亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

來自傳感器網絡、可穿戴設備和物聯網(IoT)設備的大量數據凸顯了對利用去中心化數據的時空結構的高級建模技術的需求,因為需要邊緣計算和許可(數據訪問)問題。雖然聯邦學習(FL)已經成為一種無需直接數據共享和交換的模型訓練框架,但有效地建模復雜的時空依賴關系以提高預測能力仍然是一個懸而未決的問題。另一方面,最先進的時空預測模型假定對數據的訪問不受限制,而忽略了數據共享的約束。在跨節點聯合學習的約束下,我們提出了跨節點聯合圖神經網絡(CNFGNN)的聯邦時空模型,該模型使用基于圖神經網絡(GNN)的體系結構對底層圖結構進行顯式編碼,這要求節點網絡中的數據在每個節點上本地生成,并且保持分散。CNFGNN通過分離設備上的時間動態建模和服務器上的空間動態,利用交替優化來降低通信成本,促進邊緣設備上的計算。交通流預測任務的計算結果表明,CNFGNN在不增加邊緣設備的計算成本的情況下,在傳感和歸納學習環境下均取得了最佳的預測性能,同時通信成本較低。

付費5元查看完整內容

相關內容

聯邦學習(Federated Learning)是一種新興的人工智能基礎技術,在 2016 年由谷歌最先提出,原本用于解決安卓手機終端用戶在本地更新模型的問題,其設計目標是在保障大數據交換時的信息安全、保護終端數據和個人數據隱私、保證合法合規的前提下,在多參與方或多計算結點之間開展高效率的機器學習。其中,聯邦學習可使用的機器學習算法不局限于神經網絡,還包括隨機森林等重要算法。聯邦學習有望成為下一代人工智能協同算法和協作網絡的基礎。

圖神經網絡(GNNs)被廣泛用于學習一種強大的圖結構數據表示。最近的研究表明,將知識從自監督任務遷移到下游任務可以進一步改善圖的表示。然而,自監督任務與下游任務在優化目標和訓練數據上存在內在的差距。傳統的預訓練方法可能對知識遷移不夠有效,因為它們不能適應下游任務。為了解決這一問題,我們提出了一種新的遷移學習范式,該范式可以有效地將自監督任務作為輔助任務來幫助目標任務。在微調階段,我們的方法將不同的輔助任務與目標任務進行自適應的選擇和組合。我們設計了一個自適應輔助損失加權模型,通過量化輔助任務與目標任務之間的一致性來學習輔助任務的權重。此外,我們通過元學習來學習權重模型。我們的方法可以運用于各種遷移學習方法,它不僅在多任務學習中有很好的表現,而且在預訓練和微調中也有很好的表現。在多個下游任務上的綜合實驗表明,所提出的方法能夠有效地將輔助任務與目標任務相結合,與現有的方法相比,顯著提高了性能。

//www.zhuanzhi.ai/paper/852db932624d6feeb7bbd32e67772b27

付費5元查看完整內容

隨著移動設備上存儲和計算能力的快速發展,在設備上部署模型以節省繁重的通信延遲和獲取實時特性變得至關重要和流行。雖然已經有很多研究致力于促進設備上的學習和推斷,但大多數研究都集中在處理響應延遲或隱私保護方面。對設備和云建模之間的協作進行建模并使雙方共同受益的工作很少。為了彌補這一差距,我們是研究設備-云協作學習(DCCL)框架的首批嘗試之一。具體來說,我們在設備端提出了一種新穎的MetaPatch學習方法,以便在一個集中式的云模型下有效地實現“成千上萬的人擁有成千上萬的模型”。然后,針對數十億更新的個性化設備模型,我們提出了一種“模型-超模型”的蒸餾算法,即MoMoDistill,來更新集中式云模型。我們在一系列不同設置的數據集上進行了大量實驗,證明了這種協作在云和設備上的有效性,特別是它在建模長尾用戶方面的優越性。

付費5元查看完整內容

聯邦學習(federal Learning, FL)是一種去中心化的機器學習范式,其中全局服務器迭代地聚合本地用戶的模型參數,而不訪問他們的數據。用戶異質性給FL帶來了重大挑戰,這可能導致漂移的全局模型收斂緩慢。為了解決這個問題,最近出現了知識蒸餾(Knowledge Distillation),它使用來自異構用戶的聚合知識來精煉服務器模型,而不是直接聚合他們的模型參數。然而,這種方法依賴于代理數據集,因此除非滿足這些前提條件,否則是不切實際的。此外,沒有充分利用集成知識來指導局部模型學習,這可能會影響聚合模型的質量。在這項工作中,我們提出了一種無數據的知識蒸餾方法來解決異構的FL,其中服務器學習一個輕量級的生成器以無數據的方式集成用戶信息,然后將這些信息廣播給用戶,使用學習到的知識作為歸納偏差來調節本地訓練。理論支持的實證研究表明,與現狀相比,我們的方法使用更少的通信輪次,使FL具有更好的泛化性能。

//www.zhuanzhi.ai/paper/662ba057e6661b256a53516378ffbf30

付費5元查看完整內容

在圖數據挖掘任務中,對于特定任務,有標簽的數據通常十分稀少,然而現實中存在著大量無標簽的數據。

因此,如何通過預訓練從這些標簽數據中獲取有用的先驗知識,從而提升下游任務的表現成為了一個有價值的問題。我們本篇工作提出了一種在大規模異質圖上進行高效預訓練的框架。

近年來,圖神經網絡作為圖結構數據學習的重要方法,可以通過遞歸的從鄰居聚合消息(特征和節點表示)來學習到有效的圖表示。但是圖神經網絡通常需要大量的有標簽數據來取得令人滿意的表現。為了解決標簽稀疏的問題,一些工作提出了基于自監督的方法來從無標簽的數據中提取先驗知識。然而,現有的預訓練框架都是基于同質圖的,但現實生活中的交互系統通常都是有多種類型節點和邊的大規模的異質圖。因此,在我們設計預訓練模型的時候遇到了如下兩個挑戰。

如何捕捉異質圖的語義和結構性質 相比同質圖,異質圖具有更豐富的語義和結構信息。不同類型的節點通常有不同的圖結構性質(例如會議節點的度要普遍高于其他類型的節點)。不同類型的連邊通常有不同的語義關系。因此為了有效的預訓練,我們需要捕捉這些信息。

如何在大規模異質圖上高效預訓練一個 GNN

現實生活中的異質圖可以擁有數十億的節點和邊。為了可以在這樣這樣大規模的圖上進行預訓練,我們需要設計一種加速策略來保證我們在大規模異質圖上的預訓練效率。

為了解決上述的兩個問題,我們提出了 PTHGNN 來進行大規模異質圖上的預訓練。對于第一個挑戰,基于對比學習,我們提出了節點級別和網絡模式級別的預訓練任務來捕捉異質圖的語義和結構信息。對于第二個挑戰,我們提出了基于 personalized pagerank 的邊稀疏化方法,從而來提高我們進行大規模預訓練的效率。

付費5元查看完整內容

圖神經網絡(GNN)是一類基于深度學習的處理圖域信息的方法,它通過將圖廣播操作和深度學習算法結合,可以讓圖的結構信息和頂點屬性信息都參與到學習中,在頂點分類、圖分類、鏈接預測等應用中表現出良好的效果和可解釋性,已成為一種廣泛應用的圖分析方法.然而現有主流的深度學習框架(如Tensorflow、PyTorch等)沒有為圖神經網絡計算提供高效的存儲支持和圖上的消息傳遞支持,這限制了圖神經網絡算法在大規模圖數據上的應用.目前已有諸多工作針對圖結構的數據特點和圖神經網絡的計算特點,探索了大規模圖神經網絡系統的設計和實現方案.本文首先對圖神經網絡的發展進行簡要概述,總結了設計圖神經網絡系統需要面對的挑戰;隨后對目前圖神經網絡系統的工作進行介紹,從系統架構、編程模型、消息傳遞優化、圖分區策略、通信優化等多個方面對系統進行分析;最后使用部分已開源的圖神經網絡系統進行實驗評估,從精確度、性能、擴展性等多個方面驗證這些系統的有效性.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6311

付費5元查看完整內容

隨著數據越來越多地存儲在不同的筒倉中,社會越來越關注數據隱私問題,傳統的人工智能(AI)模型集中訓練正面臨效率和隱私方面的挑戰。最近,聯邦學習(FL)作為一種替代解決方案出現,并在這種新的現實中繼續蓬勃發展。現有的FL協議設計已經被證明對系統內外的對抗是脆弱的,危及數據隱私和系統的魯棒性。除了訓練強大的全局模型外,最重要的是設計具有隱私保障和抵抗不同類型對手的FL系統。在本文中,我們對這一問題進行了第一次全面的綜述。通過對FL概念的簡明介紹,和一個獨特的分類涵蓋:1) 威脅模型; 2) 中毒攻擊與魯棒性防御; 3) 對隱私的推理攻擊和防御,我們提供了這一重要主題的可訪問的回顧。我們強調了各種攻擊和防御所采用的直覺、關鍵技術和基本假設。最后,我們對魯棒性和隱私保護聯合學習的未來研究方向進行了討論。

//www.zhuanzhi.ai/paper/678e6e386bbefa8076e699ebd9fd8c2a

引言

隨著計算設備變得越來越普遍,人們在日常使用中產生了大量的數據。將這樣的數據收集到集中的存儲設施中既昂貴又耗時。傳統的集中式機器學習(ML)方法不能支持這種普遍存在的部署和應用,這是由于基礎設施的缺點,如有限的通信帶寬、間歇性的網絡連接和嚴格的延遲約束[1]。另一個關鍵問題是數據隱私和用戶機密性,因為使用數據通常包含敏感信息[2]。面部圖像、基于位置的服務或健康信息等敏感數據可用于有針對性的社交廣告和推薦,造成即時或潛在的隱私風險。因此,私人數據不應該在沒有任何隱私考慮的情況下直接共享。隨著社會對隱私保護意識的增強,《通用數據保護條例》(GDPR)等法律限制正在出現,這使得數據聚合實踐變得不那么可行。

在這種情況下,聯邦學習(FL)(也被稱為協作學習)將模型訓練分發到數據來源的設備上,作為一種有前景的ML范式[4]出現了。FL使多個參與者能夠構建一個聯合ML模型,而不暴露他們的私人訓練數據[4],[5]。它還可以處理不平衡、非獨立和同分布(非i.i.d)數據,這些數據自然出現在真實的[6]世界中。近年來,FL獲得了廣泛的應用,如下一個單詞預測[6]、[7]、安全視覺目標檢測[8]、實體解析[9]等。

根據參與者之間數據特征和數據樣本的分布,聯邦學習一般可以分為水平聯邦學習(HFL)、垂直聯邦學習(VFL)和聯邦遷移學習(FTL)[10]。

具有同構體系結構的FL: 共享模型更新通常僅限于同構的FL體系結構,也就是說,相同的模型被所有參與者共享。參與者的目標是共同學習一個更準確的模型。具有異構架構的FL: 最近的努力擴展了FL,以協同訓練具有異構架構的模型[15],[16]。

FL提供了一個關注隱私的模型訓練的范式,它不需要數據共享,并且允許參與者自由地加入和離開聯盟。然而,最近的研究表明,FL可能并不總是提供足夠的隱私和健壯性保證。現有的FL協議設計容易受到以下攻擊: (1)惡意服務器試圖從個人更新中推斷敏感信息,篡改訓練過程或控制參與者對全局參數的看法;或者(2)一個敵對的參與者推斷其他參與者的敏感信息,篡改全局參數聚合或破壞全局模型。

在隱私泄露方面,在整個訓練過程中,通信模型的更新會泄露敏感信息[18]、[19],并導致深度泄露[20],無論是對第三方服務器還是中央服務器[7]、[21]。例如,如[22]所示,即使是很小一部分的梯度也可以揭示相當數量的有關本地數據的敏感信息。最近的研究表明,通過簡單地觀察梯度,惡意攻擊者可以在[20],[23]幾次迭代內竊取訓練數據。

在魯棒性方面,FL系統容易受到[24]、[25]和[26]、[27]、[28]、[29]的模型中毒攻擊。惡意參與者可以攻擊全局模型的收斂性,或者通過故意改變其本地數據(數據中毒)或梯度上傳(模型中毒)將后門觸發器植入全局模型。模型投毒攻擊可以進一步分為:(1)Byzantine 攻擊,攻擊者的目標是破壞全局模型[13]、[30]的收斂性和性能;(2)后門攻擊,對手的目標是在全局模型中植入一個后門觸發器,以欺騙模型不斷預測子任務上的敵對類,同時在主要任務[26],[27]上保持良好的性能。需要注意的是,后門模型投毒攻擊通常利用數據投毒來獲取有毒的參數更新[24]、[26]、[27]。

這些隱私和魯棒性攻擊對FL構成了重大威脅。在集中學習中,服務器控制參與者的隱私和模型魯棒性。然而,在FL中,任何參與者都可以攻擊服務器并監視其他參與者,有時甚至不涉及服務器。因此,理解這些隱私性和健壯性攻擊背后的原理是很重要的。

目前對FL的研究主要集中在系統/協議設計[10]、[31]、[32]。聯邦學習的隱私和穩健性威脅還沒有得到很好的探討。在本文中,我們調研了FL的隱私和魯棒性威脅及其防御方面的最新進展。特別地,我們關注由FL系統內部者發起的兩種特定威脅:1) 試圖阻止學習全局模型的中毒攻擊,或控制全局模型行為的植入觸發器;2) 試圖泄露其他參與者隱私信息的推理攻擊。表2總結了這些攻擊的特性。

付費5元查看完整內容

由于不同道路間交通流時空分布格局具有復雜的空間相關性和動態趨勢,交通流時空數據預測是一項具有挑戰性的任務。現有框架通常利用給定的空間鄰接圖和復雜的機制為空間和時間相關性建模。然而,具有不完全鄰接連接的給定空間圖結構的有限表示可能會限制模型的有效時空依賴學習。此外,現有的方法在解決復雜的時空數據時也束手無策:它們通常利用獨立的模塊來實現時空關聯,或者只使用獨立的組件捕獲局部或全局的異構依賴關系。為了克服這些局限性,本文提出了一種新的時空融合圖神經網絡(STFGNN)用于交通流預測。首先,提出一種數據驅動的“時序圖”生成方法,以彌補空間圖可能無法反映的幾種現有相關性。SFTGNN通過一種新的時空圖融合操作,對不同的時間段進行并行處理,可以有效地學習隱藏的時空依賴關系。同時,該融合圖模塊與一種新的門控卷積模塊集成到一個統一的層中,SFTGNN可以通過層堆疊學習更多的時空依賴關系來處理長序列。在幾個公共交通數據集上的實驗結果表明,我們的方法達到了最先進的性能比其他基準一致。

//arxiv.org/pdf/2012.09641.pdf

付費5元查看完整內容

題目: 圖神經網絡的無冗余計算 會議: KDD2020 論文地址: //dl.acm.org/doi/abs/10.1145/3394486.3403142 推薦理由: 對于圖神經網絡中重復信息的聚合,這篇文章提出了一種簡單有效的層次化聚合的方法(HAG),用于層次化管理中間結果并減少圖神經網絡在訓練和推斷過程中重復計算。HAG 能夠保證在計算層次化聚合的過程中,可以使用更少的時間用于訓練并且得到的結果和傳統的圖神經網絡模型一致。

GNN在單層中基于遞歸鄰域聚合方案,每個節點聚合其鄰居的特征,并使用聚合值更新其自身的特征。這樣遞歸地傳播多次(多層),最后,GNN中的每個節點都會從其k階網絡鄰居中的其他節點收集信息。最后GNN層的激活然后被用于下游預測任務,例如節點分類、圖分類或鏈路預測。然而,如何設計一個能夠有效處理大規模圖數據集的GNN仍然是一個挑戰。特別的是,許多當前的工作是使用整張圖的拉普拉斯矩陣,這樣即便是對于中等規模的圖,也會面臨存儲空間的問題。GraphSAGE首次提出使用對每個獨立節點執行小圖鄰域采樣,然后再聚合這些節點的鄰域信息,但是對于單個節點進行鄰域采樣是一個高復雜度的事情,因此許多手工調整的啟發式算法被用來限制采樣復雜性并選擇鄰域圖并通過優化圖的采樣步驟來提高GNN的效率。

付費5元查看完整內容

消息傳遞被證明是一種設計圖神經網絡的有效方法,因為它能夠利用排列等方差和對學習局部結構的歸納偏差來實現良好的泛化。然而,當前的消息傳遞體系結構的表達能力有限,無法學習圖的基本拓撲性質。我們解決了這個問題,并提出了一個新的消息傳遞框架,它是強大的同時保持置換等方差。具體來說,我們以單熱點編碼的形式傳播惟一的節點標識符,以便了解每個節點的本地上下文。我們證明了我們的模型在極限情況下是通用的,同時也是等變的。通過實驗,我們發現我們的模型在預測各種圖的拓撲性質方面具有優勢,為新型的、功能強大的等變和計算效率的結構開辟了道路。

付費5元查看完整內容
北京阿比特科技有限公司