亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

利用人工智能實現認知優勢的目的是從海量數據中提取相關信息,以建立軍事和非軍事態勢感知。對視覺信息進行可靠而及時的解讀是獲得這種優勢的有利因素。隨著大規模、多模態深度學習模型(如對比語言-圖像預訓練(CLIP))的興起,一種有前途的神經網絡正在出現,以執行此類視覺識別任務。這種網絡能夠通過一次性應用光學字符識別(OCR)、面部識別或對象分類從視覺輸入中提取知識,而無需進行顯式微調。通過選擇針對圖像中搜索對象的特定文本提示,CLIP 可以實現這種 "零樣本"功能。

本文將研究 CLIP 如何用于識別軍事領域的車輛,并利用從烏克蘭-俄羅斯戰爭中吸取的經驗教訓。為了進行分析,創建了一個新的數據集,其中包含有軍用和民用車輛的圖像,但也有沒有車輛的圖像。首先,我們搜索適當的查詢,利用單個搜索結果,然后組合多個提示。其次,探討這種方法是否可用于從基于監控攝像頭和智能手機的視頻流中識別軍用車輛。在圖像數據集上表明,經過深思熟慮的提示工程,CLIP 模型能夠以較高的精確度和召回率識別軍用車輛。視頻數據集的性能取決于物體大小和視頻質量。有了這種方法,盟軍和敵方都可以系統地分析大量視頻和圖像數據,而無需耗時的數據收集和訓練。

CLIP 模型

CLIP 是目前最好的零樣本模型之一。Radford 等人[10] 開發了一種全新的方法,利用簡單的對比預訓練目標來學習盡可能多的概念。CLIP 在 4 億個圖像-文本對上進行了預訓練。不過,該數據集尚未公開,因此不知道有關訓練數據的詳細信息。圖像由圖像編碼器嵌入,文本由單獨的文本編碼器嵌入。目標是使用對稱交叉熵損失來減少嵌入的距離,如圖 1(左)所示。余弦相似度被用作距離度量。基于這一簡單的預訓練目標,CLIP 可以在沒有監督注釋的情況下學習一般概念,因此具有很強的零誤差能力。ResNet [2] 及各種改進 [13], [14] 和 Vision Transformer [15] 被用作圖像編碼器,Transformer 架構 [16] 被用于文本嵌入。Radford 等人提供了其 CLIP 模型的九種不同配置。在我們的分析中,我們使用了 ViT-B/16,這是一個中等規模的模型,圖像編碼器和文本編碼器分別有 8620 萬和 3780 萬個參數。為了防止過擬合,通常會使用一些數據增強,但由于預訓練數據集的大小,這些增強可以忽略不計,只進行簡單的裁剪。預訓練數據集并不公開,因此在訓練過程中與軍事相關的數據量不得而知。在推理過程中,使用不同的提示(T1、...、TN)對搜索到的類別進行編碼,然后根據文本向量與圖像向量(I1)之間的距離確定類別,如圖 1 所示。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

生成式人工智能模型能夠執行一系列傳統上需要創造力和人類理解力的任務。在訓練過程中,它們可以從現有數據中學習模式,然后根據這些模式生成文本、圖像和音樂等新內容。一方面,由于它們的多功能性和普遍的高質量結果,它們代表了數字化的機遇。另一方面,人工智能生成模型的使用也帶來了新的 IT 安全風險,在全面分析與 IT 安全相關的威脅時需要考慮這些風險。

針對這種潛在風險,使用生成式人工智能的公司或機構在將生成式人工智能集成到工作流程之前,應進行單獨的風險分析。這同樣適用于開發人員和運營商,因為生成式人工智能的許多風險必須在開發時就考慮到,或者只能由運營公司來影響。在此基礎上,可以調整現有的安全措施,并采取額外的措施。

付費5元查看完整內容

過去幾十年來,在安全、監視、情報收集和偵察等許多領域,對目標跟蹤(OT)應用的需求一直在增加。最近,對無人系統新定義的要求提高了人們對 OT 的興趣。機器學習、數據分析和深度學習的進步為識別和跟蹤感興趣的目標提供了便利;然而,持續跟蹤目前是許多研究項目感興趣的問題。本論文提出了一個系統,實現了一種持續跟蹤目標并根據其先前路徑預測其軌跡的方法,即使該目標在一段時間內被部分或完全隱藏。該系統分為兩個階段: 第一階段利用單個固定攝像機系統,第二階段由多個固定攝像機組成的網狀系統。第一階段系統由六個主要子系統組成:圖像處理、檢測算法、圖像減法器、圖像跟蹤、跟蹤預測器和反饋分析器。系統的第二階段增加了兩個主要子系統:協調管理器和相機控制器管理器。這些系統結合在一起,可以在目標隱藏的情況下實現合理的目標跟蹤連續性。

付費5元查看完整內容

在現實世界應用中部署的人工智能(AI)系統通常是在封閉的模擬環境中進行研究和開發的,在這種環境中,所有變量都是可控的,模擬器或基準數據集都是已知的。從這些模擬器、測試平臺和基準數據集過渡到更加開放的領域,給人工智能系統帶來了巨大的挑戰,包括領域復雜性的顯著增加和現實世界中新奇事物的加入;開放世界環境中包含了大量人工智能系統訓練集中沒有的分布外元素。在此,提出了一條通往通用的、與領域無關的領域復雜性水平測量方法的道路。我們將領域復雜性分為兩個方面:內在和外在。領域內在復雜性是指在沒有任何人工智能體在該領域執行任務的情況下自身存在的復雜性。這是領域復雜性中與智能體無關的一個方面。域外復雜性則與智能體和任務相關。內在和外在要素結合在一起,就構成了領域的整體復雜性。我們從與領域無關的角度來確定定義和影響領域復雜性水平的要素。

當人工智能系統從一個測試平臺或環境過渡到另一個測試平臺或環境時,當人工智能系統在開放世界任務中面對分布外數據時,當人工智能系統在開放世界領域中瀏覽快速擴展的解決方案和搜索空間時,與領域無關的復雜性度量方法可以對人工智能系統面臨的困難進行量化預測。

圖 3:狀態轉換圖的一個簡單示例。圖中的節點表示可能出現的狀態,連接節點的邊表示狀態之間的轉換動作。在本例中,狀態定義由五個布爾特征組成。在初始狀態下,所有特征都設置為 false(白色)。操作通過將所選特征翻轉為真(橙色)來影響狀態,并且在每個狀態下只有某些操作是可能的。其中一種狀態被突出顯示為當前任務的目標狀態。可能的狀態相對較少,每個狀態下最多有兩種可能的操作,圖中有多條交叉路徑通向目標狀態。該領域和任務的復雜度較低。

本研究由 DARPA 和美陸軍研究辦公室 (ARO) 根據多項合同/協議贊助,包括 W911NF2020010、W911NF2020003 和 W911NF-20-2-0004。

付費5元查看完整內容

為計算機生成兵力(CGF)創建行為模型是一項具有挑戰性且耗時的任務,通常需要具備復雜人工智能算法編程方面的專業知識。因此,對于了解應用領域和培訓目標的主題專家來說,很難建立相關的場景并使培訓系統與培訓需求保持同步。近年來,機器學習作為一種為合成智能體建立高級決策模型的方法,已顯示出良好的前景。這類智能體已經能夠在撲克、圍棋和星際爭霸等復雜游戲中擊敗人類冠軍。我們有理由相信,軍事模擬領域也有可能取得類似的成就。然而,為了有效地應用這些技術,必須獲得正確的工具,并了解算法的能力和局限性。

本文討論了深度強化學習的高效應用,這是一種機器學習技術,可讓合成智能體學習如何通過與環境互動來實現目標。我們首先概述了現有的深度強化學習開源框架,以及最新算法的參考實現庫。然后,我們舉例說明如何利用這些資源為旨在支持戰斗機飛行員培訓的計算機生成兵力軟件構建強化學習環境。最后,基于我們在所介紹環境中進行的探索性實驗,我們討論了在空戰訓練系統領域應用強化學習技術的機遇和挑戰,目的是為計算機生成的兵力有效構建高質量的行為模型。

計算機生成兵力的學習環境

在實驗中,將強化學習環境構建為實現 OpenAI Gym 接口的 Python 模塊,因為許多現有的強化學習算法實現都支持該接口。環境的結構如圖 2 所示。環境的大部分功能都在 EnvironmentCore 類中實現。該類通過 SimulationInterface 與本地或遠程計算機上運行的仿真進程通信,在仿真中的實體和控制它們的強化學習智能體之間傳輸觀察結果和操作。SimulationInterface 還用于在計算機生成兵力軟件中加載模擬場景。

模擬與環境模塊之間的通信是通過 ZeroMQ 實現的,ZeroMQ 是一個開源、輕量級的消息傳遞中間件,可綁定多種編程語言,包括 C++ 和 Python。ZeroMQ 可以輕松實現幾種流行的消息傳遞模式,如請求-回復、發布-訂閱和推-拉。ZeroMQ使用谷歌協議緩沖區(Google protocol buffers)來指定消息,這是一種語言中立、平臺中立的結構化數據序列化機制。使用簡單的協議語言創建消息規范,然后將其編譯成各種編程語言(包括 C++ 和 Python)的源代碼。

要配置特定的環境,需要使用一些委托對象:

  • ActionDelegate: ActionDelegate 指定環境的動作空間(OpenAI Gym 中提供的空間定義之一)。在執行過程中,它將該空間中的動作作為輸入,并將其轉換為 ActionRequest 消息,然后由 EnvironmentCore 發送給模擬中的實體。 -ObservationDelegate:指定環境的觀察空間(OpenAI Gym 中提供的空間定義之一)。在執行過程中,它將來自模擬實體的狀態更新信息作為輸入,并將其轉換為來自觀察空間的狀態觀察信息,然后將其呈現給智能體。
  • RewardDelegate:將狀態觀測信息作為輸入,并計算出一個標量獎勵信號,然后將其發送給智能體。
  • ScenarioDelegate:管理要模擬的情景,包括終止標準。對于訓練過程中的每個情節,委托機構都會根據需要調整場景內容,并生成模擬請求(SimulationRequest)消息,由環境核心(EnvironmentCore)發送給模擬。
  • RenderDelegate:會渲染模擬場景當前狀態的視圖。這對調試非常有用。我們使用 Python Matplotlib 和 Basemap 庫實現了簡單的地圖渲染。

空戰仿真領域的深度強化學習

在空戰模擬領域的深度強化學習實驗中,我們發現了一些挑戰,這些挑戰通常不存在于許多強化學習的簡單基準環境中。狀態和行動空間的維度高且復雜,使得智能體難以學習重要的狀態特征和合適的決策策略。例如,在許多場景中,由于傳感器的限制或電子戰的影響,環境只能被部分觀測到。此外,在大多數場景中,智能體不會單獨行動,而是必須與盟友合作,同時與敵人競爭,以達到目標。為了處理長期和短期目標,可能需要在不同的時間尺度上進行決策。代表最重要目標的獎勵通常是延遲的、稀疏的,例如,如果智能體取得了勝利,就會在情景結束時給予獎勵,這樣就很難將功勞歸于正確的行動。此外,根據訓練需要,智能體的目標也有可能在不同的模擬運行中有所不同。例如,我們可能需要調整模擬的難度,以適應受訓者的熟練程度。最后,由于運行高保真模擬的計算成本很高,因此盡可能提高學習過程的樣本效率非常重要。在下面的章節中,我們將討論一些可以用來應對這些挑戰的技術。

付費5元查看完整內容

強化學習(RL)方法的主要關注點之一是如何將在模擬環境中學到的策略轉移到現實環境中,同時獲得相似的行為和性能(即模擬到現實的可轉移性),這一點在機器人控制器中尤為重要[1]。在過去的幾年里,為了縮小模擬世界與現實世界之間的差距,實現更有效的策略轉移,人們已經跟蹤了多個研究方向。領域隨機化是學習遷移中應用最廣泛的方法之一,它將模型暴露在各種條件下,使模型對這些方面的建模誤差具有魯棒性。隨機化被認為是實現從模擬到真實轉移和一般穩健策略的關鍵[2]。另一種常用的方法是系統識別,它使用具有精確物理和動態系統數學模型的高保真環境。不過,系統識別的缺點是計算量大,因此需要更多時間進行訓練。其他相關方法有零點轉移法和域適應法 [3]。

大多數關于 RL 的研究都集中在使用端到端方法的低級控制器上,其中 RL 網絡將機載傳感器提供的原始信息作為輸入,并將應用于執行器的連續控制動作作為輸出 [4]。然而,這種方法有兩個主要局限性:(i) 它對平臺的配置有很強的依賴性,例如,與傳感器提供的信息及其質量有關,或與推進器等執行器的數量及其配置有關;(ii) 模擬到現實的傳輸差距更難縮小,因為經過訓練的策略會受到機器人平臺動態的強烈影響。例如,在文獻[5]中,作者在真實飛行器中使用了第二個訓練過程,學習過程繼續在線進行。在文獻[6]中,控制器需要進行額外的調整,以彌補模擬與真實世界之間的差異,但即便如此,現場結果仍顯示出較低的性能。

在本研究中,我們介紹了一種平臺便攜式深度強化學習方法,該方法已被用作自主車輛定位水下物體的路徑規劃系統,如圖 1 所示。我們設計了一個高級控制系統,以減少上述問題,并具有強大的模擬到實際的傳輸能力。此外,我們的方法易于配置,可在不同平臺和不同條件下部署。例如,訓練有素的智能體已成功部署在兩種不同的飛行器上: (i) 液體機器人公司(Liquid Robotics,美國)的自主水面飛行器(ASV)"波浪滑翔機";以及 (ii) IQUA 機器人公司(IQUA Robotics,西班牙)的自主水下飛行器(AUV)"Sparus II"。測試在加利福尼亞州蒙特雷灣和西班牙加泰羅尼亞 Sant Feliu de Gu?xols 港口進行。在這兩種情況下,飛行器都使用了僅測距的目標跟蹤方法來定位錨定的應答器[7]。

圖 1:制導、導航和控制系統,以及與制導相關的一些主要研究方向。用粗體字表示詳細描述的方面。

付費5元查看完整內容

人工智能在空戰領域正變得越來越重要。目前,大多數空戰研究都假定所有飛機信息都是已知的。但在實際應用中,由于現實限制和傳感器誤差,一些飛機信息,如位置、姿態、速度等,可能是不正確的,或者是不可能獲得的。在本文中,我們提出了一種基于深度強化學習的框架,用于開發一種能夠在信息不足的部分可觀測馬爾可夫決策過程(POMDP)條件下執行可視范圍(WVR)內空對空作戰的模型。為了穩健地應對這種情況,我們使用了遞歸神經網絡,并應用了軟評價器(SAC)算法,以有效應對現實限制和傳感器誤差。此外,為了提高學習效率和效果,我們還應用了課程學習技術來限制狀態空間的探索范圍。最后,模擬和實驗結果表明,所提出的技術能夠在嘈雜的環境中處理傳感器限制和誤差引起的實際問題,同時還能高效地減少學習的訓練時間。

圖 2 顯示了本研究提出的空戰模型學習框架概覽,該框架由矢量化空戰模擬環境和包括重放緩沖器在內的循環 SAC 模塊組成。環境中有兩個動態模型:己方和目標。它們分別從 SAC 模塊的角色和基于規則的行為模型中獲得動作 at 和 atarget,并輸出飛機狀態 sownship 和 starget。模擬器根據這些狀態生成獎勵 rt 和觀測值 ot,同時考慮到配置的傳感器特性。軌跡(ot、at、rt)被存儲在重放緩沖區中,固定長度的軌跡序列將被采樣用于批判。

付費5元查看完整內容

人工智能(AI)的歷史見證了高質量數據對各種深度學習模型的重大影響,例如ImageNet對于AlexNet和ResNet。最近,AI社區的關注點已從設計更復雜的神經結構(即模型為中心的方法)轉移到了數據為中心的方法,這種方法重點在于更好地處理數據以增強神經模型的能力。圖學習,操作于無處不在的拓撲數據上,也在深度學習時代中起到了重要作用**。在這次綜述中,我們從數據為中心的角度全面回顧了圖學習方法,并旨在回答兩個關鍵問題**:(1)何時修改圖數據以及(2)如何修改圖數據以發掘各種圖模型的潛力。因此,我們提出了一個基于圖學習流程中的階段的新分類法,并強調了圖數據中不同數據結構的處理方法,即拓撲、特征和標簽。此外,我們分析了嵌入在圖數據中的一些潛在問題,并討論了如何以數據為中心的方式解決它們。最后,我們為數據為中心的圖學習提供了一些建議的未來方向。

//arxiv.org/abs/2310.04987

最近在非歐幾里得領域的進展引起了人工智能(AI)社區的大量關注。圖,作為典型的非歐幾里得數據,在現實世界中無處不在,并已在許多領域中得到廣泛應用,例如推薦、安全、生物信息學等。在過去的十年中,由于圖模型的創新,圖相關研究得到了推動,從圖核心[1][2]到圖嵌入[3][4],再到最新的圖神經網絡(GNNs)[5][6]。相反,關于圖數據的固有方面的研究較少,包括質量、多樣性、安全性等。 通常,AI的革命始終是由大量高質量數據的可用性引發的,隨后是強大的模型。一個顯著的例子是ImageNet[7]的成功,它為深度卷積神經網絡的發展做出了重要貢獻,例如AlexNet[8]和ResNet[9]。隨著數據的重要性得到越來越多的認可,最近,AI社區的關注點從以模型為中心的方法轉移到了以數據為中心的方法[10][11]。

新興的以數據為中心的AI強調產生適當的數據以提高給定模型的性能。“如何處理圖數據以發揮圖模型的全部潛力?”一個了解情況的答案可以幫助我們理解圖數據與圖模型之間的關系。然而,與圖像和表格數據等歐幾里得數據不同,圖的不規則性為以數據為中心的圖學習提出了幾個問題:首先,在什么時候我們應該修改圖數據以使圖模型受益?數據修改可能會在圖學習的不同階段發生。例如,我們可以在訓練之前啟發式地擾動邊,而在訓練期間我們也可以從節點表示中估計新的圖結構。其次,我們應該修改圖數據的哪一部分?圖數據涉及各種結構,包括邊、節點、特性和標簽,每一個都在圖表示學習中起到了重要作用。第三,如何防止圖模型受到有問題的圖數據的影響?由于手工定義的關系和特性,圖數據可能不可避免地引入噪聲和偏見,這使得模型變得不可靠。 本綜述系統地調研和分類了從數據中心的角度存在的圖學習方法。具體地說,為了回答第一個問題,我們將圖學習過程分為四個階段:準備、預處理、訓練和推斷,如圖1所示。我們討論了每個階段對圖數據的重要性。接下來,我們進一步從結構的角度對現有方法進行分類,以解決第二個問題。具體來說,我們考慮如何處理圖數據的拓撲、特征和標簽。最后,我們分析了現有圖數據中的潛在問題,包括脆弱性、不公平性、選擇偏見和異質性。并進一步討論如何從數據為中心的方式解決這些問題。

本文的貢獻可以總結如下

? 新的分類法。我們按圖學習流程中的各個階段對現有的數據中心圖學習方法進行分類,包括預處理、訓練和推理。對于每個階段,我們都介紹了其在數據中心圖學習中的目標和重要性。 ? 多角度觀察。我們強調如何處理圖數據中的不同數據結構,包括拓撲、特征和標簽,以發揮給定圖模型的潛力。 ? 全面的討論。我們分析了有問題的圖數據對圖模型的潛在影響,并討論了如何以數據為中心的方式緩解這些問題。此外,我們提出了四個可能的數據中心圖學習的未來方向,這可能有助于這個領域的發展。 組織. 本調查的其余部分組織如下:第2節概述了數據中心圖學習的背景,并描述了如何手動處理圖數據。第3-5節分別介紹了預處理、訓練和推理階段的數據中心圖學習方法。第6節介紹了圖數據的潛在問題,并討論了如何處理這些問題。最后,第7節對本文進行了總結,并提出了一些有前途的未來方向。

2. 預處理階段

在本節中,我們將討論圖數據預處理階段的數據中心方法。具體來說,我們將現有的方法分為兩類:基于修改的方法和基于分布的方法。第一類旨在通過修改圖數據實例來提高圖模型的性能。第二類則著重于幫助圖模型捕捉數據集的分布,同時保持圖實例不變。此外,我們還考慮了不同的數據結構,包括拓撲、特征和標簽。相關方法列示在表1中。

圖的簡化 (Graph Reduction)

隨著圖的規模的增大,其計算所消耗的時間和空間也會增加。因此,如何在不失去太多有用信息的前提下減少圖的節點或邊成為了一個有價值的問題。圖的簡化可以加速模型的訓練,減少過擬合,并允許在更簡單的硬件條件下對模型進行訓練。圖的簡化可以分為兩大類:邊的簡化和節點的簡化。邊的簡化指的是圖的稀疏化,而節點的簡化包括圖的粗糙化和圖的凝縮。

圖的增強 (Graph Augmentation)

在深度學習中,數據增強被認為是非常重要的。由于圖數據的稀缺性和稀疏性相當嚴重,因此一個好的增強方法的重要性更為明顯。與其他數據形式相比,直接操作圖結構的圖增強是最具特色的圖數據增強類型。在這里,我們將介紹一些脫離訓練的啟發式方法。它們可能很簡單,但證明是非常有效和受歡迎的。 特征增強 (Feature Augmentation)

通過創建或修改節點特征,特征增強可以使后續模型避免過擬合并提高其性能。 對于已經有特征的圖,我們可以做一些直觀的調整來加強它們,例如特征損壞 [143]-[145],特征洗牌,特征掩碼 [66], [87], [146],特征添加,特征重寫 [147], [148],特征傳播,特征混合 [149]等 [15]。 對于最初沒有特征的節點,有適當生成特征的方法。為了獲取結構信息,Perozzi 提出了基于 word2vec [150] 的 deepwalk [3],它從每個節點開始,多次隨機走動,最后使用所有路徑為節點通過 word2vec [150]c 生成節點嵌入。接著,node2vec [4] 來自 deepwalk [3],它為節點添加了一個隨機行走的概率。另一條與隨機行走無關的線是 SDNE [151]。他們通過編碼器-解碼器架構得到圖的結構。具體來說,他們將鄰接矩陣的每一列作為初始節點嵌入,這是編碼器的輸入。并計算模型在初始嵌入和解碼嵌入之間的損失。 在非標記圖中,特征增強是通過無監督學習實現的。例如,GREET [211] 將原始圖分割成兩個子圖,一個包含同質邊,另一個包含異質邊,然后通過兩個單獨的 GNN 得到子圖嵌入,再連接這些子圖嵌入來獲取節點特征。 總的來說,特征增強是多種多樣和任意的,特殊的特征增強可以根據特定問題的需要進行定制。 位置編碼 (Position Encoding)

眾所周知,信息傳遞神經網絡 (MPNNs) 的表達能力受到1-Weisfeiler-Lehman (WL) 測試的限制,不能區分同構圖 [212]。為了打破這個限制,一個受歡迎的方法是用一些位置信息來增強節點特征,這被稱為位置編碼。在本節中,我們將介紹兩種類型的位置編碼:絕對方法和相對方法。 標簽混合 (Label Mixing)

標簽混合旨在將帶有標簽或嵌入的兩個不同實例混合為一個新的實例,并使用這些混合的實例來訓練模型。這樣得到的模型更具泛化性,不容易過擬合。 Mixup 在圖分類和節點分類任務中都扮演著重要的角色。一方面,面對圖分類任務,我們可以采用各種方法來增強模型。一種方法 [174] 涉及混合多個預先存在的圖嵌入。或者,我們可以隨機選擇一個子圖,并用另一個圖中的相應子圖替代它,同時保留原始圖的嵌入,使模型更好地集中于數據的相關方面 [175], [176]。另一方面,一些工作 [177] 提議將鄰近節點的標簽或嵌入進行混合,用于節點分類任務。 圖的課程學習 (Graph Curriculum Learning) 課程學習 (CL) [215] 是一種模仿人類學習過程的訓練策略,主張模型從簡單樣本開始學習,然后逐漸過渡到復雜樣本。這種策略可以幫助模型更快地收斂,并提高模型的泛化能力。圖的課程學習 (Graph CL) [216] 是一種基于圖的課程學習方法,主要用于圖神經網絡的訓練和優化。大多數 CL 方法有兩個重要功能,難度測量器和訓練調度器。難度測量器可以評估訓練數據的難度,以給予學習優先權,而訓練調度器決定如何從簡單到困難地進行學習。根據這兩者是否自動設計,CL 方法可以分為兩類,即預定義的 CL 和自動的 CL。在本節中,我們將介紹預定義的 Graph CL。 圖采樣 (Graph Sampling) 圖采樣方法使用不同的策略對節點進行采樣,并在計算節點的表示時僅聚合部分節點的信息,這加速了模型的收斂并減少了內存開銷。在這部分中,我們將討論啟發式采樣方法,這些方法可以進一步劃分為兩個類別:隨機采樣和重要性采樣。 圖生成 (Graph Generation) 在現實世界中,某些圖數據集對于圖模型來說太小,無法有效地理解其分布。圖生成器 [219], [220] 可以通過生成額外的圖數據來幫助緩解這個問題。圖生成的方法可以分為兩種類型:自回歸 (autoregressive) 和一次性生成 (one-shot)。 3. 訓練階段 (TRAINING STAGE)

在本節中,我們介紹了訓練階段的圖數據修改方法,其中數據修改模塊和信息傳遞模塊合作以提高性能。具體而言,我們介紹了三種模型-數據協同的訓練范式,包括聯合訓練 (joint training)、自訓練 (self training) 和雙層訓練 (bi-level training)。相關方法可以在表格 1 (Table 1) 中查看。 4. 推斷階段 (INFERENCE STAGE)

推斷階段是指使用預訓練的圖模型進行下游任務的階段。在這個階段,我們重新定義下游任務為一個統一的模板,以與我們的預訓練模型對齊。這有助于彌合我們的預文本任務與下游任務之間的差距,實現高質量的知識轉移和多任務適應。此外,推斷數據是指在預訓練模型的推斷階段使用的圖數據。從數據中心的角度看,調整推斷數據作為提示可以幫助在不改變模型參數的情況下獲得期望的目標。在本節中,我們討論了在圖的背景下逐漸受到歡迎的提示學習方法。為了詳細說明,我們將現有的圖提示方法分為兩類:預提示 (pre-prompt) 和后提示 (post-prompt),這取決于任務特定的提示是在信息傳遞模塊之前還是之后操作,如圖 1 (Figure 1) 所示。 結論 (CONCLUSION)

在這篇綜述中,我們對數據中心的圖學習進行了全面的回顧。我們從兩個角度對現有方法進行分類:一個是學習階段,包括預處理、訓練和推斷;另一個是數據結構,包括拓撲、特征和標簽。通過這兩個視角,我們仔細解釋了何時修改圖數據以及如何修改圖數據,以釋放圖模型的潛力。此外,我們還介紹了圖數據的一些潛在問題,并討論了如何用數據中心的方法解決它們。最后,我們提出了該領域的幾個有前景的未來方向。總的來說,我們相信數據中心的人工智能是通向一般人工智能的可行路徑,并且數據中心的圖學習將在圖數據挖掘中發揮重要作用。

付費5元查看完整內容

這項工作旨在利用無線音頻傳感器網絡為無人駕駛航空器系統(UAS)提出一種探測、識別和跟蹤解決方案。根據適用于無人機系統的技術趨勢(更小、更便宜、更合作),我們提出了一種采用與 "攻擊者 "相同技術方法的分布式監控解決方案。特別是,由于無人機會引起周圍聲學環境的變化,我們研究了音頻傳感器網絡的使用。更確切地說,我們采用了一種三階段算法來檢測監控環境中音頻能量的存在,識別特定的音頻特征,然后與多節點方法合作跟蹤無人機。通過實驗獲取的音頻信號,我們展示了所提方法的初步性能。我們還討論了改進實際實施的未來工作。

參考場景

微型和小型無人機(1 千歐元及以下)成本低,易于采購,使恐怖分子使用這種技術的障礙降至零。此外,開放源碼技術通常用于設計無人機系統的某些組件,這就為設計專用有效載荷的人填補了一個很小的知識空白。如此易于采購和個性化的飛行平臺最終可以接近合理的目標。根據這一趨勢,協調無人機中隊很快就會成為任何人都可以利用的資源。應對這種威脅的措施不可能是集中式的。目前,我們看到的非對稱解決方案適用于前沿作戰基地或安裝了大型無人機探測器的沙漠場景。然而,這種威脅在城市場景中可能無處不在,因此建議采用對稱的對策,即分布式、小型和廉價的對策。

特別是近年來無線傳感器網絡的不斷發展,以及節點的小型化和低成本化,可以為城市環境或復雜場景提供最合適的解決方案,因為在城市環境或復雜場景中,可能會有平民存在,而固定的軍事設施可能并不合適。

如圖 2-1 所示,這項工作將以大量廉價音頻傳感器為參考場景,每個傳感器都能夠識別無人機的音頻特征,并在發現匹配時,通過與其他節點協作定位惡意來源。研究的重點是在空曠場地場景中,利用音頻陣列檢測、識別和跟蹤單架無人機或小型無人機群,即可與單個大型單元同化。

方法

由于所提方法的目標具有三重性(即檢測、識別和跟蹤惡意無人機),因此我們的方法采用了三層算法疊加的方式。圖 3-1 給出了所追求的研究方法的總體描述。我們依靠獲取音頻信號來準確描述無人機系統的存在。第一層用于檢測無人機系統的存在。在這一階段,音頻傳感器從環境中采集少量樣本,例如每秒一次,以揭示從環境中感知到的音頻能量異常。

當這一層檢測到匹配時,第二層就會在短時間內(如約 240 毫秒[3])通過連續采樣進行識別。識別階段的目標是區分異常聲音是否與飛越音頻傳感器網絡的無人機有關,并最終確定其類型。我們將研究兩種主要方法:一些作者在 [1] 中提出的方法和循環神經網絡 (RNN) [6]。第二識別層中的正匹配將啟用第三階段的跟蹤算法。在這一階段,發出警報的節點(在識別階段匹配成功的節點)會喚醒鄰居節點,以執行波束形成跟蹤。這是耗電量最大的階段,因為需要維護音頻傳感器網絡與其遠程控制中心之間的通信鏈路,以及音頻傳感器的連續采樣階段。

所采用的分層策略應能優化計算能力和電池需求。事實上,始終處于活動狀態的第一層執行的是低復雜度、低消耗的數學計算。另一方面,只有在出現異常音頻時,才會執行更強大的計算,即細粒度簽名識別和音頻跟蹤。

付費5元查看完整內容

監督下的深度學習算法正在重新定義目標檢測和分類的最先進技術。然而,訓練這些算法需要大量的數據集,而收集這些數據集通常是昂貴和耗時的。在國防和安全領域,當數據具有敏感性質時,例如軍用船只的紅外圖像,這可能變得不切實際。因此,算法的開發和訓練往往是在合成環境中進行的,但這使人懷疑解決方案對現實世界數據的通用性。

在本文中,我們研究了在不使用真實世界的紅外數據的情況下訓練紅外自動目標識別的深度學習算法。使用目標-導彈交戰模擬軟件和10個高保真計算機輔助設計模型,生成了一個長波紅外波段的海上船只紅外圖像的大型合成數據集。探索了訓練YOLOv3架構的多種方法,并隨后使用真實世界紅外數據的視頻序列進行了評估。實驗表明,用少量的半標記偽紅外圖像樣本來補充訓練數據,可以明顯提高性能。盡管沒有真實的紅外訓練數據,但在我們的真實世界測試數據上,平均精度和召回率分別達到了99%和93%的高分。為了進一步推動自動目標識別算法的發展和基準測試,本文還提供了我們的照片真實合成紅外圖像數據集。

付費5元查看完整內容

在過去的幾年里,人工智能(AI)系統的能力急劇增加,同時帶來了新的風險和潛在利益。在軍事方面,這些被討論為新一代 "自主"武器系統的助推器以及未來 "超戰爭 "的相關概念。特別是在德國,這些想法在社會和政治中面臨著有爭議的討論。由于人工智能在世界范圍內越來越多地應用于一些敏感領域,如國防領域,因此在這個問題上的國際禁令或具有法律約束力的文書是不現實的。

在決定具體政策之前,必須對這項技術的風險和好處有一個共同的理解,包括重申基本的道德和原則。致命力量的應用必須由人指揮和控制,因為只有人可以負責任。德國聯邦國防軍意識到需要應對這些發展,以便能夠履行其憲法規定的使命,即在未來的所有情況下保衛國家,并對抗采用這種系統的對手,按照其發展計劃行事。因此,迫切需要制定概念和具有法律約束力的法規,以便在獲得利益的同時控制風險。

本立場文件解釋了弗勞恩霍夫VVS對當前技術狀況的看法,探討了利益和風險,并提出了一個可解釋和可控制的人工智能的框架概念。確定并討論了實施所提出的概念所需的部分研究課題,概述了通往可信賴的人工智能和未來負責任地使用這些系統的途徑。遵循參考架構的概念和規定的實施是基于人工智能的武器系統可接受性的關鍵推動因素,是接受的前提條件。

付費5元查看完整內容
北京阿比特科技有限公司