亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在將人工智能 (AI) 和機器學習 (ML) 用于多域作戰 (MDO) 作為聯合全域指揮與控制 (JADC2) 的一部分之前,必須先完成奠定“信息基礎”的繁重工作。奠定基礎——數據被標記、安全存儲和傳輸,并且易于訪問——需要組織和保護軍隊跨域、服務和梯隊的 C2 所需的所有信息的日常工作。相同的信息主體將成為 AI 和 ML 算法的輸入。沒有這樣的信息基礎,進展甚微。

盡管最近 AI/ML 在游戲領域取得的成功令人鼓舞,但鑒于信息不完整、數據質量差和對手行動等現實障礙,對某些 C2 功能采用類似技術仍將具有挑戰性。其他 AI/ML 技術,例如用于預測戰區飛機狀態的技術,將更容易應用。實現 JADC2 目標將取決于確定核心軍事任務集的 C2 需求以及制定可在近期和遠期實現的軟件開發計劃。

本文的其余部分描述了對具有嵌入式 AI/ML 的 JADC2 的需求,就 AI/ML 的誘惑提出了警告,概述了要克服的 AI/ML 障礙,并提出了前進的道路。一般來說,需要對人力和資源進行投資,才能超越當今的人力密集型 C2 范式。通過自動化和一些AI/ML改進當前的規劃流程是一個值得努力的現實目標

發展路徑

可能看起來很嚴峻。存在許多障礙,迫切需要快速向前發展,現在就需要改變。然而,如果將實現目標的步驟分解為易于處理的問題,并且如果軍方對技術可能性和限制等保持“睜大眼睛”,則可以取得進展。目標不應該是 C2 的完全自動化,而是 C2 的有效人機協作。實現這一目標的步驟應包括,首先,JADC2 作戰概念 (CONOP) 的持續開發和優先排序,其次,確定在使能 C2 流程中增強 AI/ML 的相應需求和機會

同時,有必要為數據驅動的人工智能生態系統設定條件,這意味著將武器系統和相關數據放入多域數據庫中,供那些應該訪問數據的人使用,同時也應用“zero-trust”和其他安全原則,以確保數據的彈性和安全管理。隨著人工智能軟件應用程序的開發,有必要在操作測試平臺環境中對其進行試驗,將它們與 C2 系統集成,然后將它們部署到操作中心。可能會有能力迭代——首先將有限的能力放入運營中心,然后生成用戶反饋,然后快速更新軟件應用程序。分析師和技術人員將希望探索 CONOP,以促進人機協作,建立人類對 AI 算法的信任,并提高算法的可解釋性。在商業需求較低的領域可能需要有針對性的軍事投資,例如用于學習數據稀缺的人工智能算法或防御針對這些算法的攻擊。

當前的 AI/ML 技術需要數據進行學習。鑒于缺乏真實世界的數據來為這些戰爭技術的改進提供信息,軍方可以利用建模、模擬和演習來為 AI/ML 算法生成訓練數據。然后,此類算法可以幫助開發例如武器-目標配對。監督或強化學習算法可以支持這種 C2 功能,類似于最近應用于商業游戲的學習算法。但軍事算法還必須考慮現實世界中的不確定性——這對人類和算法來說都是一個主要困難。

正如美國空軍參謀長在 2020 年 8 月所說,“加速變革,否則失敗。”及時向 JADC2 推進是美國現代戰爭的當務之急,并且需要“在競爭對手的部署時間表內”(Brown, Jr, 2020)這樣做。需求是真實的,但為 AI/ML 設定切合實際的期望很重要。現有的 C2 流程在自動化方面還有改進的空間,在某些情況下,還有 AL/ML;相比之下,其他 C2 過程對于人類和算法來說仍然很困難。正如美國眾議院軍事委員會主席兼眾議員Adam Smith, D-Wash在 2021 年 9 月談到 JADC2 時所說的那樣,“目標是正確的,但不要低估實現它的難度((Harper, 2021)。”

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

2022年3月,美國蘭德公司發布《開發嵌入人工智能應用的聯合全域指揮控制作戰概念》報告,論述了嵌入人工智能/機器學習(AI/ML)的聯合全域指揮控制(JADC2)的需求,說明了如何在JADC2中利用商業AI/ML系統和需要克服的障礙,并指出了發展路徑。報告認為,為實現嵌入人工智能應用的JADC2,需要投入人力和資源來超越如今的人力密集型指揮控制模式,用自動化和AI/ML技術改進當前的規劃過程。

報告核心觀點包括

  • 將AI/ML納入JADC2之前需要建立“信息基礎”;
  • 實現JADC2目標的關鍵是確定核心軍事任務的指揮控制需求并建立可行的軟件開發計劃;
  • 將商業AI/ML系統用于軍事任務,必須確定技術支持的作戰需求、隨后確定實現作戰任務所需的指揮控制過程,同時了解AI/ML技術的局限性;
  • 在JADC2中應用AI/ML需要克服四個障礙:軍事文化與商業文化的差異、數據不可訪問、重組軍事行動中心并培訓人員、軍事亞文化;
  • 在JADC2中應用AI/ML的目標是實現指揮控制的高效人機組隊,而不是指揮控制的完全自動化。

將人工智能(AI)和機器學習(ML)納入JADC2進行多域作戰(MDO)之前要完成一項艱巨的任務,即建立“信息基礎”。信息基礎中的數據帶有標記,能夠安全地存儲和傳輸,且易于訪問。建立信息基礎需要持續整理和保護軍方為開展指揮控制所需的跨領域、跨軍種和跨梯隊的所有信息。這些信息是AI和ML算法所需的輸入。如果沒有這樣一個信息基礎,將AI融入JADC2的工作就無法取得進展。 盡管最近AI/ML在游戲領域取得了令人鼓舞的成功,但考慮到信息不完整、數據質量差和對手行動等現實障礙,在某些指揮控制功能中使用類似的技術仍具有挑戰性。其他AI/ML技術,例如用于預測戰區內飛機狀態的應用,其成熟度更高。實現JADC2目標取決于確定核心軍事任務集的指揮控制需求,以及建立在近期和遠期都可以實現的軟件開發計劃。

1 JADC2對支撐多域作戰的必要性

現代戰爭已經超越了傳統的陸、空、海領域,軍事指揮官及其參謀人員計劃、指揮和控制部隊不能局限于這些傳統領域,還要擴展到太空、網絡和電磁頻譜領域。更復雜的是,跨領域的活動已經超出了傳統戰爭的范疇,**在還未采取公開敵對行動之前,大多數國家早已身處競爭環境。**軍隊必須能夠在戰爭和競爭中整合這些領域。今天的軍事行動已經需要靈活和安全的手段來跨梯隊、領域、組織和地理區域進行通信和共享數據。未來的全域戰爭和競爭將對獲取信息的規模和速度、對信息的理解和快速決策提出更高的要求,這些都是JADC2能力的關鍵要素。

但是,今天用于規劃、調度和執行監視軍事任務的既存系統和基礎設施不適用于現代全域作戰。鑒于多域作戰規劃日益復雜,期限縮短,而且數據要求增加,軍事規劃人員需要新的工具,包括AI/ML工具。 要想確定對AI/ML工具投入的優先級,就需要了解這些工具的能力、面臨的障礙以及它們滿足多域作戰下新興指揮控制需求的潛力。

圖1 機器學習的類型

2 如何利用商業AI/ML系統

近來,AI/ML系統在日益復雜的游戲中展現出人類所不能及的能力,再加上人們對未來高端沖突作戰需求日益加深的理解,使AI/ML變得極具吸引力。作為一種AL/ML系統,AlphaStar在即時戰略游戲《星際爭霸》中的成功**預示著監督學習和強化學習未來有可能應用于戰術級和戰役級指揮控制。**但是,將這些技術從游戲過渡到戰爭仍需要大量的研究。

隨著人工智能算法被開發用于現實、動態、多領域、大規模和快節奏的作戰,需要選擇、評估和監控重要的度量標準來衡量算法的性能、有效性和適用性。關鍵的算法度量標準包括:效率(計算所需的時間和內存)、可靠性(算法是否產生有效的結果)、最優性(算法是否為給定目標提供最佳結果)、穩健性(算法是否能夠在意外情況下平緩降級)、可解釋性(人是否能理解所產生結果的原因)和確定性(算法是否按預期運行)。

由于商業和學術AI/ML系統沒有直接應用于軍事任務,這些技術需要過渡到軍事環境才能帶來作戰優勢。為了決定采用哪些AI/ML技術,軍方**必須首先了解需要這些技術支持哪些作戰需求,如空中優勢、防空、加油機支持等。隨后作戰需求將決定****實現作戰任務所需的指揮控制過程,**如態勢感知、空域去沖突等。**了解AI/ML技術的局限性,**尤其是它們在不確定條件下進行推理時遇到的困難,也同樣重要。否則,這些技術可能會達不到預期。

圖2 AI/ML關系

3 實現AI/ML的軍事應用需要克服的障礙

實現AI/ML的軍事應用存在以下四個主要障礙。

(1)軍事文化與商業文化的差異

由于在戰爭中生命始終處于危險之中,軍事文化通常是規避風險的。但是在商業世界中,承擔大的風險可能獲得豐厚的經濟回報。這種文化差異在共享數據方面表現最為突出。軍方傾向于保護信息(只有那些“需要了解”的人才能獲取信息),而商業世界重視開放數據訪問(“廣泛共享”),以促進應用開發并獲得經濟利益。因此,將安全考慮納入軍事軟件開發和信息技術(IT)行動(稱為DevSecOps)非常重要,由此能夠挫敗試圖通過網絡手段削弱指揮控制的對手和危險份子。最大的挑戰可能是如何確保AI/ML算法適用于真實戰場。在戰場中,“戰爭迷霧”、不完整的信息和對手的行動與游戲環境截然不同。

(2)軍方內部數據不可訪問

軍方需要統一的數據管理政策和足夠先進的信息技術使指揮控制人員可以訪問大量數據,由此支持他們的人工智能輔助決策。換句話說,**必須有一個支持收集、標記、存儲、保護和共享數據的AI生態系統。**這個生態系統將依賴于通用數據標準、明確指定的權限、完整性檢查和入侵防護。**云計算和數據湖將是關鍵組成部分。**云數據湖可以用于分布式計算、冗余存儲和整個企業內的連接。考慮到現有的軍事政策、文化、權限、預算和獲取途徑,構建這樣一個環境以跨領域和跨安全級別的安全方式提供大量數據將對JADC2提出挑戰。

(3)需要重組軍事行動中心并培訓中心的人員

機器之間通信的增加和指揮控制過程的自動化,可能會帶來作戰中心硬件和人員的變化,這使人類作戰人員能夠聚焦認知任務,如評估和完善潛在的行動方案。采用AI/ML技術將創造出新的角色和職責。作戰人員需要接受培訓以便管理和運營AI生態系統,同時充當數據管理員,確保在該生態系統中捕獲和存儲的數據的質量和完整性。此外,雖然現在規劃人員和決策人員受到的培訓是要在一個領域內思考,但新的職責可能會出現,需要人們同時在多個領域內思考。

**(4)存在軍事亞文化 **

由于作戰人員之間亞文化的差異、規劃時間線的不同,以及為實現不同的作戰效果而采用的不同的權限分配方案,即使在一個軍種內,也很難跨越空中、太空和網絡領域集成AI能力。 盡管如此,對全域指揮控制的需求是急迫的,而且這種需求越來越普遍。為此,在JADC2中嵌入AI應用必須面對和克服以上所有障礙——軍事文化、網絡安全問題、用于知識質量較差的問題的算法、數據不可訪問、作戰中心重組和培訓以及軍事亞文化。

4 實現高效發展的路徑

以上障礙讓現狀看起來很嚴峻,必須立即做出改變來響應快速向前推進的迫切需求。但是,如果將實現目標的步驟分解成一個個容易解決的問題,如果軍方清楚技術的可能性和局限性,就可以取得進展。**我們的目標不應該是指揮控制的完全自動化,而是指揮控制的高效人機組隊。**實現這一目標的步驟應該包括:第一,繼續開發JADC2作戰概念并確定其優先次序;第二,在指揮控制過程中確定采用AI/ML來增強能力的需求和機會

與此同時,有必要為數據驅動的AI生態系統設置環境,這意味著要將武器系統和相關數據遷移至多域數據湖中,供有權限的人使用,同時應用“零信任”和其他安全原則來靈活且安全地管理這些數據。隨著AI軟件應用程序的開發,有必要在作戰測試環境中對這些應用程序進行實驗,將它們與指揮控制系統集成,然后將有限的能力部署到作戰中心,接著根據用戶反饋快速更新軟件應用程序。分析師和技術專家希望探索作戰概念來促進人機組隊,建立人們對AI智能算法的信任,并提高算法的可解釋性。商業需求較少的領域可能需要有針對性的軍事投資,例如用于數據稀缺領域的AI算法學習,或者用于防御針對這些算法的攻擊的AI算法。

當前的AI/ML技術需要學習用的數據。由于缺乏真實世界的數據(缺乏這類數據也是一件幸事)來為改進這些戰爭技術提供信息,軍方可以利用建模、模擬和演習來為AI/ML算法生成訓練數據。這類算法有助于武器-目標配對等。監督或強化學習算法可以支持這種指揮控制功能,類似于最近應用于商業游戲的學習算法。但是軍事算法也必須考慮到現實世界中的不確定性,這對人類和算法來說都是一個主要困難。

正如美國空軍參謀長查爾斯?布朗(Charles Brown)2020年8月所說:“要么加速變革,要么失敗。”對現代戰爭來說,及時向JADC2邁進是必要的,而且有必要“在競爭對手的防守期限內”完成。這一需求真實存在,但對AI/ML設定現實的預期很重要。現有的指揮控制流程在自動化方面還有改進的空間,在某些情況下,在AL/ML方面也有改進的空間。美國眾議院軍事委員會主席、華盛頓州民主黨眾議員亞當?史密斯(Adam Smith)于2021年9月談到JADC2時說:“目標是正確的,但不要低估實現這個目標的難度。”

來源:防務快訊

付費5元查看完整內容

概述

美政府問責局(GAO)日前發布報告《人工智能:國防部應改進策略和流程并加強協作指導》。該報告通過評估2018年《國防部人工智能戰略》,發現其存在片面性的一些特征,如九項人工智能相關戰略計劃“不包括與采用AI技術相關的資源、投資和風險的完整描述”等,呼吁國防部制定更全面的人工智能戰略,以使其更好地定位、問責和負責任地使用該技術。該報告還向國防部提出以下建議:發布含AI戰略所有特征的指南、建立定期審查國防部AI戰略的程序;開發含所有需求的高級計劃或路線圖;發布指南和協議,定義該機構在AI活動中的領導和參與者的責任等

背景

GAO的發現

2018 年國防部 (DOD) 人工智能 (AI) 戰略將 AI 定義為機器執行通常需要人類智能的任務的能力。戰略和相關計劃包括綜合戰略的一些(但不是全部)特征。 例如,國防部的九項人工智能相關戰略和計劃不包括對資源和投資以及與采用人工智能技術相關風險的完整描述(見圖)。發布指南以在未來與人工智能相關的戰略中包含綜合戰略的所有特征,可以幫助國防部更好地幫助管理人員確保問責制和負責任地使用人工智能。

國防部人工智能相關戰略和計劃的評估

國防部已開始識別和報告其 AI 活動,但其 AI 基線清單存在限制,例如排除機密活動。國防部官員表示,這些限制將在人工智能活動識別過程的后續階段得到解決。然而,國防部還沒有制定一個涵蓋所有需求和里程碑的高級計劃或路線圖。這樣的計劃將為國防部提供實現該計劃目標所需的所有功能的高級、端到端視圖,以向國會和國防部決策者提供完整和準確的人工智能活動清單。

國防部組織在人工智能活動上進行協作,但可以更充分地整合領先的協作實踐。國防部使用 GAO 先前工作已經確定的各種正式和非正式協作機制,例如跨部門小組。國防部已部分納入領先的協作實踐,例如識別領導力。然而,國防部官員告訴我們,他們正在制定指南和協議,明確定義參與人工智能活動的國防部組件的角色和職責。通過最終確定和發布此類指南,國防部可以幫助確保所有參與者就整個部門的人工智能工作的責任和決策達成一致。

為什么 GAO 做這項研究

國防部戰略指出,人工智能將改變戰爭的性質,不采用人工智能技術可能會阻礙作戰人員保衛我們國家的能力。國防部正在進行組織變革并投資數十億美元來整合人工智能技術,例如建立聯合人工智能中心以加速在整個國防部提供人工智能能力。

伴隨 2021 財年國防授權法案的眾議院報告 116-442,以及讓 GAO 評估國防部的資源、能力和人工智能技術計劃的規定。本報告評估了 (1) 國防部的人工智能戰略和相關計劃,包括綜合戰略的特征;(2) 國防部已確定并報告了整個部門的人工智能活動情況;(3) 國防部在其人工智能活動上的合作情況。GAO 審查了相關法律和國防部戰略,概述了整個部門管理人工智能的計劃和流程,采訪了官員,并進行了全部門調查。這是 GAO 于 2022 年 2 月發布的敏感報告的公開版本。國防部認為敏感的信息已被省略

付費5元查看完整內容

什么是 JADC2?

聯合全域指揮與控制 (JADC2) 是美國國防部 (DOD) 的概念,旨在將來自所有軍事部門(空軍、陸軍、海軍陸戰隊、海軍和太空部隊)的傳感器連接到一個網絡中。傳統上,每個軍種都開發自己的戰術網絡,這與其他軍種不兼容(例如,陸軍網絡無法與海軍或空軍網絡連接)。通過 JADC2,國防部設想創建一個“物聯網”網絡,將眾多傳感器與武器系統連接起來,使用人工智能算法幫助改進決策。

付費5元查看完整內容

摘要

任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。

本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作

集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。

圖1: 增強協同技術下的智能任務規劃(IMPACT)

IMPACT系統由三層組成(見圖2):

  • 人機交互應用層
  • 傳輸層
  • 支持服務層

圖2:從功能角度看IMPACT架構。

付費5元查看完整內容

?美國國防部已經可以開始應用其現有的國際科技協議、全球科學網絡以及在多邊機構中的作用來促進數字國防合作。本報告將這些選項集合構建為軍事人工智能合作工具箱,可為調整政策、推進研究、開發和測試以及連接人員提供了有價值的途徑。

美國將人工智能 (AI) 的領導地位視為提升其在國際體系中的戰略地位和保持其未來軍事優勢的關鍵。美國的盟友和伙伴網絡是服務于這些目標的不對稱資產,正如旨在讓美國為當前戰略競爭時代做好準備的國家安全和國防政策所確認的那樣。

最值得注意的是,美國國防部 (DOD) 人工智能戰略中宣布的關鍵舉措和國家安全委員會關于人工智能的建議表明了國際參與對人工智能安全、安保、互操作性和與民主價值觀保持一致的重要性。

簡而言之,人們一致認為,加強聯盟和伙伴關系很重要,不僅因為美國在聯盟中行動,而且因為俄羅斯等經常單獨行動。由于技術加速如何推動軍事進步、刺激經濟增長和塑造21世紀的治理模式,人工智能和其他新興技術是與這些近乎同等競爭對手競爭的核心。如果不深化與盟友和伙伴的合作,美國既無法應對大國帶來的挑戰,也無法從塑造人工智能的民主軌跡中獲益。

在此背景下,本報告重點關注通過基于可互操作部隊和尖端技術的強大軍事關系,維護美國及其伙伴和盟國網絡相對于潛在對手的優勢的必要性。國防部已經擁有多種工具可用于深化與其盟國和國際安全伙伴的科技(S&T)合作。但為了充分利用它們在人工智能方面的潛力,該部門需要重新設想并更好地整合它們。

為此,此處的分析將現有的國防科技協議、軍事科技交流和多邊機構的要素構建為軍事人工智能合作工具箱。這項工作不僅僅是為人工智能能力開發集中資源,還包括政策調整;測試、評估、確認和驗證 (TEVV) 管道;研發(R&D)、人員交流;數據共享;和標準化。這里的目的不是提出新的協議,而是回答國防部如何利用其現有的科技合作機制來支持數字時代的軍事合作,確保相關資源和框架在尋求人工智能領導力和未來時不會被利用聯軍成功。

雖然應該承認挑戰,包括圍繞數據交換的敏感性和對技術政策的不同政策觀點,但隨著時間的推移,它們也可以成為合作以減輕這些障礙的動力。換言之,現有工具有助于在政治信任、凝聚力和互操作性方面獲得更多支持,從而使合作有助于應對數字威權主義和技術驅動的國際安全環境變化的共同挑戰。 主要發現是:

  • TEVV 是軍事人工智能合作的一個重要但代表性不足的特征。一系列活動可以納入 AI 的合作 TEVV 管道,包括聯合測試、試驗、實驗、培訓、練習以及建模和模擬。
  • 利用國防科技協議就共同的研發優先事項進行合作,有助于為其他形式的人工智能合作建立良好意愿,包括與民主價值觀保持一致。
  • 軍事人工智能合作不是純粹的技術努力。促進政策和人員聯系的技術、人力和程序措施對于推進可互操作的人工智能采用同樣重要。
  • 印度-太平洋地區的盟國和合作伙伴在現有軍事人工智能合作工具箱所涵蓋的主要協議和機構中的代表性不足。

雖然軍事人工智能合作的某些方面可能需要新的投資、機制和協議,但這不應該排除現有工具可以用于新用途的多種方式。軍事人工智能合作工具箱之所以有吸引力,正是因為它可以在短期內啟動,滿足與盟友和伙伴盡早建立互操作性和推進人工智能的緊迫性。

付費5元查看完整內容

【前 言】

什么是 JADC2?

聯合全域指揮與控制 (JADC2) 是美國國防部 (DOD) 的概念,旨在將來自所有軍事部門(空軍、陸軍、海軍陸戰隊、海軍和太空部隊)的傳感器連接到一個網絡中。傳統上,每個軍種都開發自己的戰術網絡,這與其他軍種不兼容(例如,陸軍網絡無法與海軍或空軍網絡連接)。通過 JADC2,國防部設想創建一個“物聯網”網絡,將眾多傳感器與武器系統連接起來,使用人工智能算法幫助改進決策。

美國國防部 (DOD)聯合全域指揮與控制 (JADC2) 戰略描述了迫切需要集中力量推動部門行動,以增強其的聯合部隊指揮官在所有作戰領域和整個電磁頻譜范圍內指揮聯合部隊所需的能力,以威懾、并在必要時在全球任何時間、任何地點擊敗任何對手。

JADC2 戰略為識別、組織和提供改進的聯合部隊指揮和控制 (C2) 能力提供了愿景和方法,并說明了對手已經關閉了其賴以取得作戰成功的許多能力和方法優勢。作為一種方法,JADC2 支持使用創新技術開發物資和非物資解決方案選項,同時愿意修改現有政策、權力、組織結構和作戰程序,從而為聯合部隊指揮官提供信息和決策優勢。

【總 結】 全球安全環境的迅速變化正在對美國軍隊以及聯合部隊獲取、維持和保護信息和決策優勢的能力提出重大的新挑戰。此外,必須預見未來的軍事行動將在退化和競爭的電磁頻譜環境中進行。這些挑戰需要部門一致和集中的努力,以現代化如何開發、實施和管理 C2 能力,以在所有作戰領域、跨梯隊以及與任務伙伴合作。

JADC2 為塑造未來聯合部隊 C2 能力提供了一種連貫的方法,旨在產生作戰能力,以便在所有領域和合作伙伴的所有戰爭級別和階段感知、理解和行動,在相關的速度。作為一種方法,JADC2 超越了任何單一的能力、平臺或系統。它提供了一個機會,可以加速實施所需的技術進步和聯合部隊進行 C2 的方式的理論變革。 JADC2 將使聯合部隊能夠使用越來越多的數據,采用自動化和人工智能,依靠安全和有彈性的基礎設施,并在對手的決策周期內采取行動。

這一戰略的成功實施需要整個國防部 (DoD) 的集中承諾。為此,JADC2 戰略闡明了“感知”、“理解”和“行動”三個指導 C2 功能,以及額外的五個持久工作 (LOE) 來組織和指導行動以提供物資和非物資JADC2 能力。 LOE 是: (1) 建立 JADC2 數據企業;(2)建立JADC2人類企業; (3)建立JADC2技術企業; (4) 將核 C2 和通信 (NC2/NC3) 與 JADC2 集成; (5) 使任務伙伴信息共享現代化。

該戰略得到 JADC2 戰略實施計劃的支持,該計劃確定了 JADC2 的最終狀態、關鍵目標和任務,并與已建立的部門當局、論壇和流程合作,以同步和簡化工作,以優先考慮、資源、開發、交付和維持JADC2 能力。現有的軍種和機構開發和采購流程通常會產生無法滿足全域 C2 作戰需求的特定域能力。 JADC2 方法將覆蓋這些現有流程,旨在促進從根本上改進的跨域聯合能力的發展。

該戰略提供了六項指導原則,以促進整個部門在提供物資和非物資 JADC2 改進方面的努力的一致性。這些原則是: (1) 在企業層面設計和擴展信息共享能力改進; (2) 聯合部隊 C2 改進采用分層安全功能; (3) JADC2 數據結構由高效、可演進和廣泛適用的通用數據標準和架構組成; (4) 聯合部隊 C2 必須在退化和競爭性電磁環境中具有彈性; (5) 部門開發和實施過程必須統一,以提供更有效的跨領域能力選擇; (6) 部門開發和實施過程必須以更快的速度執行。

JADC2 戰略的結論是,迫切需要使用企業范圍內的整體方法來實施物資和非物資 C2 能力,以確保聯合部隊指揮官在整個競爭過程中獲得和保持對抗全球對手的信息和決策優勢的能力。

付費5元查看完整內容

當前的流程和網絡限制迫使軍隊員工在物理上聚集在一起進行操作。Metaverse 提供了一種潛在的解決方案,可以在通過分發操作使指揮所更易于生存的同時啟用操作

共同的操作畫面

“我需要理解”也許是任務指揮技術背后的主要驅動力。制定和維護共同作戰圖的基本概念是增強態勢感知,實現態勢理解并促進所有梯隊的共同理解。通過連接數字系統以在 2D 和 3D 地圖上顯示信息或通過在紙質地圖上手動跟蹤友軍和敵方信息的復雜應用程序編程接口執行,該過程在過去 30 年中沒有太大發展。這項工作需要大型、繁瑣的指揮所,配備集中的人員和技術,以執行作戰過程并最終生成通用的作戰畫面,指揮官和參謀人員可以利用該畫面做出最及時、最準確的決策。 不幸的是,隨著運營變得越來越復雜,數據越來越多,各單位一直在努力有效地進行信息和知識管理。指揮所的規模和范圍已經擴大以滿足需要。人員數量的增加和對網絡的依賴使今天的指揮所容易受到敵人的攻擊,沒有足夠的機動性和生存能力。元宇宙提供了一種潛在的解決方案,可以使操作過程成為可能,同時通過分布操作固有地使指揮所更具生存能力,以及減少物理和電磁足跡。

在 元宇宙中與我會面:在未來,士兵們可以“進入”虛擬環境,在執行任務之前進行任務規劃。盡管“軍事虛擬世界”仍然只是一個概念,但整個美國陸軍的研究人員和科學家正在探索潛在的應用

什么是元宇宙?

由尼爾斯蒂芬森在他 1992 年的小說“Snow Crash” 中創造為了描述用戶在虛擬空間中交互的在線世界,元宇宙已經通過大型多人在線游戲和虛擬世界(如 Second Life、Roblox 或 Minecraft)變得熟悉。正如移動設備在過去 10 年中改變了互聯網的消費方式一樣,新一代技術——在這種情況下是虛擬和增強現實耳機——正在為我們如何消費內容提供新的視角。這些頭顯不再受平面屏幕的限制,讓用戶能夠感知在物理世界之上或代替物理世界呈現的 3D 對象和媒體并與之交互。隨著大流行驅動的遠程工作加速,這一概念變得更加流行。Facebook 甚至將其未來寄托在這一轉變上。

風險基金合伙人和受人尊敬的商業作家馬修·鮑爾( Matthew Ball )將元宇宙最徹底的探索之一寫成了一個由九部分組成的博客系列。Ball 的入門書著重于元宇宙的八個方面:

硬件:用于訪問、交互或開發元宇宙的物理技術和設備的銷售和支持。這包括但不限于面向消費者的硬件(例如 VR 耳機、手機和觸覺手套)以及企業硬件(例如用于操作或創建虛擬或基于 AR 的環境的硬件,例如工業相機、投影和跟蹤系統以及掃描傳感器)。此類別不包括特定于計算的硬件,例如 GPU 芯片和服務器,以及特定于網絡的硬件,例如光纖電纜或無線芯片組。

網絡:由骨干提供商、網絡、交換中心和在它們之間路由的服務以及管理“最后一英里”數據給消費者的服務提供持久、實時的連接、高帶寬和分散的數據傳輸。

計算:支持元宇宙的計算能力的啟用和供應,支持物理計算、渲染、數據協調和同步、人工智能、投影、動作捕捉和翻譯等多樣化和高要求的功能。

虛擬平臺:沉浸式數字和通常是 3D 模擬、環境和世界的開發和運營,用戶和企業可以在其中探索、創造、社交和參與各種體驗(例如賽車、繪畫、上課,聽音樂),從事經濟活動。這些業務與傳統在線體驗和多人視頻游戲的區別在于,存在一個由開發人員和內容創建者組成的大型生態系統,這些生態系統在底層平臺上生成大部分內容和/或收集大部分收入。

交換工具和標準:工具、協議、格式、服務和引擎,它們充當互操作性的實際或事實上的標準,并支持元宇宙的創建、操作和持續改進。這些標準支持渲染、物理和 AI 等活動,以及資產格式及其從體驗到體驗的導入/導出、前向兼容性管理和更新、工具和創作活動以及信息管理。

支付:支持數字支付流程、平臺和運營,包括法定入口(一種數字貨幣兌換形式)到純數字貨幣和金融服務,包括比特幣和以太幣等加密貨幣以及其他區塊鏈技術。

元宇宙內容、服務和資產:與用戶數據和身份相關的數字資產(例如虛擬商品和貨幣)的設計/創建、銷售、轉售、存儲、安全保護和財務管理。這包含所有“建立在”元宇宙之上和/或“服務于”元宇宙的所有業務和服務,并且沒有被平臺所有者垂直整合到虛擬平臺中,包括專門為元宇宙構建的、獨立于虛擬界的內容平臺。

用戶行為:消費者和商業行為(包括花費和投資、時間和注意力、決策和能力)的可觀察變化,這些變化要么與元宇宙直接相關,要么以其他方式促成或反映其原則和理念。這些行為在最初出現時幾乎總是看起來像“趨勢”(或者,更貶義地,“時尚”),但后來顯示出持久的全球社會意義。

他討論了每個領域的進展,以及充分啟用和采用元宇宙作為移動互聯網繼任者的方法。

從虛擬到現實:隨著大型指揮所分解其物理足跡并依賴數字環境,諸如元宇宙之類的概念可以幫助參謀人員對現實世界的行動進行規劃

聯網

帶寬是當今戰場上的稀缺資源,需要技術突破才能完全啟用虛擬世界。然而,許多戰術場景可以受益于不是特別密集的信息,因此需要較少的帶寬來傳輸,例如地理空間位置、單位狀態摘要、當前目標等。此外,更密集的信息,例如用于訓練輔助目標識別算法的作戰區域3D 地形模型或未知敵方車輛的視頻,無需通過網絡實時發送。這將要求陸軍利用云服務,云服務不僅能高效地移動和處理信息,而且由情報部門控制,這些情報部門了解客戶請求或可能請求的數據和服務的信息價值。

關乎生死的一個關鍵問題是信息延遲。友方單位位置的潛在變化可能會導致整個元宇宙的決策瀑布式變化,并改變任務狀態的視角。為了做出更好的決策,陸軍必須創建一個超高效的網絡,只傳輸正確的相關信息。這種實時信息更新的概念是在虛擬世界中沉浸式硬件的關鍵組成部分,因為“數字孿生”士兵的表示和動作必須在連接到其共享空間的所有其他設備上同步。與商業世界不同,元宇宙戰場涉及戰斗人員試圖摧毀對手的網絡。

微軟飛行模擬器

流行的 Microsoft Flight Simulator 視頻游戲系列包括地球的“數字孿生”,結合地圖和衛星圖像,可以對天氣和空中交通、建筑物甚至樹木實時渲染。這是一個巨大的模型,對于戰術邊緣的受限帶寬來說是不切實際的,但是這個模型和其他類似的模型可以允許在更高的、云連接的梯隊或在本站上對車輛和武器效果進行超現實建模。NVIDIA 的 Omniverse等世界構建工具包有助于渲染新對象,其中包括材質、紋理和運動構建塊。甚至這些基于世界的模型的低分辨率版本也可用于概念演練或任務演練,無論單位是否位于同一地點。

想象一下:今天使用的沉浸式硬件幾乎完全掩蓋了用戶對現實世界的看法;最終,顯示器將需要在現實之上渲染內容或用合成內容替換所有內容之間進行動態調整。(由任務指揮戰斗實驗室提供)

虛擬平臺

整合軍用數字訓練、戰斗和企業級系統的精簡平臺不足以實現元宇宙。元宇宙要求士兵的數字存在超越不同的訓練平臺,并無縫集成到其他作戰工具中。這些工具還必須使用戶能夠從不同的角度與戰場數據進行交互,無論是在傳統的 2D 顯示器上還是從沉浸式共享虛擬空間。這將需要能夠使來自現實世界或模擬的數據在各種顯示媒體上無縫呈現的架構,無論它們是如何部署的。商業游戲世界一直在適應這一挑戰,支持在不同類型的硬件(如 PC 和游戲機)之間交叉玩同一游戲。

雖然化身的出現對我們的士兵來說可能不是那么優先,但數字資產可以以其他方式使用,這可能是有用的--例如,包括在一個人的身份系統偏好或自定義語言模型中,即使在用戶登錄一個新系統時也可以幫助人機合作。此外,一些游戲使一部分用戶能夠戴著虛擬現實設備從神一樣的俯視角度進行游戲,而其他玩家則化身為化身,從地面上以第一人稱觀看世界。像這樣的游戲概念似乎很適合在不同的梯隊中使用這種能力,在那里不同類型的數據和互動是必要的。

從戰術的角度來看,陸軍必須建立具有共同視野和感受的系統,無論系統是的佩戴方式或交互方式如何。士兵應該能夠以相同的配置文件使用他們的頭戴式顯示器、他們的手持系統和他們的桌面系統,并在這些系統間能夠以相同的角色輕松地切換。

硬件

Android Tactical Assault Kit (ATAK)等系統是一款裝在堅固外殼中的手持平板電腦或手機,可為作戰人員提供其作戰環境的數字化視角。ATAK 可以可視化 2D 和 3D 地圖,以及一系列圖形控制措施來表示友軍和敵軍的位置。雖然不像民用領域的消費類智能手機那樣無處不在,但這些設備代表了將物理和數字領域融合到一個手持套件中的首次嘗試之一。

然而,增強現實系統中的當前硬件限制了全息內容的視野質量。虛擬現實頭戴式顯示器提供高質量的視覺效果,但代價是幾乎完全遮擋了用戶對自然世界的看法。雖然陸軍開始評估在指揮所等不太致命的環境中使用虛擬現實,但沉浸式硬件的未來最終將融合到一個頭戴式顯示器中,該顯示器可以在現實之上的渲染內容或替換所有內容之間動態調整合成內容。這對于在未來的戰場環境中完全實現元宇宙是必要的。

結論

盡管推動了未來的發展,但我們也必須承認目前的技術仍然面臨著局限性--例如,訪問問題、延遲。這些問題不會因為升級到元宇宙而得到解決,必須隨著元宇宙的發展而得到解決。在規劃、準備、執行和評估行動方面轉向元宇宙模式,將使分散的工作人員能夠在一個協作的虛擬節點內更有效地同步作戰功能,這將與現有的實體指揮所相媲美。臨時會議可以超越簡單的電話和視頻會議,允許用戶占據一個包含所有相關數據的虛擬規劃空間來做出決定:一個顯示友軍和敵軍位置、情報產品、相對戰斗力、維持估計等的交互式三維共同作戰圖。

與人工智能一樣,元宇宙技術為解決戰場上的問題帶來了一套新的工具,包括當前和預期的問題。也像人工智能一樣,如果沒有標準和基礎設施來啟用這些工具,其結果將是零碎的和令人沮喪的。重要的是,陸軍要向前傾斜并認識到新技術的潛力,不僅因為它們在物資方面帶來了什么,而且還因為它們對我們未來的戰斗方式的影響。

付費5元查看完整內容
北京阿比特科技有限公司