機器學習正在對軟件的設計方式產生巨大的影響,以便軟件能夠跟上商業變化的步伐。機器學習之所以如此引人注目,是因為它幫助您使用數據來驅動業務規則和邏輯。這有什么不同呢?在傳統的軟件開發模型中,程序員根據業務的當前狀態編寫邏輯,然后添加相關數據。然而,商業變革已經成為常態。幾乎不可能預測市場會發生什么變化。機器學習的價值在于它允許你不斷地從數據中學習并預測未來。這一強大的算法和模型集正在被跨行業使用,以改進流程并洞察數據中的模式和異常。但是機器學習不是一個人的努力;這是一個需要數據科學家、數據工程師、業務分析師和業務領導協作的團隊流程。機器學習的力量需要協作,所以重點是解決業務問題。
這本書是關于運用機器和深度學習來解決石油和天然氣行業的一些挑戰。這本書開篇簡要討論石油和天然氣勘探和生產生命周期中不同階段的數據流工業操作。這導致了對一些有趣問題的調查,這些問題很適合應用機器和深度學習方法。最初的章節提供了Python編程語言的基礎知識,該語言用于實現算法;接下來是監督和非監督機器學習概念的概述。作者提供了使用開源數據集的行業示例以及對算法的實際解釋,但沒有深入研究所使用算法的理論方面。石油和天然氣行業中的機器學習涵蓋了包括地球物理(地震解釋)、地質建模、油藏工程和生產工程在內的各種行業主題。
在本書中,重點在于提供一種實用的方法,提供用于實現機器的逐步解釋和代碼示例,以及用于解決油氣行業現實問題的深度學習算法。
你將學到什么
這本書是給誰的
和其他主要語言一樣,掌握C語言可以帶你去一些非常有趣的新地方。在它首次出現近50年后,它仍然是世界上最流行的編程語言,并被用作全球工業核心系統的基礎,包括操作系統、高性能圖形應用程序和微控制器。這意味著,在尖端產業的尖端領域,如游戲、應用程序開發、電信、工程、甚至動畫制作,都需要熟練的C語言用戶來將創新的想法轉化為順利運行的現實。
為了幫助您達到使用C語言的目的,第2版《C Programming For Dummies》涵蓋了開始編寫程序所需的所有內容,從邏輯上指導您完成開發周期:從最初的設計和測試到部署和實時迭代。到最后,您將熟練地掌握干凈的編程應該做什么和不應該做什么,并且能夠輕松地生成優雅而高效的源代碼的基本(或不那么基本)構建塊。
編寫和編譯源代碼 鏈接代碼以創建可執行程序 調試和優化您的代碼 避免常見的錯誤
無論你的目的地是科技行業、初創企業,還是只是為了在家消遣而開發,這本易于遵循、內容豐富、有趣的C編程語言指南都是實現這一目標最快、最友好的方式!
//file.allitebooks.com/20201014/C%20Programming%20For%20Dummies,%202nd%20Edition.epub
人工智能(AI)為改善私人和公共生活提供了很多機會,以自動化的方式在大型數據中發現模式和結構是數據科學的核心組件,目前驅動著計算生物學、法律和金融等不同領域的應用發展。然而,這種高度積極的影響也伴隨著重大的挑戰:我們如何理解這些系統所建議的決策,以便我們能夠信任它們?在這個報告中,我們特別關注數據驅動的方法——特別是機器學習(ML)和模式識別模型——以便調查和提取結果和文獻觀察。通過注意到ML模型越來越多地部署在廣泛的業務中,可以特別理解本報告的目的。然而,隨著方法的日益普及和復雜性,業務涉眾對模型的缺陷、特定數據的偏差等越來越關注。類似地,數據科學從業者通常不知道來自學術文獻的方法,或者可能很難理解不同方法之間的差異,所以最終使用行業標準,比如SHAP。在這里,我們進行了一項調查,以幫助行業從業者(以及更廣泛的數據科學家)更好地理解可解釋機器學習領域,并應用正確的工具。我們后面的章節將圍繞一位公認的數據科學家展開敘述,并討論她如何通過提出正確的問題來解釋模型。
利用Kubernetes快速采用新興技術。Kubernetes是企業平臺開發的未來,它已經成為當今最流行的、通常被認為是最健壯的容器編配系統。這本書集中在平臺技術的力量的物聯網,區塊鏈,機器學習,和許多層的數據和應用管理支持他們。
《數據科學與機器學習概論》的創建目標是為尋求了解數據科學的初學者、數據愛好者和經驗豐富的數據專業人士提供從頭到尾對使用開源編程進行數據科學應用開發的深刻理解。這本書分為四個部分: 第一部分包含對這本書的介紹,第二部分涵蓋了數據科學、軟件開發和基于開源嵌入式硬件的領域; 第三部分包括算法,是數據科學應用的決策引擎; 最后一節匯集了前三節中共享的概念,并提供了幾個數據科學應用程序示例。
^
By Pakize Erdogmus and Fatih Kayaalp
By Deanne Larson
數據科學和大數據項目的數量正在增長,當前的軟件開發方法受到了挑戰,以支持和促進這些項目的成功和頻率。關于如何使用數據科學算法以及大數據的好處已經有了很多研究,但是關于可以利用哪些最佳實踐來加速和有效地交付數據科學和大數據項目的研究卻很少。大數據的數量、種類、速度和準確性等特點使這些項目復雜化。數據科學家可利用的開源技術的激增也會使情況變得復雜。隨著數據科學和大數據項目的增加,組織正在努力成功交付。本文討論了數據科學和大數據項目過程,過程中的差距,最佳實踐,以及這些最佳實踐如何在Python中應用,Python是一種常見的數據科學開源編程語言。
正如人們所期望的那樣,技術書籍的大部分時間都集中在技術方面。然而,這造成了一種錯覺,即技術在某種程度上是沒有偏見的,總是中性的,因此適合每個人。后來,當產品已經存在時,現實會證明我們不是這樣的。包含和表示在設計和建模階段是至關重要的。在本章中,我們將從架構的角度分析,哪些非功能性需求是最敏感的,以及如何開始討論它們以最大限度地提高我們的軟件產品成功的可能性。
Embedded Systems Based on Open Source Platforms By Zlatko Bundalo and Dusanka Bundalo
The K-Means Algorithm Evolution By Joaquín Pérez-Ortega, Nelva Nely Almanza-Ortega, Andrea Vega-Villalobos, Rodolfo Pazos-Rangel, Crispín Zavala-Díaz and Alicia Martínez-Rebollar
“Set of Strings” Framework for Big Data Modeling By Igor Sheremet
Investigation of Fuzzy Inductive Modeling Method in Forecasting Problems By Yu. Zaychenko and Helen Zaychenko
Segmenting Images Using Hybridization of K-Means and Fuzzy C-Means Algorithms By Raja Kishor Duggirala
The Software to the Soft Target Assessment By Lucia Mrazkova Duricova, Martin Hromada and Jan Mrazek
The Methodological Standard to the Assessment of the Traffic Simulation in Real Time By Jan Mrazek, Martin Hromada and Lucia Duricova Mrazkova
Augmented Post Systems: Syntax, Semantics, and Applications By Igor Sheremet
Serialization in Object-Oriented Programming Languages By Konrad Grochowski, Micha? Breiter and Robert Nowak
本章描述了將對象狀態轉換為一種格式的過程,這種格式可以在當前使用的面向對象編程語言中傳輸或存儲。這個過程稱為序列化(封送處理);相反的稱為反序列化(反編組)進程。它是一種低級技術,應該考慮一些技術問題,如內存表示的大小、數字表示、對象引用、遞歸對象連接等。在本章中,我們將討論這些問題并給出解決辦法。我們還簡要回顧了當前使用的工具,并指出滿足所有需求是不可能的。最后,我們提供了一個新的支持向前兼容性的c++庫。
這是一本Python編程的教科書,有許多實際的例子和練習。您將學習基本編程的必要基礎,重點是Python。這本教科書是用Latex寫的,使用Overleaf.com。
您可以在下面找到源代碼和其他示例和參考資料。
Python已經成為一種流行的編程語言,也是當今使用最多的編程語言之一。
在過去的30年里,我們創建軟件的方式發生了巨大的變化,從80年代初的個人電腦時代到今天的智能手機、平板電腦和個人電腦等功能強大的設備。
互聯網也改變了我們使用設備和軟件的方式。我們仍然有傳統的桌面應用程序,但Web站點、Web應用程序和所謂的智能手機應用程序等主導著今天的軟件市場。
我們需要找到并學習適合這個編程新時代的編程語言。
我們現在有幾千種不同的編程語言,那么我們為什么要學Python呢?我猜您需要學習不止一種編程語言才能在今天的軟件市場中生存下來,但是Python很容易學,因此它對于新程序員和更有經驗的程序員都是一個很好的起點。
管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
找到有合適技能的人。本書闡明了創建高效能數據集成團隊的最佳實踐,使您能夠理解計劃、設計和監視一次性遷移和日常集成系統的技能和需求、文檔和解決方案。
數據的增長是爆炸式的。隨著跨企業系統的多個信息源的不斷到達,將這些系統組合成一個單一的、內聚的、可記錄的單元變得比以往任何時候都更加重要。但是,與其他軟件規程相比,集成的方法有很大的不同,它要求能夠編寫代碼、協作并將復雜的業務規則分解為可伸縮的模型。
數據遷移和集成可能很復雜。在許多情況下,項目團隊將實際的遷移保留到項目的最后一個周末,任何問題都可能導致錯過最后期限,或者在最壞的情況下導致需要在部署后進行協調的數據損壞。本書詳細介紹了如何進行戰略規劃以避免這些最后時刻的風險,以及如何為未來的集成項目構建正確的解決方案。
你會學到什么
這本書是給誰看的
構建相應實踐的執行和集成團隊領導。它也適用于需要額外熟悉ETL工具、集成過程和相關項目可交付成果的集成架構師、開發人員和業務分析人員
您的邏輯,線性指南的基本數據科學編程。
數據科學正在以一種良好的方式迅猛發展,預計到2020年,地球上每秒鐘為每個人創造1.7兆字節的新信息,到2026年將創造1150萬個工作機會。很明顯,知情是有好處的。這個友好的指南在數據科學的基礎上繪制了一條路徑,然后深入到實際工作中: 線性回歸、邏輯回歸、機器學習、神經網絡、推薦引擎,以及模型的交叉驗證。
Data Science Programming All-In-One For Dummies是關鍵數據科學、機器學習和深度學習編程語言Python和r的匯編。它幫助你決定哪種編程語言最適合特定的數據科學需求。它還為您提供了構建自己的項目以實時解決問題的指導方針。
腳踏實地:新數據專業人士的理想起點
未來的情況:了解數據正在轉換的特定領域
有意義:找出如何講述你的數據故事
看清楚:學習可視化的藝術
無論你是剛開始學習還是已經處于職業生涯的中期,現在就拿起你的那份,給你的生活和其他人的生活增添更多的意義吧!
簡介: 深度學習無處不在。例如,當在線使用許多應用程序甚至在購物時,都會看到它。我們被深度學習所包圍,甚至根本沒有意識到這一點,這使學習深度學習變得至關重要,因為可以利用它做很多事情,這遠遠超出了您的想象。當您學習本書時,您可以在Mac,Linux或Windows系統上運行的許多示例代碼。您也可以使用Google Colab之類的工具在線運行代碼。 本書的第一部分為您提供了一些入門信息,除了安裝一些必備軟件,還會了解一些基本數學知識。
目錄:
說明
Chapter 1:深度學習介紹
Chapter 2:機器學習介紹
Chapter 3:使用python
chapter 4:利用深度學習看框架
chapter 5:回顧數學與優化
chapter 6:線性回歸基礎
chapter 7:神經網絡
Chapter 8:構建基礎神經網絡
Chapter 9:深度學習
Chapter 10:解釋卷積神經網絡
Chapter 11:循環神經網絡
Chapter 12:圖片分類
Chapter 13:循環神經網絡
Chapter 14:語言處理
Chapter 15:生成音樂和虛擬藝術
Chapter 16:生成對抗網絡
Chapter 17:深度強化學習
Chapter 18:深度學習的應用
Chapter 19:十個必備的深度學習工具
Chapter 20:十個使用深度學習的場景