亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本報告總結了 IST-144-RTG 在基于內容的多媒體分析 (CBA) 方面的研究進展,該研究由來自 NLD、NOR、美國和英國的團隊進行。這些科學家匯集了來自異構媒體源(文本、視頻和圖像)和人類評估的信息檢索策略。因此,可以通過基于內容的信息檢索和多媒體分析來利用多個異構數據源,以提供及時準確的數據概要,并結合人類直覺和理解來開發問題/解決方案空間的全面“視圖”。北約聯盟軍事領導人、指揮官和情報分析員需要這種可互操作的工具,這些工具可以交叉提示從一種方法獲得的知識以在另一種方法中生成任務,以加快態勢感知和決策制定,并應對國防信息空間的復雜性。提供了核心技術組件的描述以及它們在概念演示器中的組合應用的描述,該演示器解決了一個虛構但現實的場景,代表了聯盟面臨的防御挑戰。該報告總結了解決限制所需的進一步工作的發現和建議,包括技術和系統級別的差距,例如用于集成分析服務的開放分布式架構,現在和未來的預期。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

引言

本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:

? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;

? 在 RTG 的北約成員國之間共享風險評估方法和結果;

? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。

軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。

北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。

本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。

圖一:網絡安全評估過程的五個主要步驟。

報告結構

第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。

執行總結

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。

絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。

付費5元查看完整內容

NATO Data Exploitation Programme

北約數據開發計劃旨在有效利用數據,開發保持北約軍事和技術優勢所需的技能、人力、敏捷流程、工具、服務和技術。

目標

  • 實現認知優勢(以及信息優勢和數據支持決策)
  • 在 IT 和熟練勞動力的支持下保持軍事和技術優勢
  • 單一邏輯 CIS 環境,促進聯盟范圍內的數據管理方法
  • 可信信息共享文化、數據治理、企業范圍的數據可用性
  • 積極利用數據基礎設施和資源來支持各級決策
  • 數據素養和批判性思維被認為是整個聯盟的核心要求
  • 越來越多的數據專業人員擁有有效利用的手段數據

實施計劃

  • 數據開發計劃實施規劃將于 2022 年初到期
  • 與數據利用框架戰略計劃(2022 年)密切相關
  • 聯盟范圍內的參與、協調與協作(北約企業和國家)
  • 有效交付需要立即實施行動

付費5元查看完整內容

摘要

戰術軍事陸地行動嚴重依賴地形,因此在軍事決策過程中始終需要考慮地形。地形相關(地理空間)戰術信息產品,例如最佳路線或近場途徑通常由情報單元中的地形分析師確定,但也可以自動生成。這些產品可用于決策支持工具,以支持規劃過程。當在這些決策支持工具中使用機器學習時,這些產品還有助于對軍事單位的行為進行建模,這是通過機器學習找到表現良好的行動方案所需的。這項工作概述了地理空間產品,并將它們分類為基于層的體系結構,其中產品基于底層的產品。我們進一步規范了創建機器學習所需的戰術地形模型和戰術任務模型的步驟。基于兩個實際示例,我們演示了如何在提出的架構中生成地理空間產品,這些產品如何用于機器學習以進行戰術規劃,以及如何將學習到的行動和情報產品提供給規劃者以支持決策。

付費5元查看完整內容

摘要

人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。

引言

縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。

人工智能的進展

幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
 雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。

付費5元查看完整內容

?

對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解

作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。

作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。

作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。

一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。

在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。

作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。

付費5元查看完整內容

人工智能 (AI) 在規劃和支持軍事行動方面發揮著越來越大的作用,并成為情報和分析敵人情報的關鍵工具。人工智能的另一個應用領域是自主武器系統和車輛的應用領域。預計人工智能的使用將對人機界面的軍事功能(機器學習、人機協作)產生更大的影響。人工智能有望克服大數據的“3V挑戰”(數量、多樣性和速度),也有望降低其他“2V”(準確性、價值)的風險,并使數據處理處于可控水平基于人工智能知識的決策。本文的目的是概述人工智能在軍事中的應用潛力,并強調需要確定和定義可衡量的指標,以評估有望改進的最先進技術和解決方案,評估的質量和性能側重于態勢感知和決策支持以及后勤和運營規劃以及建模和模擬 (M&S) 等關鍵領域

付費5元查看完整內容

本報告描述了北約第一個多領域小組IST-173所取得的成果。與會者包括來自不同小組和團體的科學家,以及來自北約機構和軍事利益攸關方、學術界和工業界的科學家,這為AI和軍事決策大數據這一主題創造了第一個利益共同體。該團隊在實踐中證明了一種新的STO方法的可行性,即任務導向研究,以激發公開對話、自我形成的研究合作和跨小組活動。此外,該方法還有助于為人工智能和軍事決策大數據這兩個主要能力領域聯合開發北約首個科技路線圖,以應對北約在這些領域面臨的作戰挑戰。由于新的組織(軍事利益相關者積極參與的多領域團隊)和這種創新方法的應用,確定了一些經驗教訓,應該支持軍事決策AI和大數據的進一步操作。

付費5元查看完整內容

【報告概要】

認識到地面自主系統需要在未知的任務中運行,北約正在對地面車輛自主移動建模和仿真進行投資,以改進和準備未來運作。來自世界各地的北約工程師和科學家正在努力而有目的地塑造未來的作戰能力,并作為地面部隊保持準備和彈性。隨著北約展望未來,地面車輛界有機會幫助塑造陸軍在實現國家和國際安全目標方面的獨特作用。隨著情報、監視、目標獲取和偵察能力的快速發展,確保自主機動性和操作變得更加重要。北約的未來部隊必須能夠并準備好在極端條件下執行各種任務,因此它必須準備好運用地面力量/地面部隊,以在整個軍事行動中實現戰略成果。

地面自主系統是許多北約國家未來軍事戰略的關鍵部分,商業公司正在競相開發自主系統以率先進入市場。在這場部署這些系統的競賽中,仍然缺乏對這些系統的能力和可靠性的了解。自主地面系統的一項關鍵性能衡量指標是其在道路上和越野時的機動性。自主武器系統的開發和部署通常指向幾個軍事優勢,例如作為力量倍增器,更重要的是,可能需要更少的作戰人員來完成特定任務。與商業自治系統不同,軍隊必須在可能不存在道路的未知和非結構化環境中運作,但物資必須到達前線。在戰場上,機動性是生存能力的關鍵,指揮官知道在什么地形上部署哪種車輛至關重要。指揮官需要有能力評估自己和敵方部隊在作戰區域的車輛機動性,這將增加對任務規劃的信心,并降低因車輛受損而導致任務失敗的風險。

北約國家聯合探索評估地面自主系統性能和可靠性的方法,制定一項戰略,以制定一個總體框架,以開發、整合和維持先進的載人和地面自主系統能力當前和未來的力量。該活動利用了 AVT-ET-148、AVT-248 和 AVT-CDT-308 在下一代北約參考移動模型 (NG-NRMM) 上的結果,并共同證明了自動駕駛汽車具有專門的建模和仿真要求關于流動性。隨后,開發了任務領域,并組建了團隊以開展以下工作

  • 自主軍事系統 M&S 的挑戰和特殊要求

  • 與自主軍事系統相關的定義

  • 當前可用于評估自主系統移動性的軟件

  • 評估移動性與數據通信的相互依賴性的方法

  • 以NG-NRMM AVT-248 結果為基礎,確定評估自主系統越野機動性的方法

這項工作提供了一份文件,簡要概述了現有能力、計劃的未來活動以及后續研究任務組 (RTG) 的戰略方向。這份總結報告將詳細介紹這些成就,并為自主導航框架的開發和實施提供建議。

付費5元查看完整內容

低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。

【報告概要】

在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。

無人機的參數化定義包括以下幾類:

  • 類型學,指的是無人機可以飛行的模式;
  • 用于制造無人機的材料;
  • 飛行性能;
  • 螺旋槳種類;
  • 分類;
  • 導航系統;
  • 遠程控制器特性(如果有);
  • 有效載荷,考慮自身傳感器和可能的危險;
  • 通信系統。

描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。

考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。

在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。

由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。

無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。

然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。

sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。

此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。

圖1 無人機類別與其他類別/參數的關系(part 1)

圖2 無人機類別與其他類別/參數的關系(part 2)

圖3 參考坐標系

【報告目錄】

付費5元查看完整內容
北京阿比特科技有限公司