亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在過去的十年中,人們根據水下物體對入射寬帶聲納脈沖的反應對其進行分類產生了很大興趣。高頻聲納可以提供海底物體的圖像,但這些圖像中的信息通常與物體的尺寸和外部紋理有關,而不是其內部。因此,例如未爆彈藥(UXO)和非未爆彈藥,如果它們的外部特征相似,其反應可能非常相似。較低的頻率可以探測內部反應,并滲透到海床以下。測量一個物體在廣泛的頻率范圍內的散射特性,包括較低的頻率,可以加強物體的分類。本科學報告研究了深度學習技術與TREX13試驗的實驗聲學顏色和時間序列數據的使用。開發了二類、多類和擴展多類分類模型,以區分未爆彈藥和非未爆彈藥物體。表現最好的二元分類模型學會了準確區分未爆彈藥和非未爆彈藥類別。多類分類模型學會了預測單個物體類別,如榴彈炮炮彈和輪胎。擴展的多類分類模型表明,即使是訓練集中沒有包括的物體類別也能從特征編碼中準確分類。這些結果表明,部署這種基于深度學習的分類器可能是非常有利的,因為它們可以自動識別寬頻聲納散射數據中的物體。

對國防和安全的意義

海軍聲納系統對水下環境進行探測,并收集數據,從這些數據中可以對海底的未爆彈藥(UXO)等物體進行探測、定位和分類。自動目標識別系統是減少操作員工作量和提高探測性能的潛在有價值的工具,但需要低誤報率和高準確率才能發揮其優勢。本報告表明,深度神經網絡模型可以在實驗性寬帶聲納散射數據集中對各種未爆彈藥和非未爆彈藥物體進行準確分類。

圖1:概念圖說明了用各種CNN分類器進行寬帶散射數據分析的流程。

數據集

TREX13寬頻SAS散射實驗的目的是探索從淺層環境的聲納回波中探測和分類驕傲的和埋藏的軍事彈藥。該數據集包括11個獨特的未爆彈藥復制品和16個獨特的非未爆彈藥物體的寬帶SAS散射數據。這些物體被放置在墨西哥灣的一個沙質底部,從10到40米的水平距離上進行聲納。聲納發射了一個6毫秒的線性頻率調制信號,跨度為3至30千赫,前緣和后緣之間有10%的錐度。背向散射回波由一個6個水聽器元件的線性陣列收集。

TREX13數據集包括為每個被測物體準備的矩陣(頻譜振幅作為頻率和相對于物體的角度的函數)--這些是聲色模板。對形成這些模板所使用的處理方法的詳盡描述可以在[11]中找到。此外,還有類似準備好的時間序列/方面模板。這些模板是通過使用接收數據并考慮到聲納發射和接收水平而構建的。同樣,來自物體的重疊旋轉的數據被 "混合 "以形成一個復合模板。本報告中使用的就是這種數據。在[10]中,每個部分的數據都被歸一化,以消除回波的整體水平的影響。在本報告中,目標強度數據只是按照提供的數據使用。

表1和表2概述了將物體分為真實數據訓練集和真實數據測試集的情況。水平線表示非未爆彈藥和未爆彈藥物體之間的劃分。應該注意的是,盡管大多數模板是針對凸起的物體,但也有一些部分掩埋的情況。這些表格顯示,一些個別物體的數據比其他物體的數據多(見模板數量一欄)。一般來說,未爆彈藥數據比非未爆彈藥數據多。然而,非未爆彈藥數據子集比未爆彈藥數據子集包括更多的單個物體類型。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

目前,有大量的全動態視頻(FMV)檔案從未被查看過,而且隨著傳感器數量的增加,情況越來越糟糕。加拿大國防部(DND)、加拿大其他機構和盟友的問題基本相同:不具備分析來自監控的全動態視頻數據的人力。為解決此問題,要求有一種易于擴展的分析能力,這種能力與不斷增長的可用視頻傳感器數量成比例地增長。為了解決這個問題,加拿大國防研究與發展部(DRDC)--瓦爾卡蒂爾研究中心及其贊助者加拿大特種作戰部隊司令部(CANSOFCOM),已經開始了一項探索性的舉措,利用深度學習的最新進展來描述圖像和視頻內容。這種新興的能力可以被用來處理FMV,從而為軍事分析人員提供支持。本科學報告描述了用于實時FMV分析的自動視頻分析(LAVA)概念。它描述了科學家們所面臨的工程、創新和研究問題。報告提供了使用機載軍事傳感器進行的多次真實測試的結果。最后,提出了這項技術的潛在開發途徑。

這份研究文件對如何利用深度學習來分析加拿大武裝部隊和其他加拿大機構所掌握的大量FMV進行了深入的分析。該文件提出了一個在現實作戰條件下使用的概念論證,并提供了結果表現、問題、挑戰和未來的方向。這項技術可用于處理FMV檔案和分析實時FMV反饋,以協助情報分析人員。

付費5元查看完整內容

將數字資源信息整合形成系統對這些資源的利用至關重要。這種信息的形式可能是誰負責該資源,該資源可用于什么,該資源在哪里,如何獲得該資源,以及該資源如何與其他資源結合。總的來說,這些信息代表了當前信息環境中各要素態勢感知的組成部分。對這些要素的了解使數字資源的利用更有能力。在實踐中,這種感知可以幫助以一種更適應的方式分配資源,考慮到諸如信息消費者的要求以及提供者和消費者之間的通信渠道所帶來的限制。這里介紹了與自適應處理有關的概念,在基于云的聯盟反潛作戰(ASW)的背景下。在與北大西洋公約組織(NATO)合作伙伴的合作中,一個云基礎設施被用來構建與虛擬平臺相關的計算能力,包括虛擬平臺之間的模擬通信渠道。對基礎設施適應性性質的測試依賴于與 ASW 中的信息分發和利用相關的已定義用例。這里,這些用例被詳細描述。這些用例顯示了支持這樣一個適應性系統所需信息快速增長的復雜性。這些用例還指出了許多未來的研究途徑。

引言

在加拿大皇家海軍(RCN)的作戰任務中,海上信息和衍生物的收集、處理和傳播主要集中在平臺的自主性上,無論是船只還是飛機。這種以平臺為中心的觀點部分是由于在作戰中必須成為一個自給自足的實體,有能力收集和處理對平臺重要的所有信息。盡管實驗已經顯示了無縫連接和利用外部信息的能力[1][2],但在依靠外部資源進行數據和信息處理方面存在著一種謹慎的做法。

這種謹慎的做法部分是由于不愿意依賴外部伙伴,因為與該伙伴的通信可能很差或不存在。遇到諸如缺乏帶寬、大延遲或質量下降等問題的通信渠道通常被稱為 "弱勢網絡(disadvantaged network)"[3]。這種網絡確實抑制了盟軍中其他人或海上平臺與總部所在地之間對任何收集的數據或信息的分發和使用。

當然,處理通信問題的標準對策是構建通信機制,允許更大的信息量通過通信渠道。這種解決方案有效地解決了 "給我更多帶寬"的要求。然而,另一種有效的方法則側重于更好地利用現有帶寬。這里,"更好地使用 "意味著以更全面的方式使用,通過考慮以下因素考慮到整個處理周期:

  • 正在使用的信息。

  • 該信息的位置。

  • 對該信息采取行動所需的處理算法、模型等。

  • 處理算法或模型的位置。

  • 完成處理所需的計算能力。

  • 參與平臺之間的帶寬連接。

  • 最終產品的使用地點。

這些因素認識到信息是一種資源,要被移動并與處理算法相結合,然后形成一個新的產品。這些組成部分的重要性,以及這些組成部分與歷史信息科學的關系,在[4]中有所描述。

對這種描述來說,重要的是認識到信息資源有多種形式。在數字空間中,資源可以是輸入數據、軟件形式的處理算法,或可以許多形式表示的輸出產品(例如,一個數字文件,一個圖像)。還要注意的是,在許多情況下,輸出可能成為另一種算法的輸入。

然而,通過諸如上述(即清單)的考慮來利用信息資源,需要對資源本身有廣泛的了解。請考慮一下,一個信息系統如何確定它所擁有的數字模型是否與一個獨立的、不同的信息系統上存在的輸入數據集兼容。創建資源層面的元數據是一項艱巨的任務,而這一層面的資源知識是需要的。

盡管資源級元數據的編譯是有問題的,但第二個問題很可能更困難--使用資源級數據來自動調整信息系統所需的分配和處理。事實上,如果不做大量的假設來降低問題的復雜性,這種適應性系統方法是非常困難的[5]。

北約的自適應系統研究

北約信息系統技術組168(IST168)成立于2018年[6],研究一種基礎設施,允許對自適應信息處理和分配技術進行實驗。IST168下進行的研究重點是允許數據或應用程序在聯盟網絡內流動,從而促進該網絡內不同位置的自適應處理和信息創建。其目的是考慮到數據存儲、處理能力和平臺間通信連接的本地和當前可用性。簡單地說,IST168的口號是:"把數據移到代碼上;或者把代碼移到數據上;或者把兩者都移到別的地方?"

為了將IST168的工作建立在軍事背景下,該小組正在通過為陸地和海洋領域設計的軍事場景來探索這種架構的預期應用。這些場景旨在為這種適應性基礎設施的使用方式提供一個作戰背景、故事情節或敘事說明。這些場景在IST168的研究中被廣泛使用[7-10]。

IST168的陸地場景是基于北約先前創建的名為Anglova vignette No.3的場景[11]。這集中在一次城市行動中,涉及到士兵捕捉過往車輛的視頻片段,對該片段進行處理,然后由遠程總部制作成產品。對陸地場景感興趣的人可以參考[11]。

IST168的海上場景是本文件的重點。由于以前沒有滿足參與國需求的海上場景,因此努力開發一個場景,并說明北約構建的基礎設施將如何支持該場景。因此,根據參與的北約國家和眾多加拿大CRACCEN團隊成員所表達的需求,在此創建了一個海上情景。該場景的主題是反潛作戰(ASW)。

海上反潛作戰方案利用了IST168的優勢,也為IST168做出了貢獻。作為IST168努力的一部分,多個北約國家提供了云計算基礎設施,包括加拿大的云計算基礎設施。每個貢獻的云都在東道國的完全控制之下。這些國家基礎設施然后與其他國家部分共享,產生一個國家控制但國際共享的信息空間。在這個空間內,對信息的資源級理解得到了發展。

自適應的云基礎設施--虛擬實驗室

國際云基礎設施以及單一的國家基礎設施代表了大量的工作,但也是研究信息問題的高度靈活資源。一個單獨的國家云或一個國際云,可以被配置成代表戰斗空間中物理實體上存在的信息系統。例如,云基礎設施可以被重新配置為眾多的虛擬計算單元,這些單元代表了單個平臺,如一艘船、一架直升機、一架無人駕駛飛行器(UAV)、一個總部等。然后,這些虛擬平臺可以用來容納存在于真實物理平臺上的信息系統。在虛擬環境中使用仿真通信信道可以使虛擬平臺通過現實的通信信道連接起來。在這里,通信信道是使用可擴展移動特設網絡仿真器(EMANE)[12], [13]來模擬的。

從本質上講,可以構建一個虛擬實驗室來代表整個物理平臺連接中可用的計算、通信和信息資源。

與加拿大研究的關系

指揮部偵察區協調和控制環境網絡(CRACCEN)活動[14]是由加拿大國防研究和發展部正在執行的一項研究活動。CRACCEN被設想為一個整體的社會技術系統,所有指揮小組的決策和反潛戰任務的相關信息都將被匯集起來,以發揮作戰和戰術優勢。

CRACCEN打算徹底改變加拿大水下戰爭[15]。CRACCEN的工作支持這一變革,其研究方向是解決一個全面的人類/信息系統,以滿足未來反潛作戰的需要。在這方面,CRACCEN有一個龐大而重要的反潛隊伍,該隊伍可以在地理上分散在海上平臺和岸上的組件中。

CRACCEN下調查的概念與IST168的活動部分地相互聯系。實際上,IST168正在開發的互連云基礎設施和模擬通信渠道與支持的反艦導彈海上場景相結合,提供了與CRACCEN相關的信息發現和共享環境。這種相關性包括展示云基礎設施在ASW環境中支持數字信息發現、共享和使用的能力。

在這方面,與IST168相關的發展可以被視為具有幾個與信息相關的特點,這些特點對CRACCEN是有用的,分別是(非廣泛的清單):

  • a. 可訪問性--信息環境的共享區域允許其他各方訪問共享區域內的信息資源。

  • b. 可調整性--信息環境中的隔離區域可以被創建,這些區域允許一個特定的國家在環境中獨立于其他國家行事。

  • c. 靈活性--它考慮到了信息環境中共享區域之間不同的通信連接和斷開。

  • d. 可發現性--共享信息環境中的信息資源可以被有機會進入該環境的國家發現。

  • e. 有效性--在信息環境中的一個共享區域向另一個共享區域轉移資源之前,有能力評估信息資源的潛在用途。

信息環境的上述特征是可以通過生成元數據來實現的,元數據具體描述了信息環境中可用的個別信息資源。這些元數據描述,作為一個完整的集合,允許單個信息系統對該系統內可用的信息資源形成一種 "態勢感知"。這種感知有效地建立了對當前情況下的元素(即數字資源)的感知,這是態勢感知(SA)的第一個構建模塊[16]。對這種類型的態勢感知的研究是DRDC海上信息電子化(MIX)活動的一部分[17]。

總之,MIX為理解和形成信息領域的態勢感知提供了研究基礎,然后將其應用于反艦導彈的場景。這種聯系為更好地理解如何利用信息領域進行軍事行動提供了一個現實的背景。

報告提綱

第2節介紹了一個海上反艦導彈的敘述或情景。該場景描述了在一個海峽中的一個精心設計的反艦作戰行動,涉及兩艘水面艦艇、一架無人機和一個岸上的站點。第3節描述了9個用例,展示了在反潛作戰中如何考慮信息資源、計算資源和通信渠道。第4節提供了一個結論。

付費5元查看完整內容

摘要

如今,隨著技術飛速發展和威脅環境變得更加復雜,在信息爆炸的局面下,作戰人員面臨著具有挑戰性的決策空間。人工智能(AI)和機器學習(ML)可以減輕作戰人員負荷。人工智能系統具有深遠的好處——提高態勢感知能力,檢測威脅,理解對手的能力和意圖;確定和評估可能的戰術行動方針;并提供方法來預測行動決策的結果和影響。人工智能系統是理解和解決高度復雜的戰術情況的關鍵。

人工智能系統為作戰人員提供了優勢,但前提是這些系統被正確設計和實施,并且以減輕作戰人員的認知負荷的方式。為國防應用實施人工智能系統帶來了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。本文通過國防采辦和系統工程計劃,為解決這些獨特的挑戰提供了解決方案。

作者簡介:

Bonnie Johnson——在海軍工程研發方面擁有超過 25 年的領導和系統工程經驗。她曾是 SAIC 和諾斯羅普·格魯曼公司的高級系統工程師,研究用于海戰系統和導彈防御能力的自動決策輔助。她于 2011 年加入美國海軍研究生院 (NPS) 系統工程系。她擁有 NPS 系統工程博士學位、約翰霍普金斯大學系統工程碩士學位和弗吉尼亞理工大學物理學學士學位。

引言

人工智能是一個包含許多不同方法的領域,其目標是創造具有智能的機器(Mitchell,2019)。圖 1 顯示了一個簡單的維恩圖,其中機器學習 (ML) 作為 AI 的子集,而 AI 作為更廣泛的自動化類別的子集。自動化系統以最少的人工輸入運行,并且經常根據命令和規則執行重復性任務。人工智能系統執行模仿人類智能的功能。他們將從過去的經驗中學到的知識與收到的新信息結合起來,以做出決策并得出結論。

圖 1. 自動化、人工智能和機器學習的維恩圖

如圖 2 所示,有兩種主要類型的 AI 系統。第一種類型是明確編程的,也稱為手工知識系統。 Allen (2020) 將手工知識系統描述為“使用傳統的、基于規則的軟件,將人類專家的主題知識編碼為一長串編程的‘如果給定 x 輸入,則提供 y 輸出’規則的人工智能”(第3頁)。這些系統使用傳統的或普通的編程語言。第二種類型是從大量數據集訓練而來的機器學習系統。 ML 系統從訓練過的數據集中“學習”,然后在操作上使用“訓練過的”系統在給定新的操作數據的情況下產生預測結果。

圖 2. 兩種類型的人工智能:顯式編程和學習系統

自動化、人工智能和機器學習系統,包括手工知識系統和學習系統,為美國國防部 (DoD) 提供了巨大的潛力,在大多數任務領域具有多種應用。這些智能系統可以擴展國防部理解復雜和不確定情況、制定和權衡選項、預測行動成功和評估后果的能力。它們提供了在戰略、規劃和戰術領域支持國防部的潛力。人工智能系統可以減輕作戰人員的負擔,但前提是這些系統的設計和實施正確,并且以減輕作戰人員認知負擔的方式。這為國防應用實施人工智能系統提出了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。

第一個為國防應用實施人工智能系統的獨特挑戰是戰術戰爭呈現高度復雜的情況。戰術復雜性可能涉及信息超載、需要處理的多個并發任務、具有可怕后果的時間關鍵決策、態勢感知的未知/不準確/不完整,以及因各種分布式戰爭能力所需的互操作性而產生的工程挑戰。將人工智能系統添加到這個已經很復雜的環境中是一項必要但極具挑戰性的工作。

第二個獨特的挑戰是人工智能系統需要大量數據來訓練。所開發的人工智能系統的質量很大程度上取決于訓練數據集的質量和數量。軍事領域的數據尤其難以獲得。軍事數據可能涉及分類問題、網絡漏洞、數據驗證挑戰,并且根據艦隊演習和兵棋推演的需要,收集起來可能非常昂貴且耗時。

第三個獨特的挑戰是人工智能系統為系統工程提出了一個新的前沿。在傳統系統中,行為是固定的,因此是可預測的:給定輸入和條件,系統將產生可預測的輸出。一些人工智能解決方案可能涉及本身就很復雜的系統——適應和學習——因此會產生無法預料的輸出和行為。事實上,一些人工智能系統的目的就是為了做到這一點——與人類決策者合作,承擔一些認知負荷并產生智能建議。需要系統工程方法來設計智能系統,并確保它們對人類操作員來說是可解釋的、可信賴的和安全的。

第四個獨特的挑戰是,對于國防應用,總是需要考慮潛在的對手。在人工智能系統方面,采購界必須注意同行競爭對手國家,他們在人工智能進步方面取得了自己的進步。美國國防系統也必須在這場人工智能競賽中取得進步。網絡攻擊在防御系統中總是有可能發生的。隨著防御能力增加對自動化和人工智能系統的依賴,這可能會造成更多的網絡漏洞。最后,技術正在迅速發展,對抗性威脅空間正在發生變化。國防采購和系統工程界必須確保人工智能系統不斷發展和適應,以應對威脅環境的變化,并以可信賴和安全的方式做到這一點。

挑戰一:復雜的決策空間

第一個獨特的挑戰是許多防御領域呈現出復雜的決策空間。因此,設計和實施適當的人工智能系統來解決這種復雜性將是極具挑戰性的。圖 3 突出顯示了導致戰術領域決策復雜性的許多因素。例如,海軍打擊部隊的行動可以迅速從和平狀態轉變為一種巨大的危險——需要對威脅保持警惕并采取適當的反應行動——所有這些都在高度壓縮的決策時間線上。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是虛擬的,因此需要處理多個時間緊迫的任務。在船舶、潛艇、飛機、陸地和太空中擁有海軍和國防資產;戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用問題。制定有效的戰術行動方案也必須發生在高度動態的作戰環境中,只有部分和不確定的態勢知識。決策空間還必須考慮指揮權、交戰規則和戰術條令施加的限制。人類作為戰術決策者的角色增加了決策空間的復雜性——面臨信息過載、操作員錯誤、人工智能信任以及人工智能模糊性和可解釋性問題等挑戰。最后,戰術決策及其可能后果的風險可能非常高。

圖 3. 導致戰術決策空間復雜性的因素

解決高度復雜的決策空間是美國國防部面臨的挑戰。人工智能提供了解決這種復雜性的潛在解決方案——通過處理大量數據、處理不確定性、理解復雜情況、開發和評估決策替代方案以及了解風險水平和決策后果。人工智能解決方案可以應用于國防部的戰略、規劃和戰術層面。海軍研究生院 (NPS) 開發了一種工程框架和理論,用于解決高度復雜的問題空間,這些問題空間需要使用智能和分布式 AI 系統來獲得態勢感知并做出適應動態情況的協作行動決策(Johnson, 2019)。模擬了一個復雜的戰術場景,以演示使用 AI 來驗證該方法(Johnson,2020a)。 NPS 已經開發了一種預測分析能力的概念設計,該設計將被實施為一個自動化的實時戰爭游戲系統,該系統探索不同的可能戰術行動方案及其預測效果和紅軍反應(Johnson,2020b)。 NPS 研究已經確定了在戰術行動中描述復雜性水平的必要性,并實施自適應人機協作安排以做出戰術決策,其中自動化水平根據情境復雜性水平進行調整。正在進行的 NPS 研究正在研究這些概念工程方法在各種防御用例應用中的應用,包括防空和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。

復雜的決策空間為 AI 系統嘗試和解決創造了具有挑戰性的問題。表 1 根據決策空間的復雜性比較了不同的 AI 應用領域。該表包含 10 個表征決策空間復雜性的因素:認知不確定性(對情境知識的不確定性數量)、情境動態、決策時間線(做出決策的時間量)、決策的復雜性決策過程中的人機交互、資源復雜性(數量、類型、它們之間的距離以及它們的動態程度)、是否涉及多個任務、對手(競爭對手、黑客或打算摧毀的徹底敵人)的存在,允許誤差的幅度(多少決策錯誤是可以接受的),以及決策后果的嚴重性。

表 1. 不同 AI 應用的決策復雜度比較

人工智能應用程序涉及的決策空間用于廣告(根據特定用戶的購買習慣或互聯網搜索確定將哪些廣告流式傳輸)、貸款批準(根據貸款金額和信用評分確定貸款資格)和醫療(根據診斷確定關于患者癥狀)相對簡單。存在大量訓練數據,決策過程中的計算和人為交互簡單,情況相對穩定。不良廣告的后果是微乎其微的。可以審計不良貸款批準決定。糟糕的醫學診斷可能會產生更嚴重的后果,但通常有足夠的時間在治療前尋求更多的評估和意見。為自動駕駛汽車確定最佳運輸路線和工程 AI 系統是更復雜的工作。這些應用程序是動態變化的,需要更短的時間來做出決策。運輸路線在可能路線的數量上會很復雜——這可能會導致許多可能的選擇。但是,存在運輸錯誤的空間,并且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的余地非常小。此應用程序中的錯誤決定可能導致嚴重事故。

然而,軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識/意識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴和困難- 獲取訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。

挑戰二: 數據很難獲取

第二個獨特的挑戰是 AI/ML 系統需要大量相關且高質量的數據用于訓練和開發,而這些數據在軍事領域可能很難獲得。明確編程的手工知識系統在開發過程中需要數據進行評估和驗證。 ML 系統在開發過程中對數據的依賴性更大。如圖 4 所示,ML 系統從代表操作條件和事件的數據集中“學習”。 ML系統學習的過程也稱為被訓練,開發階段使用的數據稱為訓練數據集。有幾種類型的 ML 學習或訓練——它們是有監督的、無監督的和強化的。所有三種類型的 ML 學習都需要訓練數據集。 ML 系統在部署后或運營階段繼續需要數據。圖 4 顯示,在運營期間,ML 系統或“模型”接收運營實時數據,并通過使用其“訓練過的”算法處理運營數據來確定預測或決策結果。因此,在整個系統工程和采集生命周期中,ML 系統與數據密切相關。 ML 系統從訓練數據集的學習過程中“出現”。機器學習系統是數據質量、充分性和代表性的產物。他們完全依賴于他們的訓練數據集。

圖 4. 開發和實施機器學習系統

隨著許多領域(戰爭、供應鏈、安全、物流等)的更多 AI 開發人員正在了解 AI 解決方案的潛在優勢并開始著手 AI 系統開發,DoD 開始認識到對這些數據集的需求。在某些情況下,數據存在并準備好支持 AI 系統開發。在其他情況下,數據存在但不保存和存儲。最后,在其他情況下,數據不存在,需要模擬或在艦隊演習或戰爭游戲中收集。圖 5 說明了收集、獲取和在某些情況下開發用于開發和訓練 AI 和 ML 系統的數據時需要考慮的過程。

圖 5. 人工智能和機器學習系統訓練數據集的開發

軍事領域對開發訓練數據集提出了一些獨特的挑戰——數據可能被分類,數據可能存在網絡漏洞(它可能被攻擊并被對手故意破壞),如果數據不存在,它可能需要從軍事/艦隊演習或兵棋推演中獲得。數據驗證也是一項具有挑戰性的工作。

NPS 正在為海軍的數據管理系統執行需求分析和概念設計,該系統將收集數據并向海軍內部許多正在開發 AI/ML 系統的不同組織提供數據(French 等人,2021 年)。圖 6 是海軍中央人工智能庫 (CAIL) 的上下文圖,它被設想為一個數據管理系統和流程,用于識別數據集并提供索引、驗證、審計和對 AI 可以使用的數據的安全訪問。從事海軍應用的機器學習開發人員。 CAIL 將不是一個數據存儲庫或數據庫,而是一個中央組織,使 AI/ML 開發人員能夠訪問經過驗證和保護的海軍數據——以幫助識別數據集的存在,啟用授權訪問,并幫助支持開發人員所需的數據尚不存在,需要獲得——可能通過艦隊演習或兵棋推演。

圖 6. 概念性中央人工智能庫

挑戰三:人工智能為系統工程開辟了新領域

第三個獨特的挑戰是開發人工智能系統為系統工程提出了一個新的前沿。系統工程方法已被開發用于設計可能非常復雜但也具有確定性的傳統系統(Calvano & John,2004)。傳統系統具有可預測的行為:對于給定的輸入和條件,它們將產生可預測的輸出。圖 7 說明了對傳統 SE 方法(如 SE Vee 過程)進行更改的必要性,以便設計復雜且不確定的 AI 系統。特別是,需要新的方法來定義隨時間適應的學習系統的要求,并且系統驗證過程可能需要在操作過程中不斷發展和繼續,以確保安全和期望的行為。對于具有高風險后果的軍事系統,幾乎沒有出錯的余地,因此需要實施一個可以確保 AI 系統安全和預期操作的系統工程流程。

圖7. 人工智能:系統工程的新前沿

國際系統工程師理事會 (INCOSE) 最近的一項倡議已經開始探索需要對系統工程方法進行哪些改變才能有效地開發人工智能系統。圖 8 是作為該計劃的一部分創建的,旨在強調在 SE 過程中需要考慮的 AI 系統的五個方面。除了不確定性和不斷發展的行為之外,人工智能系統可能會出現新類型的故障模式,這些故障模式可能會突然發生,并且可能難以辨別其根本原因。穩健的設計——或確保人工智能系統能夠處理和適應未來的場景——是另一個系統工程設計考慮因素。最后,對于涉及更多人機交互的 AI 系統,必須特別注意設計系統,使其值得信賴、可解釋并最終對人類決策者有用。

圖 8. 人工智能系統工程中的挑戰

NPS 正在研究可以支持復雜、自適應和智能 AI 系統的設計和開發的系統工程方法。已經開發了一個系統工程框架和方法來設計系統解決方案的復雜自適應系統(Johnson,2019)。該方法支持系統系統的開發,通過使用人工智能,可以協作以產生所需的緊急行為。當前的一個研究項目正在研究可以在設計過程中設計到 AI 系統中的安全措施,以確保操作期間的安全(Cruz 等人,2021 年)。 NPS 正在研究一種稱為元認知的設計解決方案,作為 AI 系統識別內部錯誤的一種方法(Johnson,2021 年)。當前的另一個 NPS 論文項目正在研究如何將“信任”設計到 AI 系統中,以確保有效的人機協作安排(Hui,2021)。幾個 NPS 項目研究使用稱為協同設計的 SE 設計方法,來確定人類操作員與 AI 系統之間的相互依賴關系(Blickley 等人,2021;Sanchez,2021)。

挑戰四: 敵手

第四個獨特的挑戰是對手在防御應用中的存在和作用。國防部必須與對手競爭以提升人工智能能力,人工智能系統必須免受網絡攻擊,人工智能系統必須適應不斷變化的威脅環境演變。圖 9 突出顯示了對手的存在給國防部正在開發的 AI 系統帶來的一系列獨特挑戰。

圖9. 敵手的挑戰

競爭對手國家之間開發人工智能能力的競賽最終是為了進入對手的決策周期,以比對手更快的速度做出決定和采取行動(Rosenberg,2010 年)。人工智能系統提供了提高決策質量和速度的潛力,因此對于獲得決策優勢至關重要。隨著國防部探索人工智能解決方案,同行競爭對手國家也在做同樣的事情。最終,實現將 AI 用于 DoD 的目標不僅僅取決于 AI 研究。它需要適當的數據收集和管理、有效的系統工程和采集方法,以及仔細考慮人類與人工智能系統的交互。國防部必須確保它能夠應對實施人工智能系統所涉及的所有挑戰,才能贏得比賽。NPS 研究計劃正在研究如何應用 AI 和博弈論來進入對手的戰術決策周期(Johnson,2020b)。該項目正在開發一個概念,用于創建戰術態勢模型、對手的位置和能力,以及預測對手對形勢的了解。然后,概念系統將進行實時“兵棋推演”,根據預測的對抗反應和二階和三階效應分析戰術決策選項。這是一個研究未來戰術戰爭可能是什么樣子的一個例子,它為藍軍和紅軍提供了增強的知識和決策輔助。為 AI 競賽準備國防部的其他 NPS 舉措包括研究新的 SE 方法和獲取實踐以開發 AI 能力、研究海軍和國防部的數據管理需求(French 等人,2021 年)以及研究 AI 系統安全風險開發確保安全 AI 能力的工程實踐(Cruz 等人,2021 年;Johnson,2021 年)。

賽博戰是國防部必須成功參與的另一場競賽,以保持領先于黑客攻擊的持續攻擊。隨著國防部實施更多的自動化,它自然會導致更多的網絡漏洞。使用本質上依賴于訓練數據和操作數據的人工智能系統,為黑客在開發階段和操作階段用損壞的數據毒害系統提供了機會。如果對手控制了一個可操作的人工智能系統,他們可能造成的傷害將取決于應用程序領域。對于支持武器控制決策的自動化,后果可能是致命的。在最近一項關于汽車網絡安全的研究中,一家汽車公司在網上發布了一個假汽車電子控制單元,在不到 3 天的時間里,進行了 25,000 次違規嘗試(Taub,2021 年)。國防部必須注意人工智能系統開發過程中出現的特定網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御策略。 NPS 正在研究數據安全要求,以確保 ML 訓練數據集不受黑客攻擊,并且需要安全授權才能訪問(French 等人,2021 年)。 NPS 正在研究使用元認知作為 AI 系統執行自我評估的一種方法,以識別網絡入侵、篡改或任何異常行為(Johnson,2020b)。 NPS 還在研究使用 ML 來識別惡意欺騙和篡改全球定位系統 (GPS; Kennedy, 2020)。

威脅環境的演變是國防部在開發人工智能系統時的第三次對抗性競賽。由于對抗性威脅空間隨著時間的推移而不斷變化,擁有更快、更致命的武器、更多的自主權、更大的監視資產、更先進的對抗措施和更多的隱身性,這對國防部能夠預測和識別新威脅并進行應對提出了挑戰戰場上的未知數。 NPS 研究的重點是在作戰過程中不斷適應和學習的工程系統,以檢測和識別戰場中的未知未知,并通過創新的行動方案快速響應新威脅(Grooms,2019;Jones 等人,2020;Wood,2019 )。 NPS 正在研究通過研究特定區域隨時間變化的數據來識別異常變化的機器學習方法(Zhao et al., 2016)。一個例子是研究商用飛機飛行模式并根據異常飛行模式識別可疑飛機。隨著時間的推移,可以監視地面行動,以識別可能意味著軍事行動的新的和不尋常的建設項目。

結論

人工智能系統為國防部在實現和保持知識和決策優勢方面提供了重大進展。然而,為國防應用實施人工智能系統提出了獨特的挑戰。軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴且難以獲得訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。 AI 系統,尤其是 ML 系統,需要有代表性、足夠、安全和經過驗證的數據集來進行開發。為國防應用收集合適的數據具有處理分類數據集和確保數據安全和免受網絡攻擊的額外挑戰;這也將是收集代表戰術行動的真實數據的一項重大努力。將需要新的系統工程方法來有效地指定、設計和評估人工智能系統,這些系統通過其不確定性、新型人機協作挑戰以及難以預測和預防的新安全故障模式而呈現出新的復雜性.最后,軍事領域中對手的存在呈現出三種形式的 AI 競賽:與對手一樣快地開發 AI 系統的競賽、保持領先于可能的網絡攻擊的競賽以及訓練能夠應對的 AI/ML 系統的競賽隨著不斷發展的對抗性威脅空間。

NPS 正在通過一系列正在進行的研究計劃來解決四個獨特的挑戰領域。 NPS 研究人員正在研究人工智能系統在海軍戰術作戰領域的實施,對軍事數據集進行需求分析和需求開發,研究開發復雜人工智能系統的系統工程方法,以及開發安全、可信賴的人工智能系統工程方法,并注意潛在對手的作用。 NPS 正在為軍官和平民學生提供人工智能研究和教育機會。 NPS 歡迎與國防部和海軍組織合作,繼續研究用于國防應用的人工智能系統,并繼續探索解決方案戰略和方法,以克服開發和實施人工智能能力的挑戰。

附解讀PPT:(點擊下載)

付費5元查看完整內容

摘要

信息共享一直對軍事行動至關重要。本文考慮了應包含哪些解釋性內容以促進更好的決策。探討了元不確定性的概念,這是在沒有解釋性內容的情況下產生的。論文使用兩個場景來探討省略解釋的后果。在場景中,貝葉斯網絡用于在不確定性下對推理進行建模。這些情景表明,元不確定性會對決策產生負面影響。提出了一種應對元不確定性的方法,即對共享信息的可能解釋進行概率建模

圖1:軍事環境中的信息共享典型場景

付費5元查看完整內容

摘要

達爾豪西大學大數據分析研究所、加拿大國防研究與發展研究所 (DRDC) – 大西洋研究中心和加拿大通用動力任務系統 (GDMS-C) 成功向加拿大自然科學與工程研究委員會 (NSERC) 提出申請, 促成了一個為期三年的資助項目,名為自動監控海軍信息空間 (AMNIS)。 AMNIS 啟動會議于 2020 年 10 月 14 日舉行,眾多教授、國防科學家和 GDMS-C 技術人員參加了會議。會議確定了三個組織的多項行動。與 DRDC 和 GDMS-C 相關的一項行動是需要與任務相關的情景來幫助指導預期的研究。因此,DRDC 率先描述了一個具有代表性的海陸情景,這將使研究人員能夠更好地了解與 AMNIS 相關的潛在研究途徑。開發的場景涉及由加拿大皇家海軍 (RCN) 和加拿大陸軍 (CA) 執行的加拿大人道主義任務。任務是向最近遭受自然災害襲擊的國家分發食品和醫療用品。敵對勢力也試圖竊取物資。該場景描述了通過更好的處理技術和決策來改進信息流、共享和使用的需求。該方案旨在引發進一步的討論并幫助鞏固 AMNIS 參與者的研究主題

對國防和安全的意義

AMNIS 項目將推動國防界在機器學習、深度學習、人工智能、可視化的許多方面、弱勢網絡上的信息共享、基于場景的決策以及人類績效建模和團隊合作方面的知識。這里描述的海洋/陸地情景旨在激發支持這些主題的研究途徑

付費5元查看完整內容

2021年3月,美國哈德遜研究所國防概念與技術中心發布研究報告《實施以決策為中心的戰爭:提升指揮與控制以獲得選擇優勢》,提出以決策為中心的戰爭將使美軍做出更快、更有效的決策,從而賦予美軍更大的競爭優勢

序言

自冷戰結束以來,美國國防部(DoD)針對來自主要對手(如中國、俄羅斯和朝鮮等)的巨大軍事沖突發展了相應理論和能力。這些最壞的情況是為了確保美軍也能應對“較少的情況”。然而,這種方法偏重于為大規模、高強度軍事沖突設計的概念和系統,美國的智能對手不太可能向美軍挑起對抗,而國防部可以在力量投射或精確打擊等任務中發揮其優勢。

美國的對手在過去十年中已經發展出了抵消美國軍事優勢的方法,如中國和俄羅斯的灰色地帶或混合行動,這些方法以較低的成本和升級——盡管比傳統的軍事作戰時間更長——獲得目標。因此,國防部應修訂其規劃,提高新方案的優先級,這些方案以不同于戰區范圍內高強度作戰的方式給美軍施加壓力,如通過延長時間、不同程度的升級和規模,以及使用代理和準軍事力量。

中國的“系統破壞戰”概念和俄羅斯軍方的“新一代戰爭”概念是針對美國及其盟友的新方法的代表。雖然它們的制勝理論和方法大相徑庭,但這兩種概念都有一個共同點,即把信息和決策作為未來沖突的主戰場。它們從電子和物理上直接攻擊對手的戰斗網絡,以降低其獲取準確信息的能力,同時引入虛假信息,削弱對手的定向能力。同時,軍事和準軍事力量將通過孤立或攻擊目標的方式向對手提出難題,以中和對手的戰斗潛力,控制沖突的升級。

美國海軍如何重新平衡實施 "馬賽克戰 "部隊的例子

決策中心戰的興起

以決策為中心的概念,如系統破壞戰和新一代戰爭,很可能成為未來沖突的重要形式,甚至是主要形式。在冷戰后期,美軍革命性的精確打擊戰方式利用了當時的通信數據鏈、隱身和制導武器等新技術。同樣,以決策為中心的戰爭可能是軍事上利用人工智能(AI)和自主系統的最有效方式,這些技術可以說是當今最突出的技術。

以決策為中心的戰爭的一個例子是國防高級研究計劃局(DARPA)的馬賽克戰爭概念。馬賽克戰爭概念的中心思想是,由人類指揮指導的、具有人工智能功能的機器控制的分列式有人和自主單位可以利用它們的適應性和明顯的復雜性來延遲或阻止對手實現目標,同時破壞敵人的重心以排除進一步的侵略。這種方法與機動戰一致,不同于第二次世界大戰期間盟軍采用的基于損耗的戰略,也不同于冷戰后美軍在科索沃、伊拉克和利比亞沖突中采用的戰略。雖然馬賽克戰爭采用損耗作為給敵人制造困境的一部分,但其實現成功的主要機制是拒絕、拖延或破壞對手的行動,而不是削弱對手的軍事實力,使其無法再有效作戰。因此,馬賽克戰爭非常適合作為現狀軍事大國(如美國)尋求遏制侵略的概念。

在近期兵棋推演中,馬賽克部隊與傳統軍事部隊在任務完成情況的比較

馬賽克戰爭提出了一種部隊設計和指揮控制(C2)程序,與今天的美軍相比,它將使美軍能夠執行更多、更多樣化的行動方案(COA)。馬賽克部隊的分解結構和使用人類指揮與機器控制,將使對手的決策復雜化,縮小其選擇范圍,并施加一系列可能無法解決的困境。通過增加美軍指揮官的選擇權,減少敵方的選擇權,馬賽克戰法將尋求獲得“選擇權優勢”,使美軍能夠做出更快、更有效的決策。

選擇性戰略與以預測為中心的規劃方法形成鮮明對比,在這種規劃方法中,選擇最有可能導致成功的作戰行動方案并迅速實施,通過將與未選擇的作戰行動方案相關的系統和兵力要素分配給其他任務來提高效率。在以預測為中心的模式中,資源的早期承諾必然會限制指揮官今后的選擇空間。

與今天的美軍相比,馬賽克部隊的設計和C2過程可以在選擇權競爭中提供更大的優勢,因為隨著對抗或競爭的進展,可以緩解由于損失或敵方態勢感知的改善而導致的選擇權減少的自然趨勢。例如,“馬賽克”部隊可以更容易地隱藏具有反ISR能力的平臺或編隊,并在以后暴露出來,以實現新的選擇;利用數量更多、規模更小、成本更低的增援部隊;或依靠決策支持工具,允許繼續使用與高級指揮官物理或電子隔離的部隊。

圖:以網絡為中心的戰役空間架構與基于情境的戰役空間架構的特點比較

一支馬賽克部隊也將比今天的美軍更有能力進行縮小對手選擇范圍的行動。通過同時發起許多行動并加速其決策,一支使用人類指揮和機器控制的分布式部隊可以給對手造成足夠的困境,從而排除與作戰相關的數量的《作戰協議》。此外,馬賽克部隊還可以利用諸如分配、佯攻和探測等欺騙技術以及反ISR系統來補充其更大的規模和決策速度,這些技術可以使對手相信某些選擇不可行或不可能成功。

雖然國防部的C3結構,如混合和聯合全域指揮和控制(CJADC2)開始納入決策支持工具,為特派團整合效應鏈,但其目前和近期的實例旨在支持有效的火力投送,而不是持續的可選性。此外,與CJADC2相關的C2和通信(C3)舉措,如高級戰役管理系統(ABMS),需要提前確定架構和組件系統。因此,CJADC2在其能夠提供的可選性方面將受到固有的限制。

圖:C2實施方法的比較

通過C3實現選擇權

第一步是壓縮空間的表征,重點放在時間的表征上。以一個作戰人員在短時間內的行動為例,在這個例子中,一個作戰人員的任務是收集指定地點的圖像。這在操作上是不現實的情況,只是用一個簡單的案例來說明這個概念。

在C3組合中,國防部已經在通信復原力方面進行了大量投資。因此,大部分新的努力和資源應該應用于C2能力。盡管美國軍方投資于所謂的C2系統,但這些項目主要是操作中心和軟件堆棧,作為在部隊中傳遞數據、信息、命令或權限的基體。盡管對管理部隊來說是必要的,但目前國防部的C2系統——將C2看作是連接——并不是決策支持系統,后者將C2看作是一個過程。

圖:在馬賽克C2方法中采用OODA循環

用于以決策為中心的戰爭的C3能力需要做的不僅僅是實現連接。例如,C2工具將需要生成能創造和維持可選擇性的COA,以提高適應性,并將復雜性強加給對手。為了幫助初級領導人執行任務指揮,C2工具還需要了解哪些單位在通信中,他們在潛在的COAs中的作用,并配置網絡以確保所需單位與適當的指揮官保持一致。為了評估這些要求和以決策為中心的C3的其他要求,本研究采用了多種視角,如下所述。

  • 棧式視角:與互聯網一樣,以決策為中心的C3架構需要有物理媒介來進行數據移動;需要網絡結構來管理指揮官、傳感器和效應器之間的數據移動;需要信息架構來將數據組織成有意義的形式;需要評估信息的應用程序,如決策支持工具。目前的技術可以滿足這些需求,但無法在追求選擇優勢的同時,在對抗性環境中實現部隊和網絡的動態組成和重新配置。

圖:以預測為中心和以決策為中心的選擇空間隨時間變化的比較

  • 網絡視角:要實現可選擇性和實施以決策為中心的戰爭,就需要有能力使C2結構與現有通信保持一致,而不是試圖建立一個在面對敵方協同干擾和物理攻擊時仍能生存的網絡。這些需求導致了一種混合架構,這種架構將網絡方式與分層方式結合起來,可以被定性為 "異構"。這種拓撲結構將使指揮權與合格的人類操作者占據的節點中具有最高程度的節點相一致。

  • 解決問題的視角:與從頭開始處理每個新情況相比,使用類比推理的問題解決過程可以更迅速地評估潛在的備選方案,由此產生的決策空間的增加可以使指揮官將限制其備選方案的作戰行動協議推遲到最后一刻。此外,如果使用人工智能支持的算法在沒有監督的情況下建立COA,對手可以通過佯攻和探測來影響算法的學習,使系統認為COA是成功的,如果不是對手的行動,實際上會失敗。

圖:來自DARPA PROTEUS計劃的分析和用戶界面,AI輔助規劃

  • 時間視角:可選性的概念適用于多個時間尺度,從戰略到工業能力發展和部隊的戰術行動。C3架構的能力應該有助于擴大每個時間尺度上的努力所帶來的決策空間,而不是僅僅在任務期間。

  • 組織視角:國防部的C3架構不是在真空中存在的。各組織的人員必須通過戰略、工業、作戰和戰術時空的流程來運用這些架構。可選性是在以決策為中心的戰爭中獲得優勢的關鍵,但如果僅僅是派出一支更分散的部隊和使用它的工具,如果這支部隊的使用方式很狹窄,為每個單獨的行動提供最高的成功概率,那么只能稍微增加美軍的復雜性和適應性。需要決策組織和程序,盡可能長時間地擴大指揮官的選擇空間。

今天的戰斗指揮官(CCDR)參謀部缺乏組織和程序,無法為即將到來的任務以各種不同的配置組合部隊。為了能夠在任務時間內組成部隊,國防部可以采用類似于將計算機程序編譯成可執行代碼的方法。軟件指令是用較高層次的計算機語言編寫的,但在軟件被計算機處理器執行之前,需要將其轉換成二進制形式。這種方法將從決策支持系統的COA開始,然后組合適當的單位來支持行動。雖然部隊構成主要是以硬件為中心,但也需要在技術棧的信息層和網絡層進行部隊包的軟件構成。

圖:從人工構成到決策中心戰的任務整合浪潮

結語

美軍將需要采用新的部隊設計和C2流程,以實現以決策為中心的戰爭,但如果不與工具和組織結合起來,以充分利用使用人類指揮和機器控制的更分散的部隊中可能存在的可選性,這些努力將付諸東流。

目前國防部通過CJADC2和相關的作戰概念努力使美軍向更分散的組織和更分散的能力發展,這是實現更以決策為中心的軍事行動方法的重要一步。高級戰斗管理系統(ABMS)和DARPA的幾個項目正在開發C2工具和流程,這些工具和流程將增加指揮官使用這些更分布式部隊的可選性。國防部的部隊設計變革或C3舉措將需要更進一步,以便美軍在面對已經躍升到以決策為中心的戰爭并擁有主場優勢的同行對手時保持可選擇性優勢。

也許更重要的是,將需要新的組織和程序,使CCDR能夠在戰區組成和整合分散的部隊,并改變國防部定義需求和發展新能力的方式。如果不對國防部的需求和部隊發展程序進行重大改革,美軍就有可能在爭奪決策優勢的競爭中落后于對手,從而威脅到其保護美國利益和盟友免受大國侵略的能力。

(參考來源:軍事文摘作者:張傳良)

付費5元查看完整內容

摘要

步兵模擬(IWARS)是一個實體級的戰斗模擬,通常用于估計使用不同裝備(包括手榴彈和榴彈發射器)造成的作戰效能差異。當一枚模擬手榴彈在IWARS中爆炸時,對附近人員的影響是通過查詢一個高分辨率模型預先計算出的喪失能力的概率值來確定的。這個值取決于許多因素,因此需要一個大的查詢表,可能會超過數據庫的最大容量。為了解決這個問題,創建了一個神經網絡輸入選項,讓分析師有機會使用高度壓縮的數據而不犧牲準確性或運行時間。以前的壓縮技術要么不太準確,要么提供較低的壓縮率。
這項研究是在2019財年進行的,是題為 "機器學習技術協助生成項目級性能估計,用于班級和士兵級作戰評估 "的研究的一部分。該研究的另一半將在另一份報告中討論。在這一半的研究中,梯度增強的決策樹被用來成功地預測人類主題專家(SMEs)的代理決定。(當所要求的系統沒有數據時,一個類似的系統通常被用作代用。) 訓練有素的決策樹模型可以用來為未來的數據請求建議代理,減少滿足這些請求所需的時間并提高所提供數據的準確性。

簡介

背景

步兵模擬(IWARS)是一個實體級的戰斗模擬,重點是下馬的士兵、班和排,通常被陸軍用來估計使用不同裝備造成的作戰效率的差異。特別是,IWARS被用來比較不同手榴彈和榴彈發射器的有效性[1, 2, 3],幫助指導這些系統的開發和采購。

問題陳述

當一個模擬的手榴彈在IWARS中爆炸時,對附近人員的影響是通過查詢一個高分辨率模型預先計算出來的喪失能力的概率(P(I))值來確定的。P(I)值取決于許多因素,包括目標的姿態、防彈衣和任務(攻擊或防御),以及彈藥的下落角度、爆炸高度、爆炸到目標的范圍、爆炸到目標的方位角和爆炸后的時間。由于有這么多的因素,P(I)查詢表可能非常大。事實上,一個高分辨率的查詢表往往太大,無法裝入IWARS數據庫的最大容量約150兆字節。
為了解決這個問題,分析人員可以將IWARS數據庫分成更小的部分。例如,對12種新型空爆手榴彈的分析可以通過建立12個IWARS數據庫來進行,每種手榴彈一個數據庫。如果描述一種手榴彈的殺傷力數據太大,或者在特定情況下需要一種以上的手榴彈,但只有一種手榴彈的殺傷力數據可以放入一個數據庫,那么這種策略就會失敗。此外,即使這種策略是可行的,也有缺點:任何額外的數據庫變化都必須被鏡像12次,而且數據庫的大小會降低IWARS和數據庫編輯工具的速度。
另外,分析人員可以通過使用低分辨率的P(I)數據來規避數據庫的大小限制。這通常是通過刪除某些突發高度和突發到目標的范圍,并將突發到目標的方位角組的P(I)值平均化來實現的。這降低了模擬的準確性,也降低了對結果的信心。

目的

本文的目的是記錄這個問題的一個新的解決方案,這個方案在所有情況下都有效,而且幾乎沒有精度損失或模型運行時間的增加。它可以描述如下:
1.訓練人工神經網絡來學習P(I)值。然后,神經網絡的參數值將對原始P(I)數據進行編碼,從而對其進行壓縮。
2.在IWARS中重新創建這些神經網絡,以便在需要時估計P(I)值。

圖1:具有三個隱藏層的人工神經網絡的圖形和代數表示。
付費5元查看完整內容

【摘 要】

本報告提供了對機器學習 (ML) 技術的基本理解,并回顧了它們在國防和安全領域的應用。其目標是開發ML的內部專業知識,以支持與加拿大皇家海軍(RCN)海上信息戰(MIW)概念和愿景相一致的能力發展。本文進行了文獻回顧以收集有關在軍事和民用場景中實施和使用的 ML算法信息。結果表明,海軍必須適應和接受新技術,以便在所有 RCN的數據驅動決策中有效利用所有信息。這可以包括使用自動化、大數據分析、云計算、人工智能 (AI) 和 ML。這樣做可以減少與繁瑣任務相關的操作工作量,進而最大限度地減少人為錯誤和超負荷。這項研究表明,ML有可能提供新的或增強的能力,以支持 MIW 的概念,以及滿足使用現有和未來信息源的 RCN 的需求。這意味著開發利用這些技術的必要技能將使加拿大武裝部隊(CAF)受益。憑借這些專業知識和這些技術的適當應用,軍方將有能力在必須進行快速數據驅動決策的情況下更有效地利用其信息源。

【對國防和安全的意義】

本報告旨在就如何將人工智能和機器學習技術應用于支持加拿大皇家海軍與海上信息戰相關概念和目標,而建立基本的理解和專業知識。對這些技術及其在國防和安全領域的應用進行了回顧。

1 引言

在過去的十年中,加拿大國防部 (DND) 和加拿大皇家海軍 (RCN) 引入了新的概念和方法,以幫助提升其服務水平。其中許多概念引入了新技術,旨在增強信息空間在作戰級(即作戰職能)和事業級(即管理職能)方面的防御能力。在作戰層面,這些舉措得到了一系列文件的支持,這些文件強調了信息戰的重要性及其在 RCN 內的實施和執行。

2015年,海上信息戰(MIW)的概念被引入[1]。本概念文件概述了在信息環境中運作對 RCN 及其內部可能產生的影響。這一概念的引入清楚地強調了能夠利用該領域中可用信息源的重要性。它討論了信息的影響,基于其廣泛的可用性以及 RCN 的依賴性和使用該信息支持作戰的能力。

采用新的概念和技術進行能力開發并非沒有挑戰。這需要更有效的處理技術來處理在 MIW 的功能區域內收集的大量和各種數據。此外,概念文件還討論了 MIW 與物理、虛擬和認知領域的關系,表明在戰爭中使用所有領域的信息作為 RCN 的寶貴資源的重要性。

2016 年,RCN 發布了一份信息戰戰略文件,重點關注為國家和國際部署開發 MIW 能力 [2]。該戰略文件討論的主題包括有效收集、利用和傳播信息的重要性。該戰略還認識到并傳達了信息戰是RCN可以同時采取防御和進攻行動的地方。

2017年,加拿大國防政策發布[3]。盡管它沒有直接處理信息領域,但它承認信息對 RCN 的重要性,這在 2019 年和 2020 年分別發布的 DND 數據戰略 [4] 和 RCN 數字海軍 [5] 報告中得到了回應。數字海軍支持國防政策創新目標,其中包括適應和接受新技術的能力,而數據戰略涵蓋了如何利用技術在RCN 社區中做出數據驅動的決策。這可以包括使用自動化、大數據分析、云計算、人工智能 (AI) 和機器學習 (ML)。在操作上,期望通過這些技術對更繁瑣任務的自動化實施來減少海軍團隊的日常工作量,進而最大限度地減少人為錯誤和疲勞,提高整體作戰效率。

這些文件中包含的首要主題強調了 RCN 采用新的數字能力成為一個信息組織的重要性,其中信息在戰爭環境中被使用,但也被用作工具。使用和利用信息來支持 RCN 的現代工具、技術和專業知識是能力發展的關鍵。在此之后,我們顯然需要一個強大的、知情的、由信息科學、人工智能和機器學習專家組成的科學團體。

這項工作背后的動機是在 MIW 領域內建立科學專業知識,以支持 RCN 的目標。為實現這一目標,以下報告將回顧可在防御和安全領域中使用的 AI 和 ML 技術。除了這篇綜述之外,本文還將介紹這些與 RCN運作相關的技術的應用,例如艦艇監視、目標檢測以及使用生成建模來支持運作。

這項工作的總體目標是為如何將 AI 和 ML 技術應用于 RCN 挑戰提供科學基礎和理解。建立這些新興技術的專業知識不僅是支持當前運作目標的必要條件,也是對開發和塑造未來能力的投入。這種向算法決策制定的轉變與 MIW 的概念非常吻合,因為它認識到信息在戰爭中的使用至關重要。還提出并討論了 ML 未來的工作和研究主題。

5 機器學習在國防和安全中的應用

2、3、4章節簡要回顧了在計算機科學和數據分析中使用的機器學習技術。這些技術同樣適用于海上防御和安全領域中經常發現的問題。本節概述這些技術及其在這個領域的應用,特別是海上探測和監視有關的任務。此外,還將討論生成對抗ML方法的應用。需要注意的是,這些部分并不是對這個領域中已經完成的研究的全面回顧。相反,本文的目的是概述如何使用這些技術改進和開發與RCN相關的新功能。

5.1 艦艇監視

艦艇行為分析是與海上監視和安全相關的關鍵組成部分。這種分析的結果依賴于捕獲和利用艦艇活動數據的能力。用于海上監視的數據源包括:自動識別系統 (AIS) 數據、天基 AIS、雷達數據等。這種監視形式允許分析師進行船只航跡重建、路徑預測、異常艦艇交通監視,這些在海上領域非常重要,有助于發現恐怖主義、海盜、毒品和武器走私、非法移民和非法捕魚等非法活動。

5.1.1 機器學習應用

各種各樣的機器學習算法和技術可以應用于海事問題并提供有價值的見解。為了支持預測模型的開發,可以使用的技術包括:

? 聚類:無監督聚類方法已用于為海事和艦艇監視提供洞察力。這些聚類算法已應用于 AIS 數據。具體來說,已經報道了基于這些方法對艦艇運動實時預測的可靠性和準確性的研究[25]。還使用應用于基于空間的 AIS21 的 K-means 聚類算法來研究艦艇避撞,以評估航行穩定性和檢測異常行為[26]。研究人員還探索了使用聚類和 AIS 數據流來支持搜索和救援行動[27]。

? 決策樹:使用模糊粗略決策樹算法,研究探索了執行艦艇類型行為學習的能力[28]。對艦艇活動進行可靠和有效的表征可以提高海域態勢感知。這是通過使用包含運動學、靜態和環境信息等軌跡特征的概括向量來實現的,其中軌跡是通過融合 AIS、合成孔徑雷達 (SAR) 和天氣報告來創建的。

? 隨機森林:研究已使用隨機森林算法開發用于艦艇監視和跟蹤的各種目的的模型。由于多種原因,基于 AIS 的艦艇運動往往會丟失數據。例如,這些失誤可能是由于惡劣天氣造成的。為了檢測這些記錄,這些技術已被用于自動識別船只軌跡中缺失的位置記錄[29]。隨機森林也被用于創建預測船只目的地的模型。在艦艇離開特定港口后使用歷史 AIS 數據確定目的地點的能力也已被研究 [30]。這也通過比較當前和歷史軌跡數據進行了研究,以便根據相似性度量來預測最終位置[31]。

? 關聯挖掘:創建關聯規則的模型通常用于購物籃分析場景。然而,當應用于 AIS 數據源時,這種算法為艦艇運動分析提供了有用的見解。使用關聯挖掘進行的研究提供了有助于發現艦艇運動模式的洞察力。此類運動包括:軌跡預測,估計艦艇接下來最有可能訪問的港口[32],并在收到新消息時預測艦艇的位置,并計算有和沒有艦艇位置插值的關聯概率[33]。

? 支持向量機:支持向量機執行回歸和分類任務。支持向量回歸用于研究異常艦艇行為的檢測。當前檢測異常行為的方法是利用艦艇運動的突然變化。然而,與海上事故相關的導航數據可以模擬正常情況。為了解決這個問題,使用 SVR 航道模型及其路線提取方法,開發了一個模型來檢測異常艦艇行為 [34]。該研究的目的是定義“通過將導航數據分配給位置基礎來確定異常行為的可接受的最大值和最小值”[34]。除了SVR研究之外,科學家們還研究了SVM在檢測和分類異常艦艇行為方面的應用。通過從原始AIS數據中提取海上運動模式,對異常艦艇行為的識別和分類提供了新的信息[35]。

? 人工神經網絡:人工神經網絡 (ANN) 已被用于幫助預測北極的船只速度,因為該地理區域氣候變化帶來的交通量增加[36]。 AIS 數據的使用允許模型根據位置、時間、艦艇用途、大小和冰級來預測艦艇的速度。在[37]中,作者使用神經網絡作為一個基于云的web應用程序來預測未來的艦艇行為。它能夠將預測的短期和長期行為疊加到交互式地圖上。除了預測艦艇航線,人工神經網絡也被用于調查異常檢測事件。具體來說,該研究著眼于AIS轉發器中觀察到的有意和非有意的切換,因為這種活動可以用來隱藏可疑或非法活動[38]。

?卷積神經網絡:AIS、雷達、高精度攝像機和電子海圖等信息源為理解海上態勢感知提供了有用的信息。利用這些來源,CNN可以提取艦艇運動模式。在[39]中,作者通過將原始AIS數據轉換成保存艦艇運動模式信息的圖像數據結構,利用歷史AIS重建艦艇軌跡。然而,使用AIS系統的艦艇軌跡重建技術存在原始數據含有噪聲、記錄缺失和其他錯誤。許多研究在進行彎曲軌跡或高損失率的艦艇重建時面臨困難。為了克服這些障礙,[40]的作者使用了一種健壯的CNN架構,稱為“U-net”。這種架構能夠處理不同采樣率的軌跡、丟失的數據記錄和其他噪聲相關問題的軌跡。

? 循環神經網絡:艦艇監測通常依賴于存在許多問題的 AIS 數據。AIS源可以表示大量數據,除了具有不規則的時間戳和丟失的記錄外,這些數據有時可能會非常臟亂。已經進行了研究以幫助解決這些問題。研究 [41] 使用多任務深度學習框架,將 RNN 與潛在變量建模相結合,以幫助在執行軌跡重建、異常檢測和艦艇識別等任務時處理這些問題。 [29]中的作者利用隨機森林來識別丟失的記錄,并使用 LSTM 架構來重建缺少 AIS 記錄的船只軌跡。結合統計分析、數據挖掘和神經網絡方法監測內河艦艇數據[42]。具體來說,LSTM 用于艦艇軌跡修復、發動機轉速建模和燃料消耗預測。在另一項研究 [43]中,由于與設備故障、傳輸延遲和信號丟失有關的問題,需要在分析之前對 AIS 數據進行預處理。作者通過將 LSTM 與變量建模相結合來執行軌跡重建,同時考慮異常軌跡數據和艦艇航行狀態。這一努力將有助于減少艦艇碰撞的風險,并支持其他研究途徑,如艦艇類型分析、風險評估、軌跡預測和航線規劃。

5.1.2 對比分析:為確定艦艇類型而開發的機器學習模型

監視海域中的艦艇行為對于檢測可能表明存在非法活動的異常情況至關重要。收發器用于報告 AIS 數據流,其中包含有關船只及其軌跡的信息。由于從 AIS 數據流收集的信息是自我報告的,因此可能會出現問題。有意或無意地修改此數據或打開/關閉轉發器會導致間歇性消息,這些消息可能不準確或具有誤導性。這種策略可用于掩飾海上的非法行為和活動。

在某一天,有大量船只在海上作業,人類操作員無法監控和檢測這些事件。因此,可以使用 AIS 數據流以及其他來源來訓練 ML 模型,從而為人類操作員提供自動化支持和洞察力。根據行為特征確定船只類型的能力是 ML 提供的眾多能力之一。探索艦艇類型分類的兩項研究是[28]和[44]。

在[28]中,作者開發了一個模糊粗略的決策樹模型,以根據運動學、靜態和環境信息確定艦艇類型。用于模型開發的訓練數據包含來自加拿大東海岸和美國東北部的 AIS 消息。[44]中給出的結果使用具有來自兩個不同地理區域的軌跡信息的 GANN 執行艦艇分類。第一個是歐洲數據集,其中包括來自凱爾特海、海峽和比斯開灣的海上交通。另一個是東南亞數據集,根據在新加坡附近的海峽和港口以及南中國海開放水域的海上交通中船只的預期運動模式,該數據集被分為三組。

在[44]中,作者使用以下性能指標來評估他們的模型:召回率、精度和 F1分數[45]。作者在他們的報告中使用召回指標作為他們的模型準確性。召回率表示正確識別的實際相似性部分,其中準確度是正確預測的數量與預測總數的比率。假設作者使用召回作為準確率,當將其與[28]中報告的性能進行比較時,此分析將把[44]中的召回指標視為模型準確度。兩項研究都將他們的結果與一系列其他 ML 技術進行了比較,以幫助評估性能。然而,與[44]不同的是,[28]報告了具有不確定性的準確性,從而賦予了性能結果意義,并使模糊粗略決策樹模型與其他標準技術相比更容易理解。除此之外,比較這兩篇論文的結果(沒有不確定性測量)表明,大多數機器學習模型的表現都一樣好。例如,k-最近鄰、樸素貝葉斯、隨機森林和支持向量機在[28]中的性能準確度在[44]中使用的四個數據集中的兩個數據集中的相似鄰域內。具體而言,新加坡港口和海峽周圍海上交通的準確率報告在 47% 到 64% 之間,而[28]中報告的準確率為 45% 到 69%。

[28] 中使用的多層感知器取得的結果表明,它以81.5%的整體準確度優于其他模型,略高于模糊粗略決策樹結果 (80.7%)。[44]中報告的四個不同數據集的準確率在41%到56%之間,非常差。在 [28] 中,對各種參數進行了特征選擇過程,并根據分配的加權值選擇了19個特征中的 10 個。特征及其相關權重為:ship_length (1.0)、avg_speed (0.183)、max_speed (0.183)、speed_st_dev (0.183)、course_st_dev (0.100)、heading_st_dev (0.097)、duration (0.082)、end_point lat (0.055)、start_point_lat (0.052) 和 max_lat (0.051)。[44]中使用軌跡特征來執行分類,利用 AIS 消息中包含的時間戳、經度、緯度、對地航向和對地速度。

這些研究之間選擇用于訓練的特征之間的主要區別之一是[28]中權重和影響最大的特征是ship_length,這不是[44]中使用的特征。模型的成功很大程度上取決于所用數據的質量和數量,但在很大程度上取決于特征選擇。在多層感知器模型的情況下,[44]中使用的軌跡信息特征可能不足以生成準確的艦艇類型預測。這表明了解艦艇的長度是進行此類分類的關鍵指標。在比較[28]中選擇的特征時,ship_length 被分配的權重大約是任何其他特征的五倍。這將使模型在進行分類時更加依賴此特定信息。除了特征選擇和可調超參數外,使用的訓練數據也對模型的成功有影響。數據的特征,如記錄數量、代表性內容以避免過度/不足以及數據完整性,都在成功訓練模型以提供高度性能方面發揮作用。

另一個有趣的觀察結果是,[44]中使用的GANN 報告了其分析中使用的數據集從低 80% 到高 96% 的一系列準確度,平均準確度為 87%。這些結果優于 [28]中使用模糊粗略決策樹報告的80.7% 準確度。關于為什么GANN 的表現似乎更好,有一些可能的解釋。GANN模型基于LSTM-RNN,它允許將時間依賴性構建到模型中。包括這個額外的時間維度可以提供預測洞察力,從而實現更高程度的預測準確性。此外,GANN 模型使用對抗性組件進行訓練,該對抗性組件可能迫使網絡實現更大程度的學習以執行其所需任務。

5.2 目標檢測

目標檢測對于防御和安全的海上環境中的監視和態勢感知都至關重要。然而,這是一項艱巨的任務,因為尺寸、方向和目標配置的變化加上環境背景噪聲和使用的各種傳感器的性能差異很大。所有這些事情只會增加這個問題的整體復雜性。傳統的檢測算法缺乏簡單性和可靠的輸出。深度學習領域的最新研究和進展表明,CNN 可以執行與檢測相關的任務,同時提供高速性能和準確性。開發這些能力正在推動促進防御和安全的技術。

5.2.1 機器學習應用

目前使用 CNN 顯示出前景的能力包括:使用SAR圖像進行艦艇識別和分類以監測海洋區域[46][47]、使用探地雷達[48]進行魚類檢測、海冰SAR圖像分類以監測極地地區的變化并檢測可能威脅海上交通的流冰[49],并檢測從SAR [50][51] 和遠程傳感器[52]獲得的圖像中的船只。雖然這不是一個詳盡的應用程序列表,但它確實突出了一些與信息戰領域相關的當前 ML 應用程序。特別是,現在將討論 CNN 的兩個有趣的應用。

? 水下聲納圖像的目標識別和分類:研究[53]的研究重點是深度學習特征提取在水下聲納圖像目標識別和分類中的應用。該方法通過 CNN 使用聲納圖像提取目標特征。然后使用 SVM 進行分類。在現代海上作業期間執行自動目標識別和分類可以幫助當局檢測潛在威脅。自主系統,例如基于調查和戰術信息收集圖像的無人水下航行器,是可以利用這種技術的系統。機器學習的這種應用減少了對具有分類目標專業知識的操作員的需求。因此,隨著效率、速度和成本的提高,這個過程有可能變得更加自動化。該領域的一個活躍研究課題包括使用 ML 更好地檢測聲納數據中的類似地雷的物體[54][55]。

? 使用有限數據進行軍事目標識別和分類:CNN等深度學習算法是用于處理圖像和視頻的強大工具,可支持防御和安全功能。目標識別和分類能力對于監視和態勢感知至關重要。然而,所開發模型的成功取決于能否獲得反映被建模數據的關鍵屬性和特征的良好數據集。許多軍事場景中的訓練數據集的大小可能很少。[56]中的作者使用遷移學習和混合神經網絡層的組合來解決這個問題,以開發可以嵌入的先驗知識,以實現對高精度識別任務的特征提取的改進。這樣的發展自然會進入并改進分類過程。

5.2.2 對比分析:為使用聲納圖像進行目標檢測而開發的機器學習模型

自動目標識別在海上作業中發揮著重要作用。無人水下航行器使用聲學傳感器產生聲納圖像,幫助檢測水下目標和威脅,例如水雷。由于噪聲、低對比度和低分辨率,使用聲納圖像進行目標檢測很困難。ML和DL都提供了可以幫助提取特征和重要信息以進行對象檢測和分類的功能。

探討這個問題的兩篇研究論文包括Zhu等人[53]和Bouzerdoum等人[57]的工作。在[53]中,作者使用稱為AlexNet的預訓練NN來執行特征提取,然后使用SVM將檢測到的對象分為兩類:目標和非目標。然后將性能與以下兩種技術進行比較:局部二進制模式和定向梯度直方圖。在[57]中,作者遵循與[53]類似的方法,其中使用預訓練的網絡進行特征提取,并使用 SVM 對檢測到的對象進行分類。然而,在[57]中,對象被分為三個不同的類別:類水雷對象、非類水雷對象和誤報對象。該研究還開發了一個用于分類目的的小型 CNN,并使用了一個名為 ObjectNet23 的預先開發的 CNN 來執行相同的任務。所有這三種方法都在它們的整體性能方面進行了比較。

兩項研究都測試了用于特征提取的預訓練 CNN 和用于分類的 SVM 的應用。結果表明,[53]和[57]的性能準確率分別為 95.9% 和 76.2%。鑒于這些方法相似,人們不會期望這些結果會有大約 20% 的差異。兩個系統都使用預訓練的網絡進行特征提取。有趣的是,[57]考慮了不同的 CNN 架構,包括 VGG16 和 VGG19。這些網絡是基于 AlexNet 網絡的架構構建的,但經過改進。

奇怪的是,[57]中使用VGG的方法不會勝過[53]中使用 AlexNet 的技術。這樣的結果可以用許多因素來解釋。作者沒有指定用于訓練VGG網絡的數據集。用于訓練的數據質量和數量可能會影響模型的性能,從而使 AlexNet 能夠更好地提取特征。該問題也可能存在于SVM執行的分類中。用于訓練這些系統的數據可以極大地影響預測結果,因為在該領域很難獲得大量標記數據。兩項研究都進行了數據處理并使用增強技術來增加數據集的大小,這不如擁有更多“真實”數據點有效。此外,應注意分類類別的差異。[53]和[57]中檢測到的對象分別分為兩類和三類。擁有額外的類并嘗試檢測特定對象會更加復雜,并且可能會降低這些模型的整體性能準確性。

盡管這些研究使用了類似的方法來實現預訓練的 CNN 和 SVM 來執行目標檢測,但[57]也為此任務開發了一個小型 CNN。小型 CNN 的性能優于預訓練的 CNN + SVM 模型,準確率達到 98.3%。與大型 CNN 不同,較小尺寸的 CNN 需要訓練的參數顯著減少,從而在數據樣本有限時減少過度擬合的機會。這可能是小型 CNN 和預訓練 CNN 之間顯著性能差異的原因+ SVM 模型。

5.3 生成對抗網絡應用

艦艇檢測在軍用和民用環境中發揮著重要作用,各種類型的成像傳感器用于檢測、跟蹤和分類艦艇。因此,DNN 的引入改變了軍隊執行任務的方式。生成網絡提供了生成代表歷史數據記錄的數據或樣本的能力。此功能提供了新的數據樣本,可用于在軍事場景中訓練智能系統,在這些場景中,由于可用性、安全分類和成本,數據通常難以收集。但是,其他國家也可以使用相同的過程來創建對抗性數據,這些數據有可能危及易受此類攻擊的國家系統。因此,GANN 的實現既可以用于進攻性場景,也可以用于防御性場景。這些網絡可用于訓練預測、分類和產生可靠輸出的智能系統,以發展未來的軍事能力。 GANN 還提供了執行對抗性攻擊以欺騙對手系統的能力。

5.3.1 機器學習應用

GANN與國防和安全領域相關的應用包括:

? 對抗性偽裝:偽裝在軍隊中被用作一種策略,以阻止對手在視覺上檢測和分類軍事物體的能力。此類任務傳統上由人類觀察者執行。然而,戰斗空間在不斷發展,自主軍事代理和人工智能在此類任務中的使用也在增加。這一變化促使科學家們研究偽裝是否能有效對抗這些聰明的對手,或者是否有可能設計出能夠迷惑這些人工智能對手的偽裝。2019 年,對這個問題進行了調查,其中NN被訓練來區分和適當分類軍用和民用船只 [58]。這項研究的結果表明,如果 GANN 生成的模式覆蓋在軍艦的某些部分上,則針對此類圖像分類訓練的 NN 可能會混淆這些模式。這種技術被稱為對抗偽裝。進一步的研究 [59]研究了如何使用這種方法來欺騙選擇的幾個NN分類器。通過這樣做,他們能夠將分類的整體準確性降低到被認為不可靠的程度。在研究 [60]中,研究了迷彩圖案的穩健性和通用性。這些模式在研究中被稱為補丁,并且發現通過在補丁生成器的訓練中實施降級過濾器,作者表明他們能夠提高這些補丁的整體魯棒性或有效性。

? 特定發射器識別:[62]中報告了使用GANN開發的半監督特定發射器識別 (SEI)應用程序。此應用程序是針對與基于接收到的波形對發射器進行 SEI 分類相關的問題而開發的。這些波形容易受到可能導致單個發射器表示不準確的因素的影響。SEI在包括無線電和無線網絡安全在內的各種軍事應用中都很重要。

? 時空數據:2020 年,報告了與時空數據一起使用的 GANN 架構以及衡量此類模型性能的常用評估方法 [63]。這些架構已被用于執行軌跡預測和時間序列。盡管在該領域正在進行重要的研究,但執行時空數據預測的能力對研究人員來說是一個持續的挑戰。特別是對于時空應用是一個新領域的GANN。[63]中討論的最近工作強調了與數據生成相關的問題,這些問題會影響研究人員理解數據特征的能力。

5.3.2 對比分析:針對對抗偽裝開發的機器學習模型

對抗性偽裝用于防止軍事資產被發現和分類。傳統上,偽裝是通過使用大網或油漆來幫助隱藏人類觀察者的飛機或船只等資產來實現的。然而,隨著使用智能系統執行傳統上由人類執行的分類任務,戰場空間發生了變化。Adhikari等人[64] 和Aurdal 等人[58]進行的兩項研究,如何使用對抗偽裝來欺騙或誤導這些智能系統執行的自動對象檢測。在[64]中,基于補丁的對抗性攻擊被用來掩飾軍事資產不受無人駕駛空中監視的影響。該研究使用神經網絡創建覆蓋在軍事資產上的各種補丁,以防止自動檢測目標物體。對于這些研究,感興趣的目標對象主要是飛機。[58]中進行的工作訓練了一個可以檢測和分類軍用和民用船只的 NN。對第二個網絡進行了訓練,以生成用于防止對軍艦進行檢測和分類的補丁。

這些研究使用對抗性補丁來防止智能系統檢測或錯誤分類資產。兩項研究都表明,對抗性偽裝既可行又有效,但在現實世界中并不可行。貼片的設計可能相當復雜,因此很難將其復制到飛機或船只的外部。與[58]不同,[64]確實試圖通過將現實世界的適用性構建到損失函數中來解決這個問題。然而,這種方法是否充分并不明顯。

在比較這些作者所采取的方法時,[64] 中防止檢測的目標似乎更可行,部分原因是避免了與國際人道主義法相關的問題。相比之下,作者在 [58] 中的意圖是使用對抗性偽裝來實現將軍用船只錯誤分類為民用,顯然會陷入法律戰爭問題。然而,[64] 中采用的方法對于 [58] 中的船只可能更復雜,因為它們沒有與部署在陸地上的軍事資產相同的多樣化環境。這表明在考慮對抗性偽裝的應用時,能夠避免檢測是兩種方法中更好的方法。

此外,[58] 中使用的數據集由世界各地用戶上傳的圖像組成,這些圖像主要由艦艇輪廓組成。該數據集不太可能包含每艘船的足夠的方面數據。此外,[64] 專注于航拍圖像,而 [58] 則沒有。在海上的任何軍事場景中,用于檢測船只的數據集很可能包含空中數據。擁有完整的數據集將允許模型為這些艦艇的不同方向生成補丁,而不僅僅是輪廓補丁。為實際使用實施對抗性偽裝不僅需要此類數據,還需要適當的技術來實施。

最后,[64] 的訓練數據顯著減少,它使用稱為 YOLO26 的標準預訓練網絡進行目標檢測。該網絡是對語義對象進行分類的通用模型,并未經過專門訓練以檢測空中目標。然而,在[58]中建立并訓練了一個鑒別器網絡來專門檢測和分類艦艇。使用這種專門的鑒別器網絡的目的是提高創建補丁的網絡的整體性能。如果[64]的作者使用專門的鑒別器網絡而不是他們的預訓練網絡,他們將獲得什么性能提升,這將是一件有趣的事情。

6 總結和未來工作

技術進步已經并將繼續改變與現代戰爭相關的所有戰場空間。隨著機器學習、人工智能和自主代理的引入,軍方必須學會調整這些不斷發展的技術并將其整合到他們的系統中。DND和RCN都已主動引入和使用此類技術,目的是提高整體防御和安全性。本節將總結本文的內容,并討論作為文獻回顧的結果將進行的未來工作。

6.1 總結

本報告探討了深度學習和機器學習技術,這些技術可用于開發流程以支持 RCN 實現其既定目標所需的自動化和高效率。例如,回歸是一種進行未來預測的簡單方法,無監督聚類方法通過檢查和分組具有相似特征的數據點來推斷新信息,決策樹和隨機森林允許分析師評估選項并根據準確度估計進行分類,關聯挖掘創建可以檢測行為和模式的規則集,支持向量機允許分析師根據多種核函數選擇在高維空間中進行有效的預測和分類。此外,神經網絡很重要,因為它們可用于開發支持自動化的工具。例如,感知和深度神經網絡提供了人類不容易執行的分析能力;卷積神經網絡可以輕松處理具有網格狀拓撲結構的數據,例如音頻信號、圖像和視頻;遞歸神經網絡可以處理序列數據并處理長期依賴關系;生成建模技術可以執行密度估計和樣本生成,以支持一般的訓練模型或支持防御和進攻行動。

這些學習算法和技術的應用為分析師提供了洞察力并簡化了繁重的任務。在國防和安全的背景下,它們在能力開發周期中的應用顯示出巨大的前景。具體而言,本報告重點介紹了三種此類應用,包括艦艇監視、目標檢測以及對防御和進攻行動的支持。相當多的機器學習重點是艦艇監控,特別是航跡重建、防撞、航跡預測、目的地預測等。該研究領域已經研究并報告了許多機器學習算法的應用。目標檢測對于海上環境中的監視和態勢感知都至關重要。用于物體檢測的卷積神經網絡已被用于對船只進行分類、發現水雷、檢測海冰、使用水下聲納圖像進行分類、檢測具有有限數據的軍事物體等。生成對抗神經網絡可用作支持密集操作的工具和防守。此外,在國防和安全領域,它們已用于樣本生成、生成對抗偽裝、用于支持特定發射器識別,并用于時空數據應用,包括軌跡預測和時間序列插補的事件生成。

這些技術在國防和安全領域的適當應用可以為軍方提供情報,這些情報可以在必須進行快速數據驅動決策的情況下加以利用。本文提供了對 ML 技術應用背后的基礎知識的基本理解,以幫助構建使用符合 RCN 既定目標的新技術支持和構建能力所需的內部專業知識。對發展這種專業知識的任何投資都將有助于塑造應對現代戰場所帶來的挑戰所需的未來能力。這些空間在本質上變得越來越技術化,因此,DND 和 RCN 必須學習如何適應和改變,以便在這些環境中發揮作用。對于 RCN,利用技術援助利用數據和信息對于海上信息戰概念的成功至關重要。

6.2 未來工作

第 5 節中的討論涉及與 MIW 相關的防御和安全領域的各種 ML 應用。當前研究的一個共同主題是對艦艇監視的內在興趣。雖然 AIS 數據流是用于高度研究主題的重要信息來源,包括軌跡重建、路徑預測和船只異常行為識別,但文獻缺乏檢測與數據流本身相關的潛在異常。

在研究艦艇監視領域的異常檢測時,文獻傾向于將“異常”稱為可用于掩蓋非法海上活動的 AIS 應答器的有意和非有意開關。然而,研究這個數據流的特征和這個信息源中可能存在的異常是很重要的。檢測和解釋數據流中的異常有助于建立用戶對使用此信息訓練的 ML 模型的信任。模型提供準確和穩健的預測或分類的能力源于使用可靠和值得信賴的數據。因此,有必要將研究工作集中在 AIS 轉發器數據流上。

AIS數據流為各種船舶提供了大量的數據,這些船舶被法律要求在海上發送AIS信息。但是,船舶并不是操作可以產生AIS信息的AIS技術的必要條件。因此,用戶如何相信他們收到的數據是可靠、準確的,并且來自實際船只?這方面的一個例子是虛擬艦艇的存在。在這種情況下,這些船只正在將 AIS 消息傳輸到數據流中,即使它們實際上并不存在。這種類型的惡意注入可以用來迷惑和影響情報人員和決策者。這些虛擬船只的存在是海事運營中心注意到的數據流中的異常現象。因此,它們需要被識別和解釋,以支持決策過程。

在異常行為的背景下,研究虛擬艦艇的檢測是本研究中同樣重要的課題。這些研究將探索第 3 節和第 4 節中討論的機器學習技術的應用。檢測和確定識別虛擬艦艇的關鍵 AIS 信號特征的能力是這項工作的基礎。此外,從 AIS 數據流中刪除惡意注入的能力將大大有助于使信息更加可靠、準確和值得信賴。

付費5元查看完整內容

序列標記是一個基礎性研究問題,涉及詞性標記、命名實體識別、文本分塊等多種任務。盡管在許多下游應用(如信息檢索、問題回答和知識圖譜嵌入)中普遍和有效,傳統的序列標記方法嚴重依賴于手工制作或特定語言的特征。最近,深度學習已經被用于序列標記任務,因為它在自動學習實例的復雜特征和有效地產生藝術表現的強大能力。在本文中,我們旨在全面回顧現有的基于深度學習的序列標記模型,這些模型包括三個相關的任務,如詞性標記、命名實體識別和文本組塊。然后,在科學分類的基礎上,結合SL領域中廣泛使用的實驗數據集和常用的評價指標,系統地介紹了現有的方法。此外,我們還對不同的SL模型進行了深入分析,分析了可能影響SL領域性能和未來發展方向的因素。

//arxiv.org/abs/2011.06727

序列標記是自然語言處理(NLP)中重要的一種模式識別任務。從語言學的角度來看,語言中最小的意義單位通常被認為是語素,因此每句話都可以看作是語素構成的序列。相應的,NLP領域中的序列標記問題可以將其表述為一種任務,目的是為一類在句子語法結構中通常具有相似角色和相似語法屬性的語素分配標簽,所分配標簽的意義通常取決于特定任務的類型,經典任務的例子有詞性標注[71]、命名實體識別(NER)[52]、文本分塊[65]等,在自然語言理解中起著至關重要的作用,有利于各種下游應用,如句法解析[81]、關系提取[64]和實體共指解析[78]等,并因此迅速得到廣泛關注。

通常,傳統的序列標記方法通常基于經典的機器學習技術,如隱馬爾科夫模型(HMM)[3]和條件隨機字段(CRFs)[51],這些技術通常嚴重依賴于手工制作的特征(如一個單詞是否大寫)或特定于語言的資源(如地名詞典)。盡管實現了卓越的性能,但對大量領域知識的需求和對特征工程的努力使得它們極難擴展到新的領域。在過去的十年中,深度學習(DL)由于其在自動學習復雜數據特征方面的強大能力而取得了巨大的成功。因此,對于如何利用深度神經網絡的表示學習能力來增強序列標記任務的研究已經有了很多,其中很多方法已經陸續取得了[8],[1],[19]的先進性能。這一趨勢促使我們對深度學習技術在序列標記領域的現狀進行了全面的綜述。通過比較不同深度學習架構的選擇,我們的目標是識別對模型性能的影響,以便后續研究人員更好地了解這些模型的優缺點。

本綜述的目的是全面回顧深度學習在序列標記(SL)領域的最新應用技術,并提供一個全景,以啟發和指導SL研究社區的研究人員和從業者快速理解和進入該領域。具體來說,我們對基于深度學習的SL技術進行了全面的調研,并按照嵌入模塊、上下文編碼器模塊和推理模塊三個軸進行了科學的分類,系統地總結了目前的研究現狀。此外,我們還概述了序列標記領域中常用任務的實驗設置(即數據集或評價指標)。此外,我們討論和比較了最具代表性的模型給出的結果,以分析不同因素和建筑的影響。最后,我們向讀者展示了當前基于dll的序列標記方法所面臨的挑戰和開放問題,并概述了該領域的未來發展方向。

本綜述旨在全面回顧深度學習技術在序列標注中的應用,并提供一個全景視圖,以便讀者對這一領域有一個全面的了解。我們以科學的分類學對文獻進行了總結。此外,我們提供了一般研究的序列標記問題的數據集和評價指標的概述。此外,我們還討論和比較了不同模型的結果,并分析了影響性能的因素和不同架構。最后,我們向讀者展示了當前方法面臨的挑戰和開放問題,并確定了該領域的未來方向。我們希望這項調查能對序列標記感興趣的研究者、從業者和教育者有所啟發和指導。

付費5元查看完整內容
北京阿比特科技有限公司