生成模型是一類機器學習算法,它定義了圖像、序列和圖等復雜高維物體的概率分布。深度神經網絡和優化算法的最新進展顯著地增強了這些模型的能力,并重新激發了對它們的研究興趣。本課程探討深度生成模型的基本概率原理、它們的學習算法和流行的模型族,包括變分自編碼器、生成對抗網絡、自回歸模型和規范化流。本課程還涵蓋了計算機視覺、自然語言處理和生物醫學等領域的應用,并將其與強化學習領域聯系起來。
Introduction and Background Autoregressive Models Variational Autoencoders Normalizing Flow Models Energy-Based Models Generative Adversarial Networks Probabilistic Reasoning, Combining Generative Model Discreteness in Generative Modeling Evaluating Generative Models
課程名稱: Deep Learning
課程地址: //github.com/glouppe/info8010-deep-learning
課程簡介: 深度機器學習的最新發展使視覺識別、語音和文本理解或自主智能體系統取得了前所未有的巨大進步。在此背景下,本課程將深入探討深度學習架構的細節,重點是學習這些任務的端到端模型。學生將學習實施、訓練和調試自己的神經網絡,并對該領域的前沿研究有詳細的了解。該課程還將介紹推理方法的最新創新,包括微分推理、對抗性訓練和貝葉斯深度學習。
課程大綱: 引言 機器學習基礎 多層感知器 自動微分 訓練神經網絡 卷積神經網絡 計算機視覺 遞歸神經網路 注意力機制與Transformer 生成式對抗網絡 不確定性 深度強化學習
你講學習到:
講師介紹: Gilles Louppe是比利時列日大學人工智能和深度學習的副教授。他曾是紐約大學物理系和數據科學中心的博士后助理,與歐洲核子研究中心的阿特拉斯實驗關系密切。他的研究處于機器學習、人工智能和物理科學的交叉點上,他目前的研究興趣包括使用和設計新的機器學習算法,以新的和變革性的方式處理來自基礎科學的數據驅動的問題。個人官網:
【導論】麻省理工學院最近開設一門深度學習課程MIT 6.S191,共包含十大主題課程,涵蓋深度學習導論、序列建模、深度視覺、生成模型、強化學習、圖神經網絡、對抗學習、貝葉斯模型、神經渲染、機器學習嗅覺等,圖文并茂,涵蓋最新的前沿內容,非常值得學習!最新一講是深度計算機視覺。
本課程探索了生成式模型的各種現代技術。生成模型是一個活躍的研究領域: 我們在本課程中討論的大多數技術都是在過去10年發展起來的。本課程與當前的研究文獻緊密結合,并提供閱讀該領域最新發展的論文所需的背景。課程將集中于生成式建模技術的理論和數學基礎。作業將包括分析練習和計算練習。本課程專題旨在提供一個機會,讓你可以將這些想法應用到自己的研究中,或更深入地研究本課程所討論的主題之一。
【導讀】慕尼黑大學開設的《高級深度學習》技術課程,重點介紹計算機視覺的前沿深度學習技術。最新一期介紹了《生成式對抗網絡》進展,講述了GAN的知識體系,值得關注。
本文為大家帶來了一份斯坦福大學的最新課程CS236——深度生成模型,目前更新到第一課,感興趣的同學可以多多關注,跟隨學習。
生成式模型被廣泛應用到人工智能和機器學習的諸多領域當中。最近,通過結合隨機梯度下降的優化方法,使用深度神經網絡參數化這些模型所取得的進展,已經使得對于包括圖像,文本和語音在內的復雜,高維度數據建模成為可能。在本次課程中,我們將要學習深度生成式模型的概率基礎和學習算法,包括自動編碼器(AE)的各種變體,生成式對抗網絡,自回歸模型和標準化流模型(normalizing flow models)。本課程還將討論從深度生成式模型中獲益的應用領域,例如計算機視覺,語音,自然語言處理,圖挖掘和強化學習。