亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

神經形態相機非常適合檢測無人駕駛航空系統(UAS)或無人機上螺旋槳(葉片)的運動。在本文中,我們介紹了虛擬圍欄的概念,它是一種低成本的網絡化態勢感知裝置,可以快速提醒無人機進入圍欄區域。與傳統相機相比,神經形態的相機大大減少了必須處理的數據量。只有在事件產生時才需要處理。這些事件可以由無人機、低空飛行物(射彈或鳥類)或背景的變化產生。我們提出了兩種互補的算法,使我們能夠將螺旋槳葉片的特征與其他事件區分開來。這些算法利用了螺旋槳信號的周期性和檢測到的信號中存在的次諧波。當相機像素錯過一些高頻事件時,這些次諧波會被引入信號中。我們還展示了如何調整相機的光學系統,以減少背景事件的對比度,從而簡化分類任務。我們提出了一個在正常運行時消耗5.14瓦的系統原型,其電池自主性達到27小時。該原型可以使用IniVation公司的DAVIS 346檢測高度為9米的無人機,視野約為70度。基于當前和下一代神經形態相機分辨率的實際提高,預計探測范圍將擴大,虛擬圍欄的概念可在未來幾年內進行實際部署。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

現代深度強化學習(RL)算法,盡管處于人工智能能力的最前沿,但通常需要大量的訓練樣本才能達到與人類相當的性能水平。這種嚴重的數據效率低下是深度RL實際應用的主要障礙:在沒有模擬器的情況下,深度RL幾乎不可能應用于任何領域。為了解決這種關鍵數據效率低下的問題,在本論文中,我們致力于設計能夠快速適應新環境的元學習智能體。與標準的強化學習相比,元學習在特定的環境分布上進行學習,從這些環境中采樣特定的任務,并直接優化元學習器,以提高策略改進的速度。通過利用與感興趣任務具有共同子結構的任務分布,元學習器可以調整自己的歸納偏見,使其能夠在測試時快速適應。

本論文的重點是設計元學習算法,利用記憶作為驅動快速適應新環境的主要機制。具有情景間記憶的元學習是一類元學習方法,利用基于特定環境的整個交互歷史的記憶架構來產生策略。因此,在特定任務中驅動策略改進的學習動態被包含在序列模型的計算過程中,本質上把學習算法的設計交給了體系結構。雖然概念簡單,但使用情景間記憶的元學習非常有效,仍然是最先進的方法。我們提出并討論了幾種通過記憶進行元學習的技術。

論文的第一部分集中在“具身”類環境,其中一個主體在一個類似自然世界的環境中有物理表現。我們利用這種高度結構化的環境集來設計具有快速記憶、規劃和狀態推斷能力的整體嵌入式代理體系結構。在論文的第二部分,我們將重點放在沒有強公共子結構的一般環境中應用的方法。首先,我們重新檢查元學習代理與環境的交互模式:提出用一個并行執行框架來取代典型的順序處理交互歷史,其中多個智能體并行地在環境中行動。接下來,我們討論了一個通用的和強大的序列模型的使用片段間存儲器,門控transformer,展示了性能和數據效率的巨大改進。最后,我們開發了一種方法,可以顯著降低(元)強化學習設置中transformer模型的訓練成本和作用延遲,目的是(1)使它們在研究社區中更廣泛地使用,(2)解鎖它們在實時和延遲受限的應用中使用,如機器人。

//www.ml.cmu.edu/research/phd-dissertation-pdfs/eparisot_phd_mld_2021.pdf

付費5元查看完整內容

關鍵點

  • 美國空軍應該通過部署非地球同步軌道衛星群,特別是在低地球軌道,來增加、分配、分解和多樣化其SATCOM選擇,并探索新的交付模式來獲取商業SATCOM服務。

  • 實現這些SATCOM星座的全部潛力的關鍵是利用天基光通信。因此,太空部隊應該積極開發和部署衛星間的光學鏈路,并在機載和地面系統上進行快速實驗和演示光學終端。

  • 為了實現空間領域的進步,需要對支持它所需的地面基礎設施進行相應的投資,包括靈活的終端和企業管理和控制能力。

  • 建立足夠數量的這些能力將需要太空部隊在其合同簽訂中更多地激勵降低成本和可制造性。

  • 空間作戰分析中心和其他相關的采購組織必須有足夠的資金來執行其詳細的部隊結構分析。

摘要

今天,美國防部的衛星通信事業正處于一個十字路口。目前的系統和架構根本不是為信息時代、全域作戰所要求的速度、規模和復雜性而設計的,也沒有足夠的彈性來應對現代反空間威脅。同時,將SATCOM的責任整合到新的太空部隊下,提供了一個一代人中唯一的機會,以規劃一條新的道路,確保美國部隊擁有擊敗大國侵略所需的可靠連接。

捍衛美國的國家安全利益取決于其作戰人員收集、處理和共享信息的能力,以便比其對手更快地做出更好的決定。實現這樣的決策優勢需要安全的通信網絡,它能可靠地促進信息交流,以實現共享態勢感知、更快、更明智的指揮決策,以及整合分布在印度洋-太平洋和其他地區廣袤土地上的部隊。通過利用包括激光通信和新的空間架構設計在內的成熟技術,太空部隊可以確保衛星通信企業作為國防部網絡和JADC2計劃的骨干,以實現決定性的全域作戰。

付費5元查看完整內容

在過去的十年中,人們根據水下物體對入射寬帶聲納脈沖的反應對其進行分類產生了很大興趣。高頻聲納可以提供海底物體的圖像,但這些圖像中的信息通常與物體的尺寸和外部紋理有關,而不是其內部。因此,例如未爆彈藥(UXO)和非未爆彈藥,如果它們的外部特征相似,其反應可能非常相似。較低的頻率可以探測內部反應,并滲透到海床以下。測量一個物體在廣泛的頻率范圍內的散射特性,包括較低的頻率,可以加強物體的分類。本科學報告研究了深度學習技術與TREX13試驗的實驗聲學顏色和時間序列數據的使用。開發了二類、多類和擴展多類分類模型,以區分未爆彈藥和非未爆彈藥物體。表現最好的二元分類模型學會了準確區分未爆彈藥和非未爆彈藥類別。多類分類模型學會了預測單個物體類別,如榴彈炮炮彈和輪胎。擴展的多類分類模型表明,即使是訓練集中沒有包括的物體類別也能從特征編碼中準確分類。這些結果表明,部署這種基于深度學習的分類器可能是非常有利的,因為它們可以自動識別寬頻聲納散射數據中的物體。

對國防和安全的意義

海軍聲納系統對水下環境進行探測,并收集數據,從這些數據中可以對海底的未爆彈藥(UXO)等物體進行探測、定位和分類。自動目標識別系統是減少操作員工作量和提高探測性能的潛在有價值的工具,但需要低誤報率和高準確率才能發揮其優勢。本報告表明,深度神經網絡模型可以在實驗性寬帶聲納散射數據集中對各種未爆彈藥和非未爆彈藥物體進行準確分類。

圖1:概念圖說明了用各種CNN分類器進行寬帶散射數據分析的流程。

數據集

TREX13寬頻SAS散射實驗的目的是探索從淺層環境的聲納回波中探測和分類驕傲的和埋藏的軍事彈藥。該數據集包括11個獨特的未爆彈藥復制品和16個獨特的非未爆彈藥物體的寬帶SAS散射數據。這些物體被放置在墨西哥灣的一個沙質底部,從10到40米的水平距離上進行聲納。聲納發射了一個6毫秒的線性頻率調制信號,跨度為3至30千赫,前緣和后緣之間有10%的錐度。背向散射回波由一個6個水聽器元件的線性陣列收集。

TREX13數據集包括為每個被測物體準備的矩陣(頻譜振幅作為頻率和相對于物體的角度的函數)--這些是聲色模板。對形成這些模板所使用的處理方法的詳盡描述可以在[11]中找到。此外,還有類似準備好的時間序列/方面模板。這些模板是通過使用接收數據并考慮到聲納發射和接收水平而構建的。同樣,來自物體的重疊旋轉的數據被 "混合 "以形成一個復合模板。本報告中使用的就是這種數據。在[10]中,每個部分的數據都被歸一化,以消除回波的整體水平的影響。在本報告中,目標強度數據只是按照提供的數據使用。

表1和表2概述了將物體分為真實數據訓練集和真實數據測試集的情況。水平線表示非未爆彈藥和未爆彈藥物體之間的劃分。應該注意的是,盡管大多數模板是針對凸起的物體,但也有一些部分掩埋的情況。這些表格顯示,一些個別物體的數據比其他物體的數據多(見模板數量一欄)。一般來說,未爆彈藥數據比非未爆彈藥數據多。然而,非未爆彈藥數據子集比未爆彈藥數據子集包括更多的單個物體類型。

付費5元查看完整內容

對智能高超音速武器(HW)的防御不僅減少了可用的戰術反應時間,而且還要求對戰略態勢進行更深入的思考,以改善對盟國基礎設施和移動資產的成功防御。現有的洲際彈道導彈(ICBM)防御方法可以在一定程度上解決來自高超音速武器的威脅。根據不同的情況,高能武器可以比洲際彈道導彈減少大約10%的飛行路徑長度和到達目標的時間。對于10000公里范圍內的目標,洲際彈道導彈可能需要約25至40分鐘來打擊,而高能武器可能需要22至36分鐘。一個具有挑戰性的方面是HW聲稱有能力躲避導彈防御系統。真正的游戲變化是當HW的發射平臺靠近預定目標時。發射平臺可以是潛艇、船舶或戰機。這種敵對力量的戰略可能會將飛行路線從10000公里減少到1000或100公里,將到達預定目標的時間縮短到約2至4分鐘,或最壞的情況下縮短到13至21秒,使目標/地區防御變得困難。戰略態勢需要盡可能地減少發射平臺過于接近潛在預定目標的可能性。因此,防御新的HW需要解決反對力量發射平臺移動的問題。戰術角度包括在很短的時間內制定行動方案的極端時間壓力,或壓縮傳感器到執行器的環路(StEL)。以前,我們發現,通過使用人工智能和基于認知網絡的增強功能,在這種反應過程中減少人類的干預,可以加速知識的獲取,共享態勢,并及時制定有效的CoAs,以達到預期的目標或最終狀態。我們將此確定為認知性StEL(CSTEL)。因此,為了擊敗HW攻擊,認知StELs可能被證明是一種合適的方法,因為它可以通過自動識別威脅來加速反應時間。

圖9:假設加拿大靜止目標的名義導彈彈道,A-D為遠程洲際彈道導彈或HW彈道,E-H為短程HW彈道

付費5元查看完整內容

摘要

在航空航天和機器人手術等領域,復雜的高精度人機系統的效率和安全性與操作員的認知準備、管理工作量的能力和態勢感知密切相關。對心理工作量的準確評估有助于防止操作失誤,并通過預測工作負荷過重或刺激不足可能導致的業績下降,從而進行針對性的干預。基于人體和大腦活動測量的神經工效學方法可以為復雜訓練和工作環境下的人類心理工作量提供敏感和可靠的評估。本文概述了可穿戴腦和身體成像方法通過神經/生理信號評估心理工作量的潛力,并提供了一種利用多模態生物傳感器對多領域認知任務中的工作量進行比較評估的研究設計。這種綜合的神經工效學評估利用神經成像和生理監測,可以為開發下一代神經適應接口和更有效的人機交互和操作技能獲取的訓練方法提供信息。

關鍵詞:認知工作量,fNIRS,腦電圖,眼動跟蹤,神經工效學,移動腦/體成像

引言

人類在任何類型的目標或任務上的表現都與熟練完成這些目標或任務所需的認知工作量有關。每個人都有自己獨特的認知模式,在執行某些類型的任務時更有效率。通過有針對性的培訓,可以在更短的時間內提高操作人員的能力,提高工作效率。

心理負荷在許多復雜的指揮控制系統中起著至關重要的作用。在航空航天和機器人手術等領域,復雜的高精度人機系統的效率和安全性與操作員的認知準備、管理工作量的能力和態勢感知密切相關。主觀操作員報告、生理和行為測量不足以可靠地監測可能導致不良結果的認知負荷。心理負荷這個概念反映了大腦為滿足任務需求而努力工作的程度,它的一個關鍵特征是,它可以與行為表現數據分離。經驗豐富的操作員可以通過增加努力、激勵或改變策略,在較長一段時間內保持所需的性能水平,即使面臨更多的任務挑戰。然而,持續的任務需求最終會導致績效下降,除非心理工作量的上升趨勢可以用來預測隨后的績效崩潰。因此,重要的是在訓練和行動任務期間評估獨立于業績衡量的精神工作量。基于人體和大腦活動測量的神經工效學方法可以為復雜訓練和工作環境下的人類心理工作量[2]提供敏感和可靠的評估。

在軍事行動的背景下,評估和衡量操作員的認知工作量尤其重要,因為在軍事行動中,性能故障可能會導致災難性的損失。對心理工作量的準確評估有助于防止操作失誤,并通過預測工作負荷過重或刺激不足可能導致的業績下降,從而進行針對性的干預。

付費5元查看完整內容

摘要

混合行動由多個行動領域的協調攻擊完成,包括網絡戰和信息戰。檢測混合型威脅的一個關鍵挑戰是如何識別個別事件是對手(精心策劃的)措施的結果,并將所謂不相關的事件聯系起來。由于物理和網絡及信息領域的行動可能發生在不同的時間、不同的地點、不同的速度,作為短期或長期的活動,并且可能是低強度的,因此連接這些點的任務變得更加困難。為了確定與具體任務規劃和執行相關的信息,混合威脅的風險評估必須始終在具體任務的背景下進行,包括其任務目標、行動區域和任務時間范圍。

在本文中,我們描述了兩種情況,在這兩種情況下,對手可能在物理以及網絡和信息空間中進行攻擊,以干擾行動。接下來,我們描述了一個演示器的高級架構,顯示了不同類型的傳感器和信息源是如何連接在一起的。為了應對混合威脅并充分發揮對分析員和決策者的支持潛力,有必要在不同的細節水平上實現態勢感知--從原始數據到高度聚合的風險評估--在不同的領域中共享信息,并在聚合水平上融合它們。

引言

多域作戰(MDO)并不是一個新現象。在戰爭中,長期以來一直在多個領域開展行動。從陸、海、空行動開始,空間和網絡領域補充了對手的組合。為了對付這些,需要不同部門的深入合作。同樣,混合威脅這個詞也不是2020年的發明。一開始是混合戰爭,它與非對稱戰爭、非正規部隊和信息行動等概念混雜在一起。

在早期,重點是傳統的軍事沖突。戰場是傳統的地面,坦克、飛機和艦艇與人員一起是主要的行為者。通信是決定勝負的一個關鍵因素。數字化的開始提供了新的好處和選擇,但也給戰爭帶來了新的脆弱性。今天被稱為網絡和信息領域(CID)的使用在軍事能力方面是一個很大的推動。隨著社交媒體的出現,信息領域發生了巨大的變化,因為它使對手更容易影響公眾輿論和關鍵人物的意見。此外,隨著物聯網中相互連接的設備越來越多,網絡威脅的重要性也在增加。今天的關鍵基礎設施(用于能源、交通、衛生等)比過去更容易受到信息技術的威脅,它們是現代戰爭中的熱門目標。這為敵對勢力的攻擊打開了大門。他們的工具箱不再局限于經典的軍事資產。當然,新興的技術導致了反擊和反擊的措施,以及一場永恒的競爭。

在軍事和民用領域,對信息交流的使用和依賴日益增加,產生了新的攻擊載體,同時也產生了防御這些攻擊的新需求。在今天的沖突中,威脅影響到政治、軍事、經濟、社會、信息和基礎設施等領域。不同的威脅可能是由正規和非正規部隊造成的。這些可能是不利的國家,也可能是出于非政府考慮的團體。

一個關鍵的挑戰是如何在戰術層面上認識到個別事件是對手(精心策劃的)措施的結果,并將所謂不相關的事件聯系起來。在任務規劃或任務執行的風險評估中,這個問題的答案可能會導致對自己的措施無動于衷的決定,如使用通信渠道、部隊保護、路線規劃或反網絡行動。由于物理和網絡及信息領域的行動可能發生在不同的時間,以不同的速度,作為短期或長期的活動,并且可能是低強度的,因此連接這些點的任務變得更加困難。

付費5元查看完整內容

摘要

研究了一種新型的射頻(RF)輔助算法,用于在具有小尺寸麥克風陣列傳感器的情況下對無人駕駛飛行器(UAV)進行聲學識別和定位,其中聲學信號的多通道處理得到了射頻功率模式分析的幫助。不明身份的無人機的螺旋槳產生的噪聲可以用來獲得關于它的一些線索,因為具有不同尺寸、重量或機械特性的無人機產生不同的聲學信號。具體來說,在這項工作中,由多通道麥克風陣列檢測到的聲學信號的光譜特征被用來識別無人機。此外,射頻信號由Wi-Fi天線發射,并測量接收信號強度(RSS)以協助聲學定位。到達方向(DOA)和與聲源的距離都可以被預測。提出了一個解決方案,其中一個四階段卷積神經網絡(CNN)通過其聲譜特征進行無人機識別,并通過內在特征提取、射頻和聲學特征的融合以及回歸產生射頻輔助聲學定位。應用是反無人機監測策略,從飛行的無人機反對非法使用無人機和外部無人機攻擊。提出了一個集中式架構,用于從多個空中節點獲取數據和流。一個名為Zylia的19通道球形麥克風陣列被采用。為了分析這項研究的現狀,提出了實驗與結果描述。

引言

我們解決的問題是檢測作為聲源的不明無人機的存在,通過處理螺旋槳噪聲產生的聲學信號在不同的無人機中識別它,并通過估計聲學信號的到達方向(DOA)和與無人機的距離對無人機進行定位。我們提出了一個解決方案,其中聲學處理得到了射頻(RF)傳輸模式分析的幫助。這樣,當聲學定位前端檢測到來自射頻天線組件估計方向的聲學活動時,聲源定位可以得到完善,并通過波束成形增強記錄信號。這是因為,當使用安裝在多旋翼無人機(UAV)上的小尺寸麥克風陣列進行聲學記錄時,如[1,2,3],由于對麥克風陣列尺寸的限制,可能導致信號-噪聲增強不佳、空間分辨率低和空間信息不完整等問題,對感興趣的聲源的處理和信號增強變得特別具有挑戰性。為了解決這些限制,最近在[4,5]中介紹了一種新的基于射頻的聲源定位處理方法,該方法也能進行距離估計,但沒有引入識別能力。因此,我們現在研究射頻輔助算法的性能,該算法也能識別未識別的空中聲源。我們的算法可以應用于針對非法使用無人機和外部無人機攻擊的反無人機監測策略[6,7],即使是在敵對環境中。

最近,深度學習(DL)和深度神經網絡(DNN)研究領域的發展所帶來的計算和性能上的進步,促進了文獻中無人機識別算法的增加,如[8,9,10]。特別是,已經證明主要由螺旋槳、馬達和機體的機械振動產生的綜合聲學信號具有足夠獨特的特征,可以用來在現實的開放世界條件下在一些無人機類別中識別無人機類型。DL和DNN也被研究用于涉及多通道聲學處理的各種應用,如[11,12]和[13]中,多通道頻譜相位信息被用作卷積神經網絡(CNN)的輸入,用于DOA估計。在我們的研究中,一個基于CNN的四級網絡的算法的性能被引入到識別和定位任務中。兩個平行階段處理射頻數據和聲學數據的內在特征。第三階段進行聲源識別,第四階段進行回歸。這種算法既能產生無人機識別,又能對DOA和與聲源的距離進行聯合預測。本文對這一研究的現狀進行了討論。

為了研究我們的方法,我們用兩個不同的無人機產生的實驗聲學數據和來自分布式天線陣列的合成射頻數據創建了一個半模擬的場景。麥克風陣列是一個19通道的球形陣列,能夠進行三維聲學場景分析。還提出了一個實驗性的傳感器數據流架構,其中只有小尺寸和低成本的硬件用于采集系統和機載處理單元,稱為單板計算機(SBC),將數據流向地面站(GS),在那里可以用高計算能力進行基于CNN的定位處理。

圖1. 基于CNN的四級網絡結構,用于通過射頻和聲學數據處理識別和定位不明的無人機。該結構由一個射頻CNN、一個聲學CNN、一個回歸網絡和一個二進制識別網絡組成。
付費5元查看完整內容

摘要

現代戰爭的特點是復雜性越來越高,敵手聰明且技術優良。為了解決現代戰爭的一些復雜性,基于機器學習(ML)的技術最近為戰場上的自動化任務提供了合適的手段。然而,配備了ML技術的聰明敵人不僅在戰場上參與公平競爭,而且還利用欺騙和隱蔽攻擊等策略,制造惡意方法來破壞ML算法,獲得不公平的優勢。為了應對這些威脅,自動化戰場系統上使用的ML技術必須能夠強大地抵御敵方的攻擊。

我們在一種稱為“示范學習”(LfD)的強化學習算法的背景下,分析了競爭場景中的對抗學習問題。在LfD中,學習智能體觀察由專家完成的操作演示,以學習快速有效地執行任務。LfD已成功應用于軍事行動,如使用機器人團隊進行自主搜索和偵察,或自主抓取拆除簡易爆炸裝置。然而,惡意的敵人可以通過植入敵對的專家來利用LfD,這些專家要么給出不正確的演示,要么修改合法的演示,從而使學習智能體在任務中失敗。為了解決這個問題,我們首先分析了在LfD框架內對抗專家可以使用的不同的演示修改策略,根據對手的修改成本和修改學習代理對任務性能的影響。然后,我們提出了一個新的概念,利用對手和學習智能體之間的博弈,學習智能體可以使用LfD從潛在的對手專家演示中戰略性地學習,而不顯著降低其任務性能。在AI-Gym環境中,我們對提出的魯棒學習技術進行了評估,該技術通過對雅達利類游戲“LunarLander”中的專家演示進行對抗性修改。

圖1所示。(左)使用LfD學習自動駕駛設置時敵對軌跡對策略的影響。(右)在我們提出的方法中,干凈(綠色)和對抗(紅色)軌跡首先是等分的。然后,在使用選項(金虛線)接受或拒絕軌跡部分后,對每個分區學習策略,或對未分區的軌跡使用傳統的強化學習(藍虛線)。

對抗性專家演示框架

我們考慮這樣一個場景,學習智能體必須通過從專家給出的任務演示(LfD)中進行強化學習來在環境中執行任務。一些專家可能是敵對的,并修改軌跡演示的意圖,使學習智能體不能正確執行任務,而遵循修改的演示。在本文的其余部分中,為了便于閱讀,我們將對抗性專家稱為專家。LfD框架采用馬爾可夫決策過程(MDP)[12]進行形式化。LfD算法的輸出是一個策略,該策略為執行任務提供狀態到動作映射。RL通過一個叫做訓練的過程學習策略,在這個過程中,它探索環境,觀察在探索過程中收到的狀態-行為-獎勵配對,最后選擇一系列導致更高期望獎勵的狀態-行為-獎勵配對作為它的策略。

專家們的演示以被稱為軌跡的狀態-行動-獎勵元組序列的形式給出。專家軌跡可能是良性的,也可能是敵對的。良性和敵對的專家軌跡分別展示了完成任務的正確和不正確的方式,并幫助或阻礙了學習智能體學習執行任務。專家演示被整合到智能體的學習中,使用名為DAGGER[1]的LfD算法執行任務。DAGGER使用來自專家演示軌跡的監督學習來學習策略,但添加了一個權重參數β,該參數表示學習主體在將軌跡納入其學習策略時的權重或信任度。

算法1。學習器用來接受或拒絕軌跡演示的算法。

算法2。由專家用來修改干凈軌跡的算法。

付費5元查看完整內容

低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。

【報告概要】

在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。

無人機的參數化定義包括以下幾類:

  • 類型學,指的是無人機可以飛行的模式;
  • 用于制造無人機的材料;
  • 飛行性能;
  • 螺旋槳種類;
  • 分類;
  • 導航系統;
  • 遠程控制器特性(如果有);
  • 有效載荷,考慮自身傳感器和可能的危險;
  • 通信系統。

描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。

考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。

在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。

由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。

無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。

然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。

sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。

此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。

圖1 無人機類別與其他類別/參數的關系(part 1)

圖2 無人機類別與其他類別/參數的關系(part 2)

圖3 參考坐標系

【報告目錄】

付費5元查看完整內容
北京阿比特科技有限公司