和理解來開發問題/解決方案空間的全面“視圖”。北約聯盟軍事領導人、指揮官和情報分析員需要這種可互操作的工具,這些工具可以交叉提示從一種方法獲得的知識以在另一種方法中生成任務,以加快態勢感知和決策制定,并應對國防信息空間的復雜性。提供了核心技術組件的描述以及它們在概念演示器中的組合應用的描述,該演示器解決了一個虛構但現實的場景,代表了聯盟面臨的防御挑戰。該報告總結了解決限制所需的進一步工作的發現和建議,包括技術和系統級別的差距,例如用于集成分析服務的開放分布式架構,現在和未來的預期。
本報告描述了北約第一個多領域小組IST-173所取得的成果。與會者包括來自不同小組和團體的科學家,以及來自北約機構和軍事利益攸關方、學術界和工業界的科學家,這為AI和軍事決策大數據這一主題創造了第一個利益共同體。該團隊在實踐中證明了一種新的STO方法的可行性,即任務導向研究,以激發公開對話、自我形成的研究合作和跨小組活動。此外,該方法還有助于為人工智能和軍事決策大數據這兩個主要能力領域聯合開發北約首個科技路線圖,以應對北約在這些領域面臨的作戰挑戰。由于新的組織(軍事利益相關者積極參與的多領域團隊)和這種創新方法的應用,確定了一些經驗教訓,應該支持軍事決策AI和大數據的進一步操作。
【報告概要】
認識到地面自主系統需要在未知的任務中運行,北約正在對地面車輛自主移動建模和仿真進行投資,以改進和準備未來運作。來自世界各地的北約工程師和科學家正在努力而有目的地塑造未來的作戰能力,并作為地面部隊保持準備和彈性。隨著北約展望未來,地面車輛界有機會幫助塑造陸軍在實現國家和國際安全目標方面的獨特作用。隨著情報、監視、目標獲取和偵察能力的快速發展,確保自主機動性和操作變得更加重要。北約的未來部隊必須能夠并準備好在極端條件下執行各種任務,因此它必須準備好運用地面力量/地面部隊,以在整個軍事行動中實現戰略成果。
地面自主系統是許多北約國家未來軍事戰略的關鍵部分,商業公司正在競相開發自主系統以率先進入市場。在這場部署這些系統的競賽中,仍然缺乏對這些系統的能力和可靠性的了解。自主地面系統的一項關鍵性能衡量指標是其在道路上和越野時的機動性。自主武器系統的開發和部署通常指向幾個軍事優勢,例如作為力量倍增器,更重要的是,可能需要更少的作戰人員來完成特定任務。與商業自治系統不同,軍隊必須在可能不存在道路的未知和非結構化環境中運作,但物資必須到達前線。在戰場上,機動性是生存能力的關鍵,指揮官知道在什么地形上部署哪種車輛至關重要。指揮官需要有能力評估自己和敵方部隊在作戰區域的車輛機動性,這將增加對任務規劃的信心,并降低因車輛受損而導致任務失敗的風險。
北約國家聯合探索評估地面自主系統性能和可靠性的方法,制定一項戰略,以制定一個總體框架,以開發、整合和維持先進的載人和地面自主系統能力當前和未來的力量。該活動利用了 AVT-ET-148、AVT-248 和 AVT-CDT-308 在下一代北約參考移動模型 (NG-NRMM) 上的結果,并共同證明了自動駕駛汽車具有專門的建模和仿真要求關于流動性。隨后,開發了任務領域,并組建了團隊以開展以下工作:
自主軍事系統 M&S 的挑戰和特殊要求;
與自主軍事系統相關的定義;
當前可用于評估自主系統移動性的軟件;
評估移動性與數據通信的相互依賴性的方法;
以NG-NRMM AVT-248 結果為基礎,確定評估自主系統越野機動性的方法。
這項工作提供了一份文件,簡要概述了現有能力、計劃的未來活動以及后續研究任務組 (RTG) 的戰略方向。這份總結報告將詳細介紹這些成就,并為自主導航框架的開發和實施提供建議。
低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。
【報告概要】
在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。
無人機的參數化定義包括以下幾類:
描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。
考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。
在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。
由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。
無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。
然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。
sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。
此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。
圖1 無人機類別與其他類別/參數的關系(part 1)
圖2 無人機類別與其他類別/參數的關系(part 2)
圖3 參考坐標系
【報告目錄】