亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在二十一世紀,統計方法的范圍和影響都有了驚人的擴大。“大數據”、“數據科學”和“機器學習”已經成為新聞中常見的術語,因為統計方法被用于處理現代科學和商業的龐大數據集。我們是怎么走到這一步的?我們要去哪里?這本書帶領我們經歷了自20世紀50年代引入電子計算之后的數據分析革命。從經典的推論理論-貝葉斯,頻率主義者,費歇爾-個別章節采取了一系列有影響力的主題:生存分析,邏輯回歸,經驗貝葉斯,jackknife和bootstrap,隨機森林,神經網絡,馬爾科夫鏈蒙特卡羅,模型選擇后的推論,以及更多。本書將方法論和算法與統計推斷相結合,并以對統計和數據科學未來方向的推測作為結尾。

付費5元查看完整內容

相關內容

這本書來自統計學習課程,這是一門統計機器學習的入門課程,面向具有一些微積分、線性代數和統計學背景的學生。這門課程的重點是監督學習:分類和回歸。本課程將涵蓋機器學習和數據科學中使用的一系列方法,包括:

  • 線性回歸(包括嶺回歸和Lasso)
  • 通過logistic回歸和k近鄰進行分類
  • 線性和二次判別分析
  • 回歸和分類樹(包括套袋林和隨機林)
  • Boosting
  • 神經網絡和深度學習

這些方法將在整個課程中被研究并應用于來自各種應用的真實數據。課程還涵蓋了一些重要的實際問題,如交叉驗證、模型選擇和偏方差權衡。課程包括理論(例如,推導和證明)以及實踐(特別是實驗室和小型項目)。實際部分將使用Python實現。

付費5元查看完整內容

【導讀】《機器學習:貝葉斯和優化的視角》是雅典大學信息學和通信系的教授Sergios Theodoridis的經典著作,對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。非常值得學習。

Sergios Theodoridis教授是雅典大學信息學和通信系的教授,香港中文大學(深圳)客座教授。他的研究領域是信號處理和機器學習。他的研究興趣是自適應算法,分布式和稀疏性感知學習,機器學習和模式識別,生物醫學應用中的信號處理和學習以及音頻處理和檢索。

他的幾本著作與合著蜚聲海內外,包括《機器學習:貝葉斯和優化的視角》以及暢銷書籍《模式識別》。他是2017年EURASIP Athanasios Papoulis獎和2014年EURASIP Meritorious Service獎的獲得者。

//cgi.di.uoa.gr/~stheodor/

機器學習:貝葉斯和優化方法

本書對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。其中,經典方法包括平均/小二乘濾波、卡爾曼濾波、隨機逼近和在線學習、貝葉斯分類、決策樹、邏輯回歸和提升方法等,新趨勢包括稀疏、凸分析與優化、在線分布式算法、RKH空間學習、貝葉斯推斷、圖模型與隱馬爾可夫模型、粒子濾波、深度學習、字典學習和潛變量建模等。全書構建了一套明晰的機器學習知識體系,各章內容相對獨立,物理推理、數學建模和算法實現精準且細致,并輔以應用實例和習題。本書適合該領域的科研人員和工程師閱讀,也適合學習模式識別、統計/自適應信號處理和深度學習等課程的學生參考。

付費5元查看完整內容

本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。

付費5元查看完整內容

高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。

這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。

付費5元查看完整內容

本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。

付費5元查看完整內容

本書是為那些對數據科學感興趣的Python程序員編寫的。唯一的先決條件是Python的基本知識。不需要有使用復雜算法的經驗。數學背景不是必須的。讀完這本書的業余愛好者將獲得獲得第一份高薪數據科學工作所必需的技能。這些技能包括:

  • 概率論和統計學的基礎。
  • 監督和非監督機器學習技術。
  • 關鍵的數據科學圖書館,如NumPy, SciPy, panda, Matplotlib和Scikit-Learn。
  • 解決問題的能力。

開放式解決問題的能力對于數據科學職業來說是必不可少的。不幸的是,這些能力不能通過閱讀來獲得。要成為一個問題解決者,你必須堅持解決困難的問題。帶著這種想法,我的書圍繞著案例研究展開:以真實世界為模型的開放式問題。案例研究范圍從在線廣告分析到使用新聞數據跟蹤疾病暴發。

付費5元查看完整內容

這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。

你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。

你會學到什么?

  • 深入了解所有主要的機器學習和深度學習算法
  • 充分理解在構建模型時要避免的陷阱
  • 在云中實現機器學習算法
  • 通過對每種算法的案例研究,采用動手實踐的方法
  • 學習集成學習的技巧,建立更精確的模型
  • 了解R/Python編程的基礎知識和Keras深度學習框架

這本書是給誰看的

希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。

付費5元查看完整內容

簡介: Python作為目前受歡迎的語言之一,越來越多的人成為Pythoner,這本書不僅僅是一本Python說明書,該書基于Python3.7。 Python中的經典計算機科學問題可以使用經過時間驗證的方案,練習和算法來提高您的CS解決問題的能力。看起來很新或獨特的計算機科學問題通常源于經典算法,編碼技術和工程原理。并且經典方法仍然是解決它們的最佳方法!通過對本書的學習,將解決許多編碼難題,從簡單的任務(如二進制搜索算法)到使用k-means進行數據聚類。該書主要包括:

  • 搜索算法
  • 圖的常用技術
  • 神經網絡
  • 遺傳算法
  • 對抗搜索
  • 使用類型提示
  • 涵蓋Python 3.7

目錄:

  • 簡介
  • 小問題
  • 搜索問題
  • 約束滿足問題
  • 圖問題
  • 遺傳算法
  • K均值聚類
  • 簡單的神經網絡
  • 對抗搜索
  • 其他問題

作者介紹: David Kopec是位于佛蒙特州伯靈頓的尚普蘭學院的計算機科學與創新助理教授。他是一個有經驗的軟件開發者.

付費5元查看完整內容
北京阿比特科技有限公司