亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

什么是 JADC2?

聯合全域指揮與控制 (JADC2) 是美國國防部 (DOD) 的概念,旨在將來自所有軍事部門(空軍、陸軍、海軍陸戰隊、海軍和太空部隊)的傳感器連接到一個網絡中。傳統上,每個軍種都開發自己的戰術網絡,這與其他軍種不兼容(例如,陸軍網絡無法與海軍或空軍網絡連接)。通過 JADC2,國防部設想創建一個“物聯網”網絡,將眾多傳感器與武器系統連接起來,使用人工智能算法幫助改進決策。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

2022年3月,美國蘭德公司發布《開發嵌入人工智能應用的聯合全域指揮控制作戰概念》報告,論述了嵌入人工智能/機器學習(AI/ML)的聯合全域指揮控制(JADC2)的需求,說明了如何在JADC2中利用商業AI/ML系統和需要克服的障礙,并指出了發展路徑。報告認為,為實現嵌入人工智能應用的JADC2,需要投入人力和資源來超越如今的人力密集型指揮控制模式,用自動化和AI/ML技術改進當前的規劃過程。

報告核心觀點包括

  • 將AI/ML納入JADC2之前需要建立“信息基礎”;
  • 實現JADC2目標的關鍵是確定核心軍事任務的指揮控制需求并建立可行的軟件開發計劃;
  • 將商業AI/ML系統用于軍事任務,必須確定技術支持的作戰需求、隨后確定實現作戰任務所需的指揮控制過程,同時了解AI/ML技術的局限性;
  • 在JADC2中應用AI/ML需要克服四個障礙:軍事文化與商業文化的差異、數據不可訪問、重組軍事行動中心并培訓人員、軍事亞文化;
  • 在JADC2中應用AI/ML的目標是實現指揮控制的高效人機組隊,而不是指揮控制的完全自動化。

將人工智能(AI)和機器學習(ML)納入JADC2進行多域作戰(MDO)之前要完成一項艱巨的任務,即建立“信息基礎”。信息基礎中的數據帶有標記,能夠安全地存儲和傳輸,且易于訪問。建立信息基礎需要持續整理和保護軍方為開展指揮控制所需的跨領域、跨軍種和跨梯隊的所有信息。這些信息是AI和ML算法所需的輸入。如果沒有這樣一個信息基礎,將AI融入JADC2的工作就無法取得進展。 盡管最近AI/ML在游戲領域取得了令人鼓舞的成功,但考慮到信息不完整、數據質量差和對手行動等現實障礙,在某些指揮控制功能中使用類似的技術仍具有挑戰性。其他AI/ML技術,例如用于預測戰區內飛機狀態的應用,其成熟度更高。實現JADC2目標取決于確定核心軍事任務集的指揮控制需求,以及建立在近期和遠期都可以實現的軟件開發計劃。

1 JADC2對支撐多域作戰的必要性

現代戰爭已經超越了傳統的陸、空、海領域,軍事指揮官及其參謀人員計劃、指揮和控制部隊不能局限于這些傳統領域,還要擴展到太空、網絡和電磁頻譜領域。更復雜的是,跨領域的活動已經超出了傳統戰爭的范疇,**在還未采取公開敵對行動之前,大多數國家早已身處競爭環境。**軍隊必須能夠在戰爭和競爭中整合這些領域。今天的軍事行動已經需要靈活和安全的手段來跨梯隊、領域、組織和地理區域進行通信和共享數據。未來的全域戰爭和競爭將對獲取信息的規模和速度、對信息的理解和快速決策提出更高的要求,這些都是JADC2能力的關鍵要素。

但是,今天用于規劃、調度和執行監視軍事任務的既存系統和基礎設施不適用于現代全域作戰。鑒于多域作戰規劃日益復雜,期限縮短,而且數據要求增加,軍事規劃人員需要新的工具,包括AI/ML工具。 要想確定對AI/ML工具投入的優先級,就需要了解這些工具的能力、面臨的障礙以及它們滿足多域作戰下新興指揮控制需求的潛力。

圖1 機器學習的類型

2 如何利用商業AI/ML系統

近來,AI/ML系統在日益復雜的游戲中展現出人類所不能及的能力,再加上人們對未來高端沖突作戰需求日益加深的理解,使AI/ML變得極具吸引力。作為一種AL/ML系統,AlphaStar在即時戰略游戲《星際爭霸》中的成功**預示著監督學習和強化學習未來有可能應用于戰術級和戰役級指揮控制。**但是,將這些技術從游戲過渡到戰爭仍需要大量的研究。

隨著人工智能算法被開發用于現實、動態、多領域、大規模和快節奏的作戰,需要選擇、評估和監控重要的度量標準來衡量算法的性能、有效性和適用性。關鍵的算法度量標準包括:效率(計算所需的時間和內存)、可靠性(算法是否產生有效的結果)、最優性(算法是否為給定目標提供最佳結果)、穩健性(算法是否能夠在意外情況下平緩降級)、可解釋性(人是否能理解所產生結果的原因)和確定性(算法是否按預期運行)。

由于商業和學術AI/ML系統沒有直接應用于軍事任務,這些技術需要過渡到軍事環境才能帶來作戰優勢。為了決定采用哪些AI/ML技術,軍方**必須首先了解需要這些技術支持哪些作戰需求,如空中優勢、防空、加油機支持等。隨后作戰需求將決定****實現作戰任務所需的指揮控制過程,**如態勢感知、空域去沖突等。**了解AI/ML技術的局限性,**尤其是它們在不確定條件下進行推理時遇到的困難,也同樣重要。否則,這些技術可能會達不到預期。

圖2 AI/ML關系

3 實現AI/ML的軍事應用需要克服的障礙

實現AI/ML的軍事應用存在以下四個主要障礙。

(1)軍事文化與商業文化的差異

由于在戰爭中生命始終處于危險之中,軍事文化通常是規避風險的。但是在商業世界中,承擔大的風險可能獲得豐厚的經濟回報。這種文化差異在共享數據方面表現最為突出。軍方傾向于保護信息(只有那些“需要了解”的人才能獲取信息),而商業世界重視開放數據訪問(“廣泛共享”),以促進應用開發并獲得經濟利益。因此,將安全考慮納入軍事軟件開發和信息技術(IT)行動(稱為DevSecOps)非常重要,由此能夠挫敗試圖通過網絡手段削弱指揮控制的對手和危險份子。最大的挑戰可能是如何確保AI/ML算法適用于真實戰場。在戰場中,“戰爭迷霧”、不完整的信息和對手的行動與游戲環境截然不同。

(2)軍方內部數據不可訪問

軍方需要統一的數據管理政策和足夠先進的信息技術使指揮控制人員可以訪問大量數據,由此支持他們的人工智能輔助決策。換句話說,**必須有一個支持收集、標記、存儲、保護和共享數據的AI生態系統。**這個生態系統將依賴于通用數據標準、明確指定的權限、完整性檢查和入侵防護。**云計算和數據湖將是關鍵組成部分。**云數據湖可以用于分布式計算、冗余存儲和整個企業內的連接。考慮到現有的軍事政策、文化、權限、預算和獲取途徑,構建這樣一個環境以跨領域和跨安全級別的安全方式提供大量數據將對JADC2提出挑戰。

(3)需要重組軍事行動中心并培訓中心的人員

機器之間通信的增加和指揮控制過程的自動化,可能會帶來作戰中心硬件和人員的變化,這使人類作戰人員能夠聚焦認知任務,如評估和完善潛在的行動方案。采用AI/ML技術將創造出新的角色和職責。作戰人員需要接受培訓以便管理和運營AI生態系統,同時充當數據管理員,確保在該生態系統中捕獲和存儲的數據的質量和完整性。此外,雖然現在規劃人員和決策人員受到的培訓是要在一個領域內思考,但新的職責可能會出現,需要人們同時在多個領域內思考。

**(4)存在軍事亞文化 **

由于作戰人員之間亞文化的差異、規劃時間線的不同,以及為實現不同的作戰效果而采用的不同的權限分配方案,即使在一個軍種內,也很難跨越空中、太空和網絡領域集成AI能力。 盡管如此,對全域指揮控制的需求是急迫的,而且這種需求越來越普遍。為此,在JADC2中嵌入AI應用必須面對和克服以上所有障礙——軍事文化、網絡安全問題、用于知識質量較差的問題的算法、數據不可訪問、作戰中心重組和培訓以及軍事亞文化。

4 實現高效發展的路徑

以上障礙讓現狀看起來很嚴峻,必須立即做出改變來響應快速向前推進的迫切需求。但是,如果將實現目標的步驟分解成一個個容易解決的問題,如果軍方清楚技術的可能性和局限性,就可以取得進展。**我們的目標不應該是指揮控制的完全自動化,而是指揮控制的高效人機組隊。**實現這一目標的步驟應該包括:第一,繼續開發JADC2作戰概念并確定其優先次序;第二,在指揮控制過程中確定采用AI/ML來增強能力的需求和機會

與此同時,有必要為數據驅動的AI生態系統設置環境,這意味著要將武器系統和相關數據遷移至多域數據湖中,供有權限的人使用,同時應用“零信任”和其他安全原則來靈活且安全地管理這些數據。隨著AI軟件應用程序的開發,有必要在作戰測試環境中對這些應用程序進行實驗,將它們與指揮控制系統集成,然后將有限的能力部署到作戰中心,接著根據用戶反饋快速更新軟件應用程序。分析師和技術專家希望探索作戰概念來促進人機組隊,建立人們對AI智能算法的信任,并提高算法的可解釋性。商業需求較少的領域可能需要有針對性的軍事投資,例如用于數據稀缺領域的AI算法學習,或者用于防御針對這些算法的攻擊的AI算法。

當前的AI/ML技術需要學習用的數據。由于缺乏真實世界的數據(缺乏這類數據也是一件幸事)來為改進這些戰爭技術提供信息,軍方可以利用建模、模擬和演習來為AI/ML算法生成訓練數據。這類算法有助于武器-目標配對等。監督或強化學習算法可以支持這種指揮控制功能,類似于最近應用于商業游戲的學習算法。但是軍事算法也必須考慮到現實世界中的不確定性,這對人類和算法來說都是一個主要困難。

正如美國空軍參謀長查爾斯?布朗(Charles Brown)2020年8月所說:“要么加速變革,要么失敗。”對現代戰爭來說,及時向JADC2邁進是必要的,而且有必要“在競爭對手的防守期限內”完成。這一需求真實存在,但對AI/ML設定現實的預期很重要。現有的指揮控制流程在自動化方面還有改進的空間,在某些情況下,在AL/ML方面也有改進的空間。美國眾議院軍事委員會主席、華盛頓州民主黨眾議員亞當?史密斯(Adam Smith)于2021年9月談到JADC2時說:“目標是正確的,但不要低估實現這個目標的難度。”

來源:防務快訊

付費5元查看完整內容

2018年國防部人工智能戰略將人工智能定義為機器執行通常需要人類智能的任務的能力。戰略和相關計劃包括了全面戰略的一些特點,但不是全部。例如,國防部的9個與人工智能相關的戰略和計劃并不包括與采用人工智能技術相關的資源、投資和風險的完整描述(見圖)。在未來與人工智能相關的戰略中,發布包括綜合戰略的所有特征的指導,可以幫助國防部更好地定位,幫助管理者確保對人工智能的問責和負責任的使用。

國防部已經開始識別并報告其人工智能活動,但其人工智能基線庫存存在局限性,如排除分類活動。國防部官員表示,這些限制將在AI庫存識別過程的后續階段得到解決。然而,國防部還沒有開發一個高層次的計劃或路線圖來捕獲所有的需求和里程碑。該計劃將為國防部提供一個高層次的、端到端對所有必要特征的視圖,以實現該計劃的目標,為國會和國防部決策者提供一個完整、準確的人工智能活動清單。

國防部組織在人工智能活動上進行合作,但可以更充分地納入領先的合作實踐。國防部使用了各種正式和非正式的合作機制,GAO之前的工作已經確定,如跨機構小組。國防部已經部分納入了領先的協作實踐,例如識別領導能力。然而,國防部官員告訴我們,他們正在制定指導方針和協議,明確定義參與人工智能活動的國防部組件的角色和職責。通過最終確定和發布這樣的指南,國防部可以幫助確保所有參與者對整個部門的AI工作的責任和決策達成一致。

付費5元查看完整內容

概述

美政府問責局(GAO)日前發布報告《人工智能:國防部應改進策略和流程并加強協作指導》。該報告通過評估2018年《國防部人工智能戰略》,發現其存在片面性的一些特征,如九項人工智能相關戰略計劃“不包括與采用AI技術相關的資源、投資和風險的完整描述”等,呼吁國防部制定更全面的人工智能戰略,以使其更好地定位、問責和負責任地使用該技術。該報告還向國防部提出以下建議:發布含AI戰略所有特征的指南、建立定期審查國防部AI戰略的程序;開發含所有需求的高級計劃或路線圖;發布指南和協議,定義該機構在AI活動中的領導和參與者的責任等

背景

GAO的發現

2018 年國防部 (DOD) 人工智能 (AI) 戰略將 AI 定義為機器執行通常需要人類智能的任務的能力。戰略和相關計劃包括綜合戰略的一些(但不是全部)特征。 例如,國防部的九項人工智能相關戰略和計劃不包括對資源和投資以及與采用人工智能技術相關風險的完整描述(見圖)。發布指南以在未來與人工智能相關的戰略中包含綜合戰略的所有特征,可以幫助國防部更好地幫助管理人員確保問責制和負責任地使用人工智能。

國防部人工智能相關戰略和計劃的評估

國防部已開始識別和報告其 AI 活動,但其 AI 基線清單存在限制,例如排除機密活動。國防部官員表示,這些限制將在人工智能活動識別過程的后續階段得到解決。然而,國防部還沒有制定一個涵蓋所有需求和里程碑的高級計劃或路線圖。這樣的計劃將為國防部提供實現該計劃目標所需的所有功能的高級、端到端視圖,以向國會和國防部決策者提供完整和準確的人工智能活動清單。

國防部組織在人工智能活動上進行協作,但可以更充分地整合領先的協作實踐。國防部使用 GAO 先前工作已經確定的各種正式和非正式協作機制,例如跨部門小組。國防部已部分納入領先的協作實踐,例如識別領導力。然而,國防部官員告訴我們,他們正在制定指南和協議,明確定義參與人工智能活動的國防部組件的角色和職責。通過最終確定和發布此類指南,國防部可以幫助確保所有參與者就整個部門的人工智能工作的責任和決策達成一致。

為什么 GAO 做這項研究

國防部戰略指出,人工智能將改變戰爭的性質,不采用人工智能技術可能會阻礙作戰人員保衛我們國家的能力。國防部正在進行組織變革并投資數十億美元來整合人工智能技術,例如建立聯合人工智能中心以加速在整個國防部提供人工智能能力。

伴隨 2021 財年國防授權法案的眾議院報告 116-442,以及讓 GAO 評估國防部的資源、能力和人工智能技術計劃的規定。本報告評估了 (1) 國防部的人工智能戰略和相關計劃,包括綜合戰略的特征;(2) 國防部已確定并報告了整個部門的人工智能活動情況;(3) 國防部在其人工智能活動上的合作情況。GAO 審查了相關法律和國防部戰略,概述了整個部門管理人工智能的計劃和流程,采訪了官員,并進行了全部門調查。這是 GAO 于 2022 年 2 月發布的敏感報告的公開版本。國防部認為敏感的信息已被省略

付費5元查看完整內容

摘要

當代和新出現的安全威脅以及從最近的軍事行動中吸取的教訓已經證明,為了在傳統的物理領域(陸地、空中、海上、太空)實現作戰目標,確保在非物理領域的主導地位至關重要,即網絡空間、電磁環境(EME)和信息環境。因此,除了物理作戰領域之外,在非物理領域取得優勢的能力對于實現戰役的軍事和非軍事目標具有決定性意義。

作戰人員將面臨消除沖突,協作,同步和整合行動的挑戰,以實現并發揮協同效應以應對多種威脅,其中可能還包括來自每個作戰領域對手的武裝沖突閾值以下的行動,包括非物質的。

本文探討了作戰環境聯合情報準備 (JIPOE) 作為支持聯合作戰規劃、執行和評估的主要工具的作用和意義,從而有助于多域作戰 (MDO) 的同步和協調。在這方面,基于政治、軍事、經濟、信息、基礎設施-物理、時間(PMESII-PT)方法,不可能將對當代作戰環境(OE)的分析局限于物理領域及其與非物理領域的關系。相反,作者們相信,確定一種合適的方法來關注在非物理領域單獨或聯合進行的活動影響,它們在PMESII-PT所有領域的相互融合和實際操作領域的相關性,將大大有助于友軍識別和評估對手的重心(COG)、關鍵弱點、意圖和行動路線(COAs)的能力,包括各自的指標。JIPOE將為聯合部隊指揮官(JFC)提供OE的整體視圖,將與戰術層面密切合作、共享和開發,通過結合不同領域的能力,應該能夠壓倒對手的部隊。這種集中控制和分散執行的方法將有助于在作戰和戰術層面之間產生協同效應。

引言

未來的軍事行動將以物理和非物理層面的融合為特征,眾多不同的行為者將在其中運作。任何部隊都需要適應極其復雜的作戰環境和大量的作戰變量,需要適應性地使用一系列武器系統來產生致命和非致命的效果。因此,除了物理作戰領域(即陸地、空中、海上和太空),在非物理領域(網絡空間、EME、信息環境)取得優勢的能力將對實現戰役的軍事和非軍事目標具有決定性意義[1, p.280]。

OE是影響能力運用和影響指揮官決策的條件、環境和影響因素的綜合體[2, p.3]。了解OE的因素和條件不僅是所有計劃活動,特別是行動設計的關鍵前提,也是友軍保護和許多其他相關任務的關鍵前提[3, p.41]。

JIPOE代表了一種系統的方法,用于分析有關OE和對手的信息。它可以應用于全部的軍事行動。指揮官和參謀部在危機背景、根本原因和具體動態方面,對戰區形成共同的理解和整體的看法。它使指揮官能夠直觀地看到問題的程度,以及他們如何塑造和改變OE,使之成為他們的優勢,這將為他們的決策提供信息[2, p.3-5]。

JIPOE產品極大地促進了聯合(即作戰)層面的軍事行動的規劃和執行。現代軍隊,特別是北大西洋公約組織(NATO)內的軍隊,幾十年來在討論跨領域(陸、海、空)的協調行動時一直使用聯合這一術語。如今,由于全球安全環境的巨大變化以及俄羅斯和中國日益增長的野心,為了挑戰潛在的同行對手,需要采取多領域的方法。在傳統的戰爭門檻下,盟國及其合作伙伴已經受到了跨越物理和非物理領域的持續攻擊[4, p.2]。MDO一詞不同于聯合行動,因為它旨在關注跨越多個領域的行動,而不考慮服務的歸屬,不一定是由多個部門進行的行動[5,p.49]。

圖1:支持聯合行動的當前JIPOE流程的可視化。

圖2:提出支持MDO的JIPOE過程方案。

付費5元查看完整內容

在將人工智能 (AI) 和機器學習 (ML) 用于多域作戰 (MDO) 作為聯合全域指揮與控制 (JADC2) 的一部分之前,必須先完成奠定“信息基礎”的繁重工作。奠定基礎——數據被標記、安全存儲和傳輸,并且易于訪問——需要組織和保護軍隊跨域、服務和梯隊的 C2 所需的所有信息的日常工作。相同的信息主體將成為 AI 和 ML 算法的輸入。沒有這樣的信息基礎,進展甚微。

盡管最近 AI/ML 在游戲領域取得的成功令人鼓舞,但鑒于信息不完整、數據質量差和對手行動等現實障礙,對某些 C2 功能采用類似技術仍將具有挑戰性。其他 AI/ML 技術,例如用于預測戰區飛機狀態的技術,將更容易應用。實現 JADC2 目標將取決于確定核心軍事任務集的 C2 需求以及制定可在近期和遠期實現的軟件開發計劃。

本文的其余部分描述了對具有嵌入式 AI/ML 的 JADC2 的需求,就 AI/ML 的誘惑提出了警告,概述了要克服的 AI/ML 障礙,并提出了前進的道路。一般來說,需要對人力和資源進行投資,才能超越當今的人力密集型 C2 范式。通過自動化和一些AI/ML改進當前的規劃流程是一個值得努力的現實目標

發展路徑

可能看起來很嚴峻。存在許多障礙,迫切需要快速向前發展,現在就需要改變。然而,如果將實現目標的步驟分解為易于處理的問題,并且如果軍方對技術可能性和限制等保持“睜大眼睛”,則可以取得進展。目標不應該是 C2 的完全自動化,而是 C2 的有效人機協作。實現這一目標的步驟應包括,首先,JADC2 作戰概念 (CONOP) 的持續開發和優先排序,其次,確定在使能 C2 流程中增強 AI/ML 的相應需求和機會

同時,有必要為數據驅動的人工智能生態系統設定條件,這意味著將武器系統和相關數據放入多域數據庫中,供那些應該訪問數據的人使用,同時也應用“zero-trust”和其他安全原則,以確保數據的彈性和安全管理。隨著人工智能軟件應用程序的開發,有必要在操作測試平臺環境中對其進行試驗,將它們與 C2 系統集成,然后將它們部署到操作中心。可能會有能力迭代——首先將有限的能力放入運營中心,然后生成用戶反饋,然后快速更新軟件應用程序。分析師和技術人員將希望探索 CONOP,以促進人機協作,建立人類對 AI 算法的信任,并提高算法的可解釋性。在商業需求較低的領域可能需要有針對性的軍事投資,例如用于學習數據稀缺的人工智能算法或防御針對這些算法的攻擊。

當前的 AI/ML 技術需要數據進行學習。鑒于缺乏真實世界的數據來為這些戰爭技術的改進提供信息,軍方可以利用建模、模擬和演習來為 AI/ML 算法生成訓練數據。然后,此類算法可以幫助開發例如武器-目標配對。監督或強化學習算法可以支持這種 C2 功能,類似于最近應用于商業游戲的學習算法。但軍事算法還必須考慮現實世界中的不確定性——這對人類和算法來說都是一個主要困難。

正如美國空軍參謀長在 2020 年 8 月所說,“加速變革,否則失敗。”及時向 JADC2 推進是美國現代戰爭的當務之急,并且需要“在競爭對手的部署時間表內”(Brown, Jr, 2020)這樣做。需求是真實的,但為 AI/ML 設定切合實際的期望很重要。現有的 C2 流程在自動化方面還有改進的空間,在某些情況下,還有 AL/ML;相比之下,其他 C2 過程對于人類和算法來說仍然很困難。正如美國眾議院軍事委員會主席兼眾議員Adam Smith, D-Wash在 2021 年 9 月談到 JADC2 時所說的那樣,“目標是正確的,但不要低估實現它的難度((Harper, 2021)。”

付費5元查看完整內容

?美國國防部已經可以開始應用其現有的國際科技協議、全球科學網絡以及在多邊機構中的作用來促進數字國防合作。本報告將這些選項集合構建為軍事人工智能合作工具箱,可為調整政策、推進研究、開發和測試以及連接人員提供了有價值的途徑。

美國將人工智能 (AI) 的領導地位視為提升其在國際體系中的戰略地位和保持其未來軍事優勢的關鍵。美國的盟友和伙伴網絡是服務于這些目標的不對稱資產,正如旨在讓美國為當前戰略競爭時代做好準備的國家安全和國防政策所確認的那樣。

最值得注意的是,美國國防部 (DOD) 人工智能戰略中宣布的關鍵舉措和國家安全委員會關于人工智能的建議表明了國際參與對人工智能安全、安保、互操作性和與民主價值觀保持一致的重要性。

簡而言之,人們一致認為,加強聯盟和伙伴關系很重要,不僅因為美國在聯盟中行動,而且因為俄羅斯等經常單獨行動。由于技術加速如何推動軍事進步、刺激經濟增長和塑造21世紀的治理模式,人工智能和其他新興技術是與這些近乎同等競爭對手競爭的核心。如果不深化與盟友和伙伴的合作,美國既無法應對大國帶來的挑戰,也無法從塑造人工智能的民主軌跡中獲益。

在此背景下,本報告重點關注通過基于可互操作部隊和尖端技術的強大軍事關系,維護美國及其伙伴和盟國網絡相對于潛在對手的優勢的必要性。國防部已經擁有多種工具可用于深化與其盟國和國際安全伙伴的科技(S&T)合作。但為了充分利用它們在人工智能方面的潛力,該部門需要重新設想并更好地整合它們。

為此,此處的分析將現有的國防科技協議、軍事科技交流和多邊機構的要素構建為軍事人工智能合作工具箱。這項工作不僅僅是為人工智能能力開發集中資源,還包括政策調整;測試、評估、確認和驗證 (TEVV) 管道;研發(R&D)、人員交流;數據共享;和標準化。這里的目的不是提出新的協議,而是回答國防部如何利用其現有的科技合作機制來支持數字時代的軍事合作,確保相關資源和框架在尋求人工智能領導力和未來時不會被利用聯軍成功。

雖然應該承認挑戰,包括圍繞數據交換的敏感性和對技術政策的不同政策觀點,但隨著時間的推移,它們也可以成為合作以減輕這些障礙的動力。換言之,現有工具有助于在政治信任、凝聚力和互操作性方面獲得更多支持,從而使合作有助于應對數字威權主義和技術驅動的國際安全環境變化的共同挑戰。 主要發現是:

  • TEVV 是軍事人工智能合作的一個重要但代表性不足的特征。一系列活動可以納入 AI 的合作 TEVV 管道,包括聯合測試、試驗、實驗、培訓、練習以及建模和模擬。
  • 利用國防科技協議就共同的研發優先事項進行合作,有助于為其他形式的人工智能合作建立良好意愿,包括與民主價值觀保持一致。
  • 軍事人工智能合作不是純粹的技術努力。促進政策和人員聯系的技術、人力和程序措施對于推進可互操作的人工智能采用同樣重要。
  • 印度-太平洋地區的盟國和合作伙伴在現有軍事人工智能合作工具箱所涵蓋的主要協議和機構中的代表性不足。

雖然軍事人工智能合作的某些方面可能需要新的投資、機制和協議,但這不應該排除現有工具可以用于新用途的多種方式。軍事人工智能合作工具箱之所以有吸引力,正是因為它可以在短期內啟動,滿足與盟友和伙伴盡早建立互操作性和推進人工智能的緊迫性。

付費5元查看完整內容

【前 言】

什么是 JADC2?

聯合全域指揮與控制 (JADC2) 是美國國防部 (DOD) 的概念,旨在將來自所有軍事部門(空軍、陸軍、海軍陸戰隊、海軍和太空部隊)的傳感器連接到一個網絡中。傳統上,每個軍種都開發自己的戰術網絡,這與其他軍種不兼容(例如,陸軍網絡無法與海軍或空軍網絡連接)。通過 JADC2,國防部設想創建一個“物聯網”網絡,將眾多傳感器與武器系統連接起來,使用人工智能算法幫助改進決策。

美國國防部 (DOD)聯合全域指揮與控制 (JADC2) 戰略描述了迫切需要集中力量推動部門行動,以增強其的聯合部隊指揮官在所有作戰領域和整個電磁頻譜范圍內指揮聯合部隊所需的能力,以威懾、并在必要時在全球任何時間、任何地點擊敗任何對手。

JADC2 戰略為識別、組織和提供改進的聯合部隊指揮和控制 (C2) 能力提供了愿景和方法,并說明了對手已經關閉了其賴以取得作戰成功的許多能力和方法優勢。作為一種方法,JADC2 支持使用創新技術開發物資和非物資解決方案選項,同時愿意修改現有政策、權力、組織結構和作戰程序,從而為聯合部隊指揮官提供信息和決策優勢。

【總 結】 全球安全環境的迅速變化正在對美國軍隊以及聯合部隊獲取、維持和保護信息和決策優勢的能力提出重大的新挑戰。此外,必須預見未來的軍事行動將在退化和競爭的電磁頻譜環境中進行。這些挑戰需要部門一致和集中的努力,以現代化如何開發、實施和管理 C2 能力,以在所有作戰領域、跨梯隊以及與任務伙伴合作。

JADC2 為塑造未來聯合部隊 C2 能力提供了一種連貫的方法,旨在產生作戰能力,以便在所有領域和合作伙伴的所有戰爭級別和階段感知、理解和行動,在相關的速度。作為一種方法,JADC2 超越了任何單一的能力、平臺或系統。它提供了一個機會,可以加速實施所需的技術進步和聯合部隊進行 C2 的方式的理論變革。 JADC2 將使聯合部隊能夠使用越來越多的數據,采用自動化和人工智能,依靠安全和有彈性的基礎設施,并在對手的決策周期內采取行動。

這一戰略的成功實施需要整個國防部 (DoD) 的集中承諾。為此,JADC2 戰略闡明了“感知”、“理解”和“行動”三個指導 C2 功能,以及額外的五個持久工作 (LOE) 來組織和指導行動以提供物資和非物資JADC2 能力。 LOE 是: (1) 建立 JADC2 數據企業;(2)建立JADC2人類企業; (3)建立JADC2技術企業; (4) 將核 C2 和通信 (NC2/NC3) 與 JADC2 集成; (5) 使任務伙伴信息共享現代化。

該戰略得到 JADC2 戰略實施計劃的支持,該計劃確定了 JADC2 的最終狀態、關鍵目標和任務,并與已建立的部門當局、論壇和流程合作,以同步和簡化工作,以優先考慮、資源、開發、交付和維持JADC2 能力。現有的軍種和機構開發和采購流程通常會產生無法滿足全域 C2 作戰需求的特定域能力。 JADC2 方法將覆蓋這些現有流程,旨在促進從根本上改進的跨域聯合能力的發展。

該戰略提供了六項指導原則,以促進整個部門在提供物資和非物資 JADC2 改進方面的努力的一致性。這些原則是: (1) 在企業層面設計和擴展信息共享能力改進; (2) 聯合部隊 C2 改進采用分層安全功能; (3) JADC2 數據結構由高效、可演進和廣泛適用的通用數據標準和架構組成; (4) 聯合部隊 C2 必須在退化和競爭性電磁環境中具有彈性; (5) 部門開發和實施過程必須統一,以提供更有效的跨領域能力選擇; (6) 部門開發和實施過程必須以更快的速度執行。

JADC2 戰略的結論是,迫切需要使用企業范圍內的整體方法來實施物資和非物資 C2 能力,以確保聯合部隊指揮官在整個競爭過程中獲得和保持對抗全球對手的信息和決策優勢的能力。

付費5元查看完整內容

Drone Wars UK 的最新簡報著眼于人工智能目前在軍事環境中的應用方式,并考慮了所帶來的法律和道德、作戰和戰略風險。

人工智能 (AI)、自動決策和自主技術已經在日常生活中變得普遍,并為顯著改善社會提供了巨大的機會。智能手機、互聯網搜索引擎、人工智能個人助理和自動駕駛汽車是依賴人工智能運行的眾多產品和服務之一。然而,與所有技術一樣,如果人們對人工智能了解甚少、不受監管或以不適當或危險的方式使用它,它也會帶來風險。

在當前的 AI 應用程序中,機器為特定目的執行特定任務。概括性術語“計算方法”可能是描述此類系統的更好方式,這些系統與人類智能相去甚遠,但比傳統軟件具有更廣泛的問題解決能力。假設,人工智能最終可能能夠執行一系列認知功能,響應各種各樣的輸入數據,并理解和解決人腦可以解決的任何問題。盡管這是一些人工智能研究計劃的目標,但它仍然是一個遙遠的前景。

AI 并非孤立運行,而是在更廣泛的系統中充當“骨干”,以幫助系統實現其目的。用戶不會“購買”人工智能本身;他們購買使用人工智能的產品和服務,或使用新的人工智能技術升級舊系統。自主系統是能夠在沒有人工輸入的情況下執行任務的機器,它們依靠人工智能計算系統來解釋來自傳感器的信息,然后向執行器(例如電機、泵或武器)發出信號,從而對機器周圍的環境造成影響.

人工智能被世界軍事大國視為變革戰爭和獲得戰勝敵人的優勢的一種方式。人工智能的軍事應用已經開始進入作戰使用,具有令人擔憂的特性的新系統正在迅速推出。與軍事和公共部門相比,商業和學術界已經引領并繼續引領人工智能的發展,因為它們更適合投資資金和獲取研究所需的資源。因此,未來人工智能的軍事應用很可能是對商業領域開發的技術的改編。目前,人工智能正在以下軍事應用中采用:

  • 情報、監視和偵察
  • 賽博戰
  • 電子戰
  • 指揮控制和決策支持
  • 無人機群
  • 自主武器系統

人工智能和英國軍事

綜合審查和其他政府聲明毫無疑問地表明,政府非常重視人工智能的軍事應用,并打算繼續推進人工智能的發展。然而,盡管已經發布了概述使用自動化系統的學說的出版物,但迄今為止,英國國防部 (MoD) 仍然對管理其人工智能和自主系統使用的倫理框架保持沉默,盡管已經做出了一些重大決定。軍事人工智能的未來用途。

英國國防部一再承諾發布其國防人工智能戰略,預計該戰略將制定一套高級倫理原則,以控制軍事人工智能系統的整個生命周期。該戰略是在與來自學術界和工業界的選定專家討論后制定的,盡管政府尚未就與人工智能的軍事用途相關的倫理和其他問題進行公開磋商。該戰略的主要目的之一是向行業和公眾保證,國防部是人工智能項目合作的負責任合作伙伴。

與此同時,在沒有任何道德指南的情況下,計劃和政策正在迅速推進,主要問題仍未得到解答。英國軍隊在什么情況下會采用人工智能技術?政府認為何種程度的人為控制是合適的?風險將如何解決?英國將如何向其盟友和對手證明英國打算采取有原則的方法來使用軍事人工智能技術?

軍事人工智能系統帶來的風險 上述人工智能的每一種不同的軍事應用都會帶來不同的風險因素。作為國防部總部后臺操作的一部分,對數據進行排序的算法會引發不同的問題和擔憂,并且需要與自主武器系統不同級別的審查。

盡管如此,目前正在開發的人工智能系統無疑會對生命、人權和福祉構成威脅。軍事人工智能系統帶來的風險可以分為三類:道德和法律、操作和戰略。

道德和法律風險

  • 遵守戰爭法: 目前尚不清楚機器人系統,特別是自主武器如何能夠滿足戰爭法制定的致命決定和保護非戰斗人員的標準。

-問責制:目前尚不清楚如果出現問題,誰來承擔責任:如果計算機運行不可預測并因此犯下戰爭罪行,懲罰它是沒有意義的。

  • 人權和隱私:人工智能系統對人權和個人隱私構成潛在威脅。

  • 不當使用:在戰斗環境中處于壓力之下的部隊可能會試圖修改技術以克服安全功能和控制。

作戰應用風險

  • 偏見的技術來源:人工智能系統的好壞取決于它們的訓練數據,少量損壞的訓練數據會對系統的性能產生很大影響。

  • 偏見的人為來源:當人類濫用系統或誤解其輸出時,可能會導致偏見。當作戰員不信任系統或系統非常復雜以至于其輸出無法解釋時,也會發生這種情況。

  • 惡意操縱:軍用 AI 系統與所有聯網系統一樣,容易受到惡意行為者的攻擊,這些行為者可能試圖干擾、黑客攻擊或欺騙系統。

戰略風險

  • 降低門檻:人工智能系統帶來了政治領導人在沖突中訴諸使用自主軍事系統而不是尋求非軍事選擇的風險。

  • 升級管理:涉及人工智能的軍事行動的執行速度降低了審議和談判的空間,可能導致快速意外升級并造成嚴重后果。

  • 軍備競賽和擴散:對軍事人工智能的追求似乎已經引發了軍備競賽,主要和地區大國競相發展其能力以保持領先于競爭對手。

  • 戰略穩定性:如果先進的人工智能系統發展到能夠預測敵人戰術或部隊部署的程度,這可能會產生高度不穩定的后果。

本簡報列出了為人工智能設想的各種軍事應用,并強調了它們造成傷害的可能性。它認為,減輕軍事人工智能系統帶來的風險的建議必須基于確保人工智能系統始終處于人類監督之下的原則。

迄今為止,公眾對人工智能和機器人技術進步所帶來的社會變化和風險似乎知之甚少。這份簡報的部分目的是為了敲響警鐘。人工智能可以而且應該用于改善工作場所的條件和對公眾的服務,而不是增加戰爭的殺傷力。

付費5元查看完整內容
北京阿比特科技有限公司