亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

強化學習(RL)[17]和因果推理[10]都是機器學習不可缺少的組成部分,在人工智能中都發揮著至關重要的作用。最初促使我整合這兩者的是機器學習在醫療保健和醫學領域的最新發展。回顧過去,人類自出生以來就不可避免地伴隨著疾病,并為追求健康而不懈地與疾病作斗爭。近幾十年來,機器學習的蓬勃發展促進了醫療保健領域的革命性發展:一些人工智能系統在癌癥分類[1]、癌癥檢測[8]、糖尿病視網膜病變檢測[3]、致盲性視網膜疾病診斷[7]等方面已經接近甚至超過了人類專家。得益于計算能力和能力的持續激增,人工智能(AI)無疑將幫助重塑醫學的未來。想象一下這樣的場景:在未來,每個人都有一個個性化的人工智能醫生在自己的桌子上,記錄著他們從出生開始的所有病歷數據。根據個人的醫療數據,可以提前預測和預防個人的死亡,或至少及時治愈,這在很大程度上可以延長人的預期壽命。

然而,目前成功應用于上述醫療問題的方法僅僅是基于關聯而不是因果關系。在統計學中,人們普遍認為關聯在邏輯上并不意味著因果關系[10,12]。關聯與因果之間的關系由萊辛巴赫·[14]將其形式化為著名的共同原因原理:如果兩個隨機變量{X}和{Y}在統計學上是相互依存的,那么下面的一個因果解釋必須成立:a) {X}導致{Y};b) {Y}導致{X};c)存在一個隨機變量{Z},它是引起{X}和{Y}的共同原因。因此,與關聯相比,因果關系更進一步,探索變量之間更本質的關系。因果推理的中心任務是揭示不同變量之間的因果關系。理解一個系統的因果結構將使我們具備以下能力:(1)預測如果某些變量被干預會發生什么;(2)評估影響干預及其結果[9]的混雜因素的影響;(3)使我們能夠預測以前從未觀察到的情況的結果。如果我們將醫學中的治療視為干預,將治療效果視為結果(例如,理解藥物對患者健康的影響,評估未觀察到的混雜因素對治療和患者總體福祉的影響,評估患者疾病的不同治療的存活率,等等),這些能力正是醫療保健所需要的,但大多數現有的方法尚未具備。這就是為什么因果關系在開發真正智能的醫療保健算法中扮演著關鍵角色。

在因果推理中實施干預概念的一個自然想法是利用RL中的動作概念[17,2]。更具體地說,agent可以根據其當前狀態,通過采取不同的行動(干預)來觀察環境狀態的變化,并獲得即時的回報(結果)。然而,agent的目標是最大化預期累積報酬,這表明RL本身不具備進行因果推理的能力。因此,因果推理通過推斷狀態之間或狀態與動作之間的因果關系,如減少狀態或動作空間,處理混淆,進而幫助RL更高效、更有效地學習價值函數或策略。可見因果關系與強化學習是互補的,可以從因果關系的角度加以整合,從而促進兩者的發展。

為此,我們建議將因果推理整合到RL中,使RL能夠在復雜的現實醫學問題中推斷數據之間的因果效應。利用這兩方面的優勢,我們可以根據未觀察到的對患者健康的混雜因素的存在來評估治療的真正實際效果,并在與患者互動的過程中進一步找到最佳的治療策略。以敗血癥為例,敗血癥是一種危及生命的疾病,當身體對感染的反應導致自身組織和器官受損時就會出現,它是重癥監護病房死亡的主要原因,每年給醫院造成數十億[13]的損失。在解決敗血癥治療策略方面,RL通常將所測量的生理參數,包括人口統計、實驗室值、生命體征和攝入/輸出事件[6,13]視為指導患者進一步治療和劑量的狀態。然而,在這一過程中可能不可避免地會有一些未被觀察到的混雜因素對治療策略產生重大影響,這在目前的RL框架內很難處理。幸運的是,我們可以利用因果推理來解決這個問題,評估潛在的隱性混雜因素對治療和患者健康的影響,從而相應地調整治療策略。

事實上,回顧科學史,人類總是以一種類似因果強化學習(causal reinforcement learning,因果RL)的方式前進。更具體地說,人類從與大自然的互動中總結出規則或經驗,然后利用這些經驗來提高自己在下一次探索中的適應能力。因果關系RL所做的就是模擬人類行為,從與環境溝通的agent那里學習因果關系,然后根據所學到的因果關系優化其策略。

我強調這個類比的原因是為了強調因果性RL的重要性,毫無疑問,它將成為人工通用智能(AGI)不可缺少的一部分,不僅在醫療保健和醫藥領域,而且在所有其他的RL場景中都有巨大的潛在應用。與RL相比,因果RL繼承了因果推理的兩個明顯優勢:數據效率和最小的變化。眾所周知,RL算法非常需要數據。相反,因果性RL不是由數據驅動的,因為因果圖是最穩定的結構,它由“必須擁有”關系組成,而不是由聯想圖中的“nice-to-have”關系組成。換句話說,只要存在因果關系,他們就不會受到數據的影響,不管影響有多大。從因果推理的角度來看,一旦我們知道了因果結構,我們就可以不需要或只需要很少的實驗就可以回答大量的干涉性和反事實性問題,這將大大減少我們對數據的依賴。例如,如果事先提供了一些關于行為的因果知識,或者可以從最初的實驗中學到一些知識,那么行為空間就會按指數方式縮小。另一個吸引人的特性是最小變化,我指的是當環境或領域發生變化時,只有最小的(條件)分布集會發生變化。從因果的觀點來看,假設條件的不變性是有意義的,如果條件代表因果機制[4,15,10]。直觀上,因果機制可以被看作是物理世界的屬性,就像牛頓的運動定律,它不取決于我們給它喂食什么。如果輸入發生了變化,其因果機制仍保持不變[5,11]。然而,反因果方向的條件將受到輸入[6]的影響。因此,當環境發生變化時,因果關系的RL將發生最小的變化。事實上,最小更改的一個直接好處是數據效率,因為代理可以將它們從一個環境學到的不變的因果知識轉移到另一個環境,而不需要從頭學習。

參考鏈接:

//causallu.com/2018/12/31/introduction-to-causalrl/

付費5元查看完整內容

相關內容

【導讀】國際人工智能會議AAAI 2021論文將在全程線上舉辦,時間在 2 月 2 日-2 月 9 日,本屆大會也將是第 35 屆 AAAI 大會。大會涵蓋了眾多最近研究Tutorial報告,來自Freddy Lecue, Pasquale Minervini, Fosca Giannotti and Riccardo Guidotti博士共同做了關于可解釋人工智能的進展報告,非常值得關注!

人工智能的未來在于使人類能夠與機器合作解決復雜的問題。就像任何有效的合作一樣,這需要良好的溝通、信任、清晰和理解。可解釋人工智能(XAI)旨在通過結合符號人工智能和傳統機器學習的優點來應對此類挑戰。多年來,各種不同的AI社區都在研究這一主題,他們有著不同的定義、評估指標、動機和結果。

本教程是XAI迄今為止工作的一個概述,并綜述了AI社區所完成的工作,重點是機器學習和符號AI相關方法。我們將闡述XAI在現實世界和大規模應用中的需求,同時提供最先進的技術和最佳的XAI編碼實踐。在教程的第一部分,我們將介紹AI的不同方面的解釋。然后,我們將本教程重點介紹兩種具體方法:(i) XAI使用機器學習,(ii) XAI使用基于圖的知識表示和機器學習的組合。對于這兩種方法,我們都進入了具體的方法,目前的技術水平和下一步的研究挑戰。本教程的最后一部分概述了XAI的實際應用以及最佳XAI編碼實踐。

地址: //aaai.org/Conferences/AAAI-21/aaai21tutorials/#AH7

付費5元查看完整內容

科學事業的核心是理性地努力去理解我們所觀察到的現象背后的原因。快速增加的觀測和模擬數據打開了新的數據驅動的因果方法的使用,超越了通常采用的相關技術。在這里,我們給出了一個因果推理框架的概述。

//www.bradyneal.com/causal-inference-course

付費5元查看完整內容

隨著機器學習模型越來越多地用于在醫療保健和刑事司法等高風險環境中幫助決策者,確保決策者(最終用戶)正確理解并因此信任這些模型的功能是很重要的。本報告旨在讓學生熟悉可解釋和可解釋ML這一新興領域的最新進展。在本報告中,我們將回顧該領域的重要論文,理解模型可解釋和可解釋的概念,詳細討論不同類別的可解釋模型(如基于原型的方法、稀疏線性模型、基于規則的技術、廣義可加性模型),事后解釋(黑箱解釋包括反事實解釋和顯著性圖),并探索可解釋性與因果關系、調試和公平性之間的聯系。該課程還將強調各種應用,可以極大地受益于模型的可解釋性,包括刑事司法和醫療保健。

//himalakkaraju.github.io/

付費5元查看完整內容

本課程的教材是從機器學習的角度寫的,是為那些有必要先決條件并對學習因果關系基礎感興趣的人而開設的。我盡我最大的努力整合來自許多不同領域的見解,利用因果推理,如流行病學、經濟學、政治學、機器學習等。

有幾個主要的主題貫穿全課程。這些主題主要是對兩個不同類別的比較。當你閱讀的時候,很重要的一點是你要明白書的不同部分適合什么類別,不適合什么類別。

統計與因果。即使有無限多的數據,我們有時也無法計算一些因果量。相比之下,很多統計是關于在有限樣本中解決不確定性的。當給定無限數據時,沒有不確定性。然而,關聯,一個統計概念,不是因果關系。在因果推理方面還有更多的工作要做,即使在開始使用無限數據之后也是如此。這是激發因果推理的主要區別。我們在這一章已經做了這樣的區分,并將在整本書中繼續做這樣的區分。

識別與評估。因果效應的識別是因果推論所獨有的。這是一個有待解決的問題,即使我們有無限的數據。然而,因果推理也與傳統統計和機器學習共享估計。我們將主要從識別因果效應(在第2章中,4和6)之前估計因果效應(第7章)。例外是2.5節和節4.6.2,我們進行完整的例子估計給你的整個過程是什么樣子。

介入與觀察。如果我們能進行干預/實驗,因果效應的識別就相對容易了。這很簡單,因為我們可以采取我們想要衡量因果效應的行動,并簡單地衡量我們采取行動后的效果。觀測數據變得更加復雜,因為數據中幾乎總是引入混雜。

假設。將會有一個很大的焦點是我們用什么假設來得到我們得到的結果。每個假設都有自己的框來幫助人們注意到它。清晰的假設應該使我們很容易看到對給定的因果分析或因果模型的批評。他們希望,清晰地提出假設將導致對因果關系的更清晰的討論。

付費5元查看完整內容

摘要:這項工作考慮了這樣一個問題: 獲取大量數據的便利程度如何影響我們學習因果效應和關系的能力。在大數據時代,學習因果關系與傳統因果關系有哪些不同或相同之處?為了回答這個問題,這項綜述提供了一個在因果關系和機器學習之間聯系的全面和結構化的回顧。

//www.zhuanzhi.ai/paper/6ad7902913e98bd48540a5596b978edc

因果性是結果與引起結果的原因之間的一種一般性關系。它很難定義,而且我們通常只憑直覺知道原因和結果。因為下雨,街道是濕的。因為這個學生不學習,所以他考試考得很差。因為烤箱是熱的,奶酪在披薩上融化了。當用數據學習因果關系時,我們需要意識到統計關聯和因果之間的區別。例如,當天氣炎熱時,一家冰淇淋店的老板可能會注意到高昂的電費和較高的銷售額。因此,她會觀察到電費和銷售數字之間有很強的聯系,但電費并不是導致高銷售額的原因——讓商店的燈徹夜開著不會對銷售產生影響。在這種情況下,外部溫度是高電費和高銷售額的共同原因,我們說它是一個混亂的因果關系。

學習因果關系的能力被認為是人類水平智能的重要組成部分,可以作為AI的基礎(Pearl, 2018)。從歷史上看,學習因果關系已經在包括教育在內的許多高影響領域被研究過(LaLonde, 1986;Dehejia和Wahba, 1999年;Heckerman et al ., 2006;希爾,2011),醫學科學(馬尼和庫珀,2000;經濟學(Imbens, 2004)、流行病學(Hernan et al., 2000;Robins等人,2000年;、氣象學(Ebert-Uphoff和Deng, 2012)和環境衛生(Li et al., 2014)。受限于數據量,堅實的先驗因果知識是學習因果關系所必需的。研究人員對通過精心設計的實驗收集的數據進行研究,堅實的先驗因果知識至關重要(Heckerman et al., 2006)。以隨機對照試驗的原型為例(Cook et al., 2002),為了研究一種藥物的療效,患者將被隨機分配服用或不服用該藥物,這將保證平均而言,治療組和未治療組(對照組)在所有相關方面是等同的,排除任何其他因素的影響。然后,藥物對某些健康結果的影響——比如,偏頭痛的持續時間——可以通過比較兩組的平均結果來衡量。

這個綜述的目的是考慮在現在的大數據時代學習因果關系的新可能性和挑戰,這里指的是海量數據集的可用性。舉個例子,考慮到無法測量的混雜因素的可能性——可能會被減輕,因為可以測量更多的特征。因此,一方面,研究人員有可能在大數據的幫助下回答有趣的因果問題。例如,Yelp的正面評論是促使顧客去餐館,還是僅僅反映了受歡迎程度而沒有影響?這個因果問題可以通過Yelp維護的龐大數據庫中的數據來解決。另一方面,用大數據來回答因果問題,會帶來一些獨特的新問題。例如,盡管公共數據庫或通過web爬行收集的數據或應用程序編程接口(api)是空前巨大的,我們有很少的直覺對什么類型的偏差數據集可以遭受——數據更豐富,也更神秘,因此,負責任地更難模型。與此同時,大數據給其他學習任務(如預測)帶來的基本統計困難,使得因果調查更具挑戰性。也許這方面最顯著的例子是現代數據的高維性(Li et al., 2017a),比如文本數據(Imai et al., 2013)。

付費5元查看完整內容

哥倫比亞大學Elias Bareinboim副教授ICML 2020教程《因果強化學習》!

因果推理提供了一套工具和原則,允許人們結合數據和環境的結構不變性來推理反事實性質的問題。如果現實不是這樣,會發生什么呢? 即使想象中的現實沒有數據可用。強化學習關心的是在交互和不確定的環境中有效地找到一個優化特定功能的策略(例如,獎勵,后悔)。這兩個學科是獨立發展的,它們之間幾乎沒有相互作用。然而,在現實中,它們對同一個構建塊的不同方面進行操作,這使得他們緊密相連。

在本教程中,我們將基于這一觀察結果引入統一的處理方法,并將這兩個學科置于相同的概念和理論框架下。我們表明,當這一聯系完全建立時,就會出現許多自然的和普遍的學習問題,而這不能單獨從任何一個學科中看到。特別地,我們將討論廣義策略學習(在線、非策略和做微積分學習的組合)、何時何地干預、反事實決策(自由意志、自主、人與人工智能協作)、策略通用性和因果模仿學習等等。這種新的理解導致了對什么是反事實學習的更廣泛的觀點,并暗示了因果關系和強化學習并行研究的巨大潛力。我們稱這種新的研究為“因果強化學習”(簡稱CRL)。

地址:

//crl.causalai.net/

付費5元查看完整內容

【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 于美國紐約舉辦。AAAI2020關于可解釋人工智能的Tutorial引起了人們極大的關注,這場Tutorial詳細闡述了解釋黑盒機器學習模型的術語概念以及相關方法,涵蓋基礎、工業應用、實際挑戰和經驗教訓,是構建可解釋模型的重要指南.

可解釋AI:基礎、工業應用、實際挑戰和經驗教訓

?

地址//xaitutorial2020.github.io/

Tutorial 目標 本教程的目的是為以下問題提供答案:

  • 什么是可解釋的AI (XAI)

    • 什么是可解釋的AI(簡稱XAI) ?,人工智能社區(機器學習、邏輯學、約束編程、診斷)的各種流有什么解釋?解釋的度量標準是什么?
  • 我們為什么要關心?

    • 為什么可解釋的AI很重要?甚至在某些應用中至關重要?闡述人工智能系統的動機是什么?
  • 哪里是關鍵?

    • 在大規模部署人工智能系統時,真正需要解釋的實際應用是什么?
  • 它是如何工作的?

    • 在計算機視覺和自然語言處理中,最先進的解釋技術是什么?對于哪種數據格式、用例、應用程序、行業,什么有效,什么沒有效?
  • 我們學到了什么?

    • 部署現有XAI系統的經驗教訓和局限性是什么?在向人類解釋的過程中?
  • 下一個是什么?

    • 未來的發展方向是什么?

概述

人工智能的未來在于讓人們能夠與機器合作解決復雜的問題。與任何有效的協作一樣,這需要良好的溝通、信任、清晰和理解。XAI(可解釋的人工智能)旨在通過結合象征性人工智能和傳統機器學習來解決這些挑戰。多年來,所有不同的AI社區都在研究這個主題,它們有不同的定義、評估指標、動機和結果。

本教程簡要介紹了XAI迄今為止的工作,并調查了AI社區在機器學習和符號化AI相關方法方面所取得的成果。我們將激發XAI在現實世界和大規模應用中的需求,同時展示最先進的技術和最佳實踐。在本教程的第一部分,我們將介紹AI中解釋的不同方面。然后,我們將本教程的重點放在兩個特定的方法上: (i) XAI使用機器學習和 (ii) XAI使用基于圖的知識表示和機器學習的組合。對于這兩種方法,我們將詳細介紹其方法、目前的技術狀態以及下一步的限制和研究挑戰。本教程的最后一部分概述了XAI的實際應用。

Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。

目錄與內容

第一部分: 介紹和動機

人工智能解釋的入門介紹。這將包括從理論和應用的角度描述和激發對可解釋的人工智能技術的需求。在這一部分中,我們還總結了先決條件,并介紹了本教程其余部分所采用的不同角度。

第二部分: 人工智能的解釋(不僅僅是機器學習!)

人工智能各個領域(優化、知識表示和推理、機器學習、搜索和約束優化、規劃、自然語言處理、機器人和視覺)的解釋概述,使每個人對解釋的各種定義保持一致。還將討論可解釋性的評估。本教程將涵蓋大多數定義,但只深入以下領域: (i) 可解釋的機器學習,(ii) 可解釋的AI與知識圖和機器學習。

第三部分: 可解釋的機器學習(從機器學習的角度)

在本節中,我們將處理可解釋的機器學習管道的廣泛問題。我們描述了機器學習社區中解釋的概念,接著我們描述了一些流行的技術,主要是事后解釋能力、設計解釋能力、基于實例的解釋、基于原型的解釋和解釋的評估。本節的核心是分析不同類別的黑盒問題,從黑盒模型解釋到黑盒結果解釋。

第四部分: 可解釋的機器學習(從知識圖譜的角度)

在本教程的這一節中,我們將討論將基于圖形的知識庫與機器學習方法相結合的解釋力。

第五部分: XAI工具的應用、經驗教訓和研究挑戰

我們將回顧一些XAI開源和商業工具在實際應用中的例子。我們關注一些用例:i)解釋自動列車的障礙檢測;ii)具有內置解釋功能的可解釋航班延誤預測系統;(三)基于知識圖譜的語義推理,對企業項目的風險層進行預測和解釋的大范圍合同管理系統;iv)識別、解釋和預測500多個城市大型組織員工異常費用報銷的費用系統;v)搜索推薦系統說明;vi)解釋銷售預測;(七)貸款決策說明;viii)解釋欺詐檢測。

付費5元查看完整內容

【導讀】人工智能領域的國際頂級會議 AAAI 2019 即將于 1 月 27 日至 2 月 1 日在美國夏威夷舉行。AAAI2019第一天的關于可解釋人工智能的Tutorial引起了人們極大的關注,這場Tutorial詳細闡述了解釋黑盒機器學習模型的術語概念以及相關方法,是構建可解釋模型的重要指南.

AI系統--我如何信任它們?

在現實生活中,每一個決策,無論是由機器還是低級員工又或是首席執行官做出的,為了達到提高整體的業務水平的目的,都要通過定期的審查,來解釋他們的決定。這就產生了人工智能的新興分支,稱為“可解釋的人工智能”(XAI)。

什么是可解釋的AI(XAI)?

XAI是人工智能的一個新興分支,用于解釋人工智能所做出的每一個決策背后的邏輯。下圖是對一個完整AI決策流程的簡單描述。

AAAI 2019 tutorial: 可解釋AI –從理論到動機,應用和局限性

一、本教程希望為以下問題提供答案:

  1. 什么是可解釋的AI (XAI)?

    什么是可解釋的AI(簡稱XAI),即人工智能社區的各種流程 (Machine Learning, Logics, Constraint Programming, Diagnostics)的解釋是什么?解釋的度量標準是什么?
    
  2. 我們為什么要在意?

    為什么可解釋的人工智能很重要?甚至在某些應用中至關重要?解釋人工智能系統的動機是什么?

  3. 它在哪里至關重要?

    在現實世界中,哪些應用程序需要解釋如何大規模部署AI系統?
    
  4. 它是如何工作的?

    在計算機視覺和自然語言處理中,最前沿的解釋技術是什么?對于哪種數據格式、用例、應用程序、行業,哪些方法效果好,哪些方法效果不好?

  5. 我們學到了什么?

    部署現有可解釋AI系統的經驗教訓和局限性是什么?在向人類解釋的過程中學到了什么?
    
  6. 接下來的發展是什么?

    可解釋AI未來的發展方向是什么?

二、概述

人工智能的未來在于使人們能夠與機器協作解決復雜的問題。與任何有效的協作一樣,這需要良好的溝通,信任,清晰和理解。 可解釋AI(XAI,eXplainable AI)旨在通過將符號人工智能與傳統機器學習的最佳結合來應對這些挑戰。多年來,人工智能的各個不同社區都在研究這一主題,它們有著不同的定義、評估指標、動機和結果。本教程簡要介紹了可解釋AI到目前為止的工作,并調研了人工智能社區在機器學習和符號人工智能相關方法方面所完成的工作。

在本教程的第一部分中,我們將介紹AI解釋的不同方面。然后我們將本教程的重點放在兩個具體的方法上:(i)使用機器學習的可解釋AI和(ii)使用基于圖(graph)的知識表示和機器學習結合的可解釋AI。對于這兩者,我們深入探討了該方法的具體細節,現有技術以及后續步驟的研究挑戰。本教程的最后一部分概述了可解釋AI的實際應用。

三、大綱

【介紹】

人工智能解釋的廣泛介紹。這將包括從理論和應用的角度描述和激發對可解釋AI技術的需求。在這一部分中,我們還總結了先決條件,并介紹了本教程其余部分所采用的不同視角。

【可解釋AI】

人工智能的各個領域(優化,知識表示和推理,機器學習,搜索和約束優化,規劃,自然語言處理,機器人和視覺)的解釋概述,使每個人對解釋的不同定義保持一致。本教程將涵蓋大多數定義,但只會深入以下領域:(i)可解釋的機器學習,(ii)具有知識圖和ML的可解釋AI。

【可解釋機器學習】

在本節中,我們將解決可解釋的機器學習pipeline的廣泛問題。我們描述了機器學習社區中可解釋性的概念,并通過描述一些流行的可解釋性模型來繼續。本節的核心是對不同類別的黑箱問題進行分析,從黑箱模型講解到黑箱結果講解,最后是黑箱檢查。

【用知識圖譜和ML解釋AI】

在本教程的這一部分中,我們將從兩個不同的角度闡述基于圖的知識庫的解釋力:

用語義網和邏輯解釋AI

我們展示了支持語義web的模式豐富的、基于圖的知識表示范式是如何實現有效解釋的。本節還將重點介紹從大型異構知識庫中表示和推斷有效解釋的邏輯和推理方法。

基于知識圖譜的機器學習

在本節中,我們將重點討論知識圖嵌入模型,即將知識圖中的概念編碼為連續低維向量的神經架構。這些模型已經被證明對許多機器學習任務有效,特別是知識庫的完成。我們解釋了這些模型的基本原理和架構,并從它們的不可預測性以及如何增強第三方模型的可解釋性的角度對它們進行了考察。

【應用】

我們展示了應用解釋技術的真實示例。我們關注一些使用案例:i)具有內置解釋功能的可解釋的航班延誤預測系統; ii)基于知識圖的語義推理,預測和解釋企業項目風險層次的大范圍合同管理系統;iii) 500多個城市的大型組織員工異常報銷的識別、解釋和預測的費用體系。

Tutorial的講者

PPT下載鏈接://pan.baidu.com/s/1dyjGJyhqS3-E77DysIkgHQ 提取碼:aq79

付費5元查看完整內容
北京阿比特科技有限公司