亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

國防人員是被選中并接受訓練以在壓力下工作的眾多職業之一。在以信息過載、不確定性和時間壓力下的復雜決策為特征的未來操作環境中,對優化認知性能的重視程度將不斷提高。認知被廣泛認為是身體和精神表現的關鍵驅動力,然而,支持最佳表現的認知功能的核心要素、它們的機制和它們的可修改范圍卻缺乏清晰的認識。具體來說,人們對高壓力環境下認知能力的生物決定因素了解有限。

了解認知功能的基因組結構和分子機制對于更好地理解個人在認知挑戰任務中的表現至關重要。目前的認知評估工具是為適應表現數據而開發的,與潛在的生物學無關。雖然這些標準化的測試對做出關于能力的決定是有用的,但它們并不能說明潛在的生物表型,因此對設計基于生物的干預措施的幫助有限。我們的項目正在建立一個以生物學為基礎的認知測量框架,這將使以表現為重點的認知評估系統更加連貫,并為監測和干預方案的制定提供一個更加系統和有針對性的方法。

通過全基因組關聯(GWAS)方法研究的一般認知能力(g)的遺傳組成,由于表型定義和測量的巨大差異,仍然沒有結論。如果考慮到g的子成分和認知功能的非g維度,如執行功能,問題就更大了。為了增進我們對認知功能的遺傳結構的理解,需要對表型的定義和測量進行徹底的改進。為此,我們選擇將重點放在認知測試數據中最小的可測量成分上,并研究其遺傳關聯。30年前提出的這一解決方案(Atchley and Hall 1991)并不可行,原因是:(1)對多種認知能力在遺傳上的可分離性缺乏了解;(2)認知的高度多基因性,促使認知基因組學研究需要大量的樣本量(數十萬)。我們以前的研究開始解決這些限制,證明了G與特定認知能力(如執行功能)的遺傳分離性(Ciobanu等人,2021)。我們目前的研究通過研究世界上最大的數據集(英國生物銀行)的遺傳和認知評估數據,完善了認知功能的核心維度,該數據集有超過50萬名參與者。首先,我們將通過應用多變量混合模型GWAS方法,確定與基本認知單元相關的遺傳變異。第二,對于這些變量中的每一個,我們將比較整個基因組的關聯模式。第三,我們將研究特定測試的遺傳變異如何結合起來代表更廣泛的認知結構以及這些更廣泛的結構是如何相互關聯的。這些關聯將共同形成我們的認知功能的基因組信息模型,這反過來將為認知評估的設計和應用提供信息,這些評估是根據選拔、訓練和操作支持應用的明顯不同要求而定制的。

引言

1.1 情報和認知過程的評估

1.1.1 智力的性質

對于認知能力和智力的研究,有兩種不同的方法。一種是專注于人口中單一智力結構的個體差異。另一種是適用于臨床神經心理學的更詳細的多層次、多成分的模型,并且可能更容易轉化為底層的生物分析。

考慮到第一種方法,許多當代的研究可以追溯到查爾斯-斯皮爾曼(Charles Spearman)(1904)的工作,以及根據他對各種認知任務之間正相關的觀察,發現了一般智力因素 "g"[1]。斯皮爾曼使用因子分析的統計方法,聲稱 "g "是一個單一的基本智力因素,它可以解釋各種可觀察到的能力的個體差異。從統計學上看,"g "是一個單一的因素/組成部分,它解釋了智商測試中約40%的表現差異。從心理測量學的角度來看,"g "可以捕捉到一個人在任何數量的認知任務中的表現。在心理學上,"g "被解釋為類似于 "能量 "或 "功率 "的東西,是整個大腦皮層表現的一個函數。最近,A.詹森(1923-2012)和H.艾森克(1916-1997)的工作將 "g "與心理速度聯系在一起,通過檢查時間和選擇反應時間的測量來體現。關于人類智力是否存在一個單一的可量化的因素,仍然存在激烈的爭論。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

摘要

簡介:
與壓力有關的神經相關的文獻報道了與幾個過程有關的大腦區域的結構和功能改變,包括情緒、認知和高階過程以及心理壓力感知和調節。盡管有這些文獻,但據我們所知,到目前為止,還沒有通過靜止狀態(RS)腦電圖(EEG)功能連接分析的方法,了解非臨床樣本在感知日常生活壓力時的局部(Eloc)和整體(Eglob)效率等腦網絡屬性。因此,目前工作的主要目的是通過RS-EEG探索性地研究這種腦網絡效率特性(即Eloc和Eglob)與大學生樣本中感知的日常生活壓力之間的關聯。
方法:
在征得大學生的書面同意后,對他們進行了一系列的問卷調查。這套問卷包括意大利語版的感知壓力量表(PSS-10)。還向每個人發放了一份評估社會人口變量以及排除/納入標準的檢查表。在RS期間進行了31通道的腦電圖記錄。計算功能連接和頻率分解,以獲得每個人和每個頻段的網絡矩陣,其中節點由感興趣區(ROI,即84)表示,邊緣由功能連接滯后相位同步加權。然后我們通過腦連接工具箱(BCT)計算了Eloc和Eglob腦網絡指標。關于統計分析,在控制了潛在的混雜變量(如年齡和性別)后,進行了部分相關分析。
結果:
 結果顯示,在控制年齡和性別的情況下,PSS總分與α頻段的Eloc指標呈明顯的負相關(r=-.245,p=0.029)。其他與網絡效率有關的指標沒有出現明顯的相關性。討論。我們的數據表明,α頻段的隔離度下降與感知壓力的增加有關。盡管對α振蕩的功能意義沒有明確的說法,但文獻報告說它們的參與包括自上而下的皮質控制、認知和執行過程。事實上,高感知壓力和阿爾法振蕩下降之間的聯系可能與壓力相關的RS認知和執行過程的改變有關。總之,這些結果可以幫助闡明與壓力有關的過程,并為未來的研究指明方向。

關鍵詞:壓力、網絡、腦電圖、連接、效率、α頻段

介紹

壓力是人類日常生活中常見的經歷,在某些條件下(例如,當不加以控制和壓倒一切時),其后果可能是沉重的。事實上,壓力可以直接(通過神經生物學反應)和間接(例如,通過采取威脅健康的行為)改變主觀健康。關于壓力的研究從不同的角度集中在廣泛的過程中,包括流行病學、心理學和神經生物學[2]。在這種多方面的方法中,感知到的壓力事件,即那些被認為具有不可預測性、不可控制性和超負荷[3]特征的事件,被認為會激活過程,導致神經生物學和行為反應,如果這些反應是壓倒性的、不適當的或長期的,可能會對身體和心理健康產生負面影響,甚至會導致疾病[2,4,5]。在這方面,最近的研究表明壓力可以影響多種生物系統。

在這些后果中,壓力也被報道影響認知領域。事實上,有幾項研究報告稱,個體感受到的壓力水平越高,認知表現越差[6-8],認知抱怨也很常見。從神經科學的角度來看,有研究報道壓力與認知過程中涉及的結構(如前額皮質、海馬)和功能的改變有關[7,10-16]。認知功能被認為是通過廣泛的腦區之間的相互作用來維持的,這些腦區在大規模的腦網絡[17]中以一種協同的方式工作。此外,有關壓力相關神經特征的文獻報道了與情緒處理和調節、顯著性檢測(如島葉)、心理壓力感知和調節(如前額葉、邊緣區域)以及自我參照心理活動(如:后扣帶皮層)[例如,18,19-22]。

付費5元查看完整內容

圖1:SocialXR測量失語癥治療中的社會認知表現(右),并將人類經驗模型模擬到制造業設計和應急響應中(左)

摘要:社會性量化的需要

在2020年新冠肺炎大流行之后,制定新方法和應對戰略以保持世界各地社區的社會凝聚力和心理復原力顯然成為一個優先事項。我們稱這種社會認知行為為“社會性”。社交是我們作為個人和更廣泛群體的一部分有效發揮作用的能力,盡管外部限制在關鍵環境中變得更有意義,如軍事干預,非軍事行動,如緊急反應,ICU衛生操作員,空乘和深空探索。諸如Social XR[1]等數字技術的獨特功能為滿足這些需求提供了機會,并部署可擴展和靈活的解決方案,以促進內部團隊的穩定性和更好的運營性能。

在軍事和非軍事環境中,設計和部署精神上和社會上可持續的行動的先決條件是選擇具有彈性的個人,并為他們提供一個合作框架,確保平衡的關系和高質量的人際溝通。社會凝聚力是計劃行動成功的一個重要因素,及時監測、檢測和預測其有效性的能力對于管理潛在的行為異常是有意義的。對目標團隊內部發生的群體動態的研究,以及任務控制,可以提供關鍵的和早期的線索,鼓勵建設性的交流,阻止關鍵的關系模式[3]。

本項目重點介紹一種技術支持的群體動態方法,能夠遠程和自主地捕捉人類互動的復雜性,并返回對預防和管理個人和群體行為異常有用的可操作的見解[4]。群體互動的復雜性需要一系列的人類主題專業知識(SME)來觀察、評估、測量、評估、預測、預防和應用必要的對策[5]。在現實世界中,讓這個龐大的從業人員團隊隨叫隨到或在現場對任務團隊進行持續監測是不切實際的。技術支持系統,如本文所述,將提高過程提供遠程操作軟件為基礎的工具,以幫助專家評估和自我效能,以維持社會凝聚力。一個自動化的、遠程操作的嵌入式系統將提供持續的測量和評估,以識別微妙和微妙的社會脆弱性指標。這將節省時間和資源,提供不引人注目的預防措施,以提高團隊業績,減少風險和增加任務成功的可能性。

該研究框架基于對隔離高危人群進行的初步研究。諸如AR頭戴式顯示器(HMD)等技術接口已被用于在人際群體互動中收集第一人稱視角,然后根據所得數據對量化的見解進行人類專業評估(圖1)。機器學習算法已被應用于人類觀察和感知計算,以驗證參與技術并計劃最佳對策[6]。由此產生的人機交互模型表明,有機會開發一個適合隨時隨地執行的非本地化和異步社會支持系統,由于系統自主性的增長,人類評估的時間預計會減少。

付費5元查看完整內容

摘要

在航空航天和機器人手術等領域,復雜的高精度人機系統的效率和安全性與操作員的認知準備、管理工作量的能力和態勢感知密切相關。對心理工作量的準確評估有助于防止操作失誤,并通過預測工作負荷過重或刺激不足可能導致的業績下降,從而進行針對性的干預。基于人體和大腦活動測量的神經工效學方法可以為復雜訓練和工作環境下的人類心理工作量提供敏感和可靠的評估。本文概述了可穿戴腦和身體成像方法通過神經/生理信號評估心理工作量的潛力,并提供了一種利用多模態生物傳感器對多領域認知任務中的工作量進行比較評估的研究設計。這種綜合的神經工效學評估利用神經成像和生理監測,可以為開發下一代神經適應接口和更有效的人機交互和操作技能獲取的訓練方法提供信息。

關鍵詞:認知工作量,fNIRS,腦電圖,眼動跟蹤,神經工效學,移動腦/體成像

引言

人類在任何類型的目標或任務上的表現都與熟練完成這些目標或任務所需的認知工作量有關。每個人都有自己獨特的認知模式,在執行某些類型的任務時更有效率。通過有針對性的培訓,可以在更短的時間內提高操作人員的能力,提高工作效率。

心理負荷在許多復雜的指揮控制系統中起著至關重要的作用。在航空航天和機器人手術等領域,復雜的高精度人機系統的效率和安全性與操作員的認知準備、管理工作量的能力和態勢感知密切相關。主觀操作員報告、生理和行為測量不足以可靠地監測可能導致不良結果的認知負荷。心理負荷這個概念反映了大腦為滿足任務需求而努力工作的程度,它的一個關鍵特征是,它可以與行為表現數據分離。經驗豐富的操作員可以通過增加努力、激勵或改變策略,在較長一段時間內保持所需的性能水平,即使面臨更多的任務挑戰。然而,持續的任務需求最終會導致績效下降,除非心理工作量的上升趨勢可以用來預測隨后的績效崩潰。因此,重要的是在訓練和行動任務期間評估獨立于業績衡量的精神工作量。基于人體和大腦活動測量的神經工效學方法可以為復雜訓練和工作環境下的人類心理工作量[2]提供敏感和可靠的評估。

在軍事行動的背景下,評估和衡量操作員的認知工作量尤其重要,因為在軍事行動中,性能故障可能會導致災難性的損失。對心理工作量的準確評估有助于防止操作失誤,并通過預測工作負荷過重或刺激不足可能導致的業績下降,從而進行針對性的干預。

付費5元查看完整內容

摘要

在過去的幾年里,人們已經接受了這樣一個觀點:相對于現有的典型認知測試,對個體認知能力的可靠測量需要參與者完成更多的試驗或使用更大的效應量任務。該項目開發了一套認知控制測試,能夠有效和可靠地測量認知控制能力,這對在時間壓力下的高效表現至關重要。測試組是在Unity游戲引擎中實現的,并且只需要使用不安裝的網頁瀏覽器即可在線訪問。游戲機制(如多樣性、反饋、獎勵和排行榜)和整合的故事情節能夠在持續且苛刻的測試過程中維持用戶粘性。該測試組實現了最突出的認知控制措施,包括:1)工作記憶(單一和雙n-back任務),2)反應抑制(停止信號任務),3)沖突任務(Simon、Flanker和Stroop任務),4)多任務,5)任務切換。不同的度量可以靈活地組合在一個連貫的“房間清理”敘述中,并且獨立的教程可以輕松地部署在線測試。沖突任務的新版本被開發出來,以增加效果大小和可靠性,并在一個在線實驗中對它們進行測試。我們開發了一種嚴格的方法來量化測試產生可靠的個體差異測量的能力,并報告將其應用于實驗數據的結果。我們的結論是,這些新的沖突任務產生了比以前實現的更可靠度量。

引言

認知能力在具有挑戰性和壓力的條件下要求優異表現的職業中很重要,例如體育、民事高風險角色和軍事[1,2,3]。這導致人們越來越重視認知準備[4,5,6],以優化復雜任務和社會技術系統中的團隊表現,這是現代防御設置的一個日益普遍的特征[7]。人們不再強調身體健康[8],隨之而來的是需要確定支撐被稱為心理或認知健康的關鍵心理構念[9,10]。為了優化選擇,評估新興的認知訓練方法和項目的成功或失敗,可靠地測量支撐認知適應的關鍵結構的個體差異尤為重要[11,12,13]。

這篇論文描述了一組認知測試,在時間限制下測量認知能力至關重要的高性能。被稱為“COGMISSION”的測試是使用Unity游戲引擎(//unity.com)以視頻游戲格式實現的。訪問是通過“PlayUR”()提供的,這是一個管理基于web的Unity實驗的平臺,使COGMISSION能夠使用網頁瀏覽器在線訪問,而不需要安裝。《認知使命》通過游戲機制(游戲邦注:如多樣性、反饋、獎勵和排行榜)和整合的故事情節(游戲邦注:旨在通過延長和苛刻的測試過程保持用戶粘性)而得到增強。自包含的教程支持容易部署的大規模測試。在下一節中,我們將描述在COGMISSION中實現的任務、它們度量的結構,以及它們選擇的基本原理。然后,我們回顧了“可靠性悖論”[14],它導致了測試認知適應性的核心構念之一——注意控制——的典型方法無法提供足夠的個體差異測量。隨后,我們描述了一種嚴格的新的統計方法來評估注意力控制任務的能力,以提供足夠可靠的個體差異測量[15]。接下來,我們將報告將該方法應用于一個預先注冊的實驗結果()的結果,該實驗通過Amazon Mechanical Turk ()進行,這是一個面向在線員工的眾包市場,評估在COGMISSION中實施的各種注意力控制任務。

付費5元查看完整內容

摘要

目前戰斗機飛行員的訓練幾乎無一例外地是按固定的小時數和特定的時間安排設計的。基于績效的訓練是一種旨在優化訓練的概念,最好是個性化的方式。它是關于事先防止訓練/表現差距,而不是事后解決它們。有效的個性化學習假設所提供的學習任務具有最佳難度水平。為此,本文提出了一種基于多種認知負荷指標的飛行員認知負荷實時分類優化負荷模型。該研究旨在測試腦電圖(更具體地說,是個人的上波段功率和θ波段功率),作為戰斗機駕駛艙環境中該模型的認知負荷指標之一。共有4人參加,他們都是前F-16飛行員。每個參與者都進行了三次多次跑步。第一次測試(記憶測試)的認知負荷預計會比最后一次測試(性能測試)的認知負荷更高。與記憶測試相比,表現測試中的表現和主觀工作量分別更高和更低,而認知負荷指標顯示兩種測試之間的混合結果,這可以歸因于個體間和個體內的高差異。

關鍵詞:績效訓練,認知負荷,腦電圖,戰斗機駕駛艙模擬器,保持間隔,戰術攔截

引言

目前,戰斗機飛行員的訓練幾乎無一例外都是在特定的時間內進行固定小時的資格訓練和年度訓練。一般來說,偏離項目與組織要求有關,較少與個體飛行員的要求有關。基于績效的培訓是一個培訓概念,旨在優化培訓,最好是以個性化的方式,以便在正確的時間和正確的資源提供相關的培訓活動。它是關于防止訓練/表現差距,而不是事后解決它們,可以用于目標的最高個人標準,而不是確保最低標準。基于性能的培訓需要先進的技術來測量和記錄飛行員和系統的性能和行為。它還需要先進的分析技術。由于各種各樣的原因,這兩種技術在實踐中很少使用。它們需要組織中缺乏的專業知識,它們需要時間來使用,它們可能會影響任務的執行(它們是“侵入性的”)。我們預計,隨著技術的進步,這些限制將在未來十年消失。

在尋找最佳學習條件的過程中,教育科學研究者提出了個性化學習的概念。與個性化醫學的成功發展類似,個性化學習旨在識別學習中個體差異的遺傳、神經和行為預測因子,并旨在使用預測因子幫助創建最佳教學范式[1]。有效的個性化學習至少假定所提供的學習任務具有最佳的難度水平。最佳任務難度與表現和認知負荷的平衡有關(“認知負荷理論”)。在學習的過程中,需要適當的任務難度來保持平衡。次優的任務難度會導致無效的訓練,例如,向專家提供適合新手的訓練,已經發現會對他們的學習進度產生負面影響。通過提高積極性可以更快地達到平衡。這些發現與Vygotsky的兒童最近發展區(Zone of Proximal Development for children)[5]和游戲設計[7]中應用的流概念Csíkszentmihályi[6]相一致:焦慮和無聊之間的“流通道”(見圖1)。后一個概念強調了任務難度在挑戰性和簡單性活動之間波動的帶寬的重要性,同時避免極端沮喪或無聊的狀態。這種進步可能不僅對游戲有刺激作用,而且對任何類型的活動都有刺激作用,包括Kiili[8]所顯示的學習。

付費5元查看完整內容

摘要

未來的戰斗機飛行員和遠程作戰人員將需要先進的決策和注意力支持,以應對日益復雜、不確定的信息和多智能體協調。監測飛行員的精神狀態和意識,并將其提供給系統,可以更好地實現人與系統的協作,提高聯合性能。研究表明,不同的心理-生理測量技術可以用于評估多種認知和情感狀態,如精神工作量、注意力、疲勞,以及工作相關變量,如任務難度和任務完成情況。然而,對多種傳感技術的實時評估和信號時序的研究卻很少。我們開發了一種實驗性的人工智能管道,使用眼動跟蹤(眼跳、注視時間等)、皮膚電活動(EDA)和心率變量(例如,HR和HRV)實時調查戰斗機飛行員的心理狀態。該系統采用混合分析方法,包括數據流處理和機器學習(ML),使不同信號事件的實時分析和基于時間的推斷成為可能。我們報告了該方法的優點和缺點,介紹了正在進行的系統實證實驗的結果,并討論了高級注意力指導的可能應用。

關鍵詞:人工智能,戰斗機飛行員,心理狀態,心理生理學,戰斗機。

引言

自適應自動化[1,2]是一種很有前途的方法,可以支持操作人員并保持他們的工作量在適當的水平上。今天,有許多傳感器技術可以佩帶或嵌入到我們的物理工作環境中,如眼動跟蹤眼鏡和智能手表。這些發展使得創建高級應用程序成為可能,這些應用程序跟蹤飛行員與操作任務相關的健康和認知狀態,并在需要時提供支持。因此,未來的工作環境可能會衡量個人和群體的表現、壓力和注意力水平,以優化和平衡個人和群體之間的任務為目標。然而,這種方法需要有方法和算法對操作者的工作量、壓力和注意力水平等認知狀態進行充分的實時分類和評估[4,5,6],而這只能通過使用心理生理傳感器來實現。未來的應用包括未來軍事概念的飛行員環境,載人和無人駕駛,具有適當水平的自主權來協助飛行員和決策支持,以應對信息過載的影響。此外,對于已知用戶認知需求的特定任務,不同類型的自動化之間的分離可能是有益的。我們的研究旨在探索工作負荷誘導的各種心理生理反應的模式識別的潛力。我們的目標是了解這些反應和信號之間的關系,以便用于未來的自適應自動化技術,以減少操作人員的心理工作量,提高注意力,從而確保性能水平。

在本文中,我們提出了一種基于時序時間的分析引擎,用于對多個傳感器數據和心理生理現象進行實時分類和驗證。此外,我們提出了數據收集方法和實驗設置,以驗證假設的眼睛,心臟和皮膚電對外界刺激的反應模式。首先,我們介紹了本研究中用于評估認知狀態的心理測量方法的背景。其次,我們討論了實時處理數據流的人工智能管道。第三,我們介紹了在虛擬現實環境中使用眼動跟蹤、心率和皮電反應的實驗裝置。在本文的其余部分,我們將介紹這種方法的優點和缺點。

付費5元查看完整內容

摘要

任務規劃對于建立成功執行任務所需的形勢意識至關重要。全面的計劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是團隊的努力,需要收集、分析相關信息并將其整合到一個全面的計劃中。由于第5代平臺、傳感器和數據庫生成的大量信息,這些過程面臨壓力。

本文描述了初始直升機任務規劃環境的創建,在該環境中,來自不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理傳入的數據,為計劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。

集成系統和算法是未來智能協作任務規劃的重要組成部分,因為它們可以有效處理與第5代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享SA。

付費5元查看完整內容

摘要

建模和仿真有助于德國武裝部隊后勤的數字化,必須提供靈活性和穩健性等因素,以識別后勤鏈中的風險和弱點。 ESG,作為一家擁有多年軍事經驗的德國軍事技術公司,我們展示了成功的仿真和分析項目(例如,“以歐洲戰斗機為例,預測德國空軍的作戰能力”或“基于仿真的醫療救援鏈分析”),并提出進一步的行動方向,例如基于仿真的分析,以優化軍事供應鏈中的加法生產或自主系統的最佳概念。通過對軍事供應鏈使用后勤仿真,可以檢查和優化其穩健性和可持續性。這種基于數據的決策支持方法(工具 AnyLogic,德國聯邦國防軍基于仿真的分析指南和模型檔案)。它聚焦于一個關鍵問題,例如“在某些參數/因素/影響下,系統的材料運行準備情況如何更高概率的為在未來發展,以及什么可以提高系統的性能?”如本講座所述那樣提供各種優勢。

圖2-1 模型開發流程

圖2-2 系統結構

付費5元查看完整內容

摘要

人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。

引言

縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。

人工智能的進展

幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
 雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。

付費5元查看完整內容

摘要

任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。

本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作

集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。

圖1: 增強協同技術下的智能任務規劃(IMPACT)

IMPACT系統由三層組成(見圖2):

  • 人機交互應用層
  • 傳輸層
  • 支持服務層

圖2:從功能角度看IMPACT架構。

付費5元查看完整內容
北京阿比特科技有限公司