近年來,深度學習已經成為機器學習和計算機視覺、自然語言處理等相關領域的中心范式。但是對這一努力的許多方面的數學理解仍然缺乏。訓練何時成功,速度有多快? 用了多少例子? 各種架構的優點和局限性是什么? 本書重點研究深度學習的理論方面。
《量子信息理論》這本書基本上是自成體系的,主要關注構成這門學科基礎的基本事實的精確數學公式和證明。它是為研究生和研究人員在數學,計算機科學,理論物理學尋求發展一個全面的理解關鍵結果,證明技術,和方法,與量子信息和計算理論的廣泛研究主題相關。本書對基礎數學,包括線性代數,數學分析和概率論有一定的理解。第一章總結了這些必要的數學先決條件,并從這個基礎開始,這本書包括清晰和完整的證明它提出的所有結果。接下來的每一章都包含了具有挑戰性的練習,旨在幫助讀者發展自己的技能,發現關于量子信息理論的證明。
這是一本關于量子信息的數學理論的書,專注于定義、定理和證明的正式介紹。它主要是為對量子信息和計算有一定了解的研究生和研究人員準備的,比如將在本科生或研究生的入門課程中涵蓋,或在目前存在的關于該主題的幾本書中的一本中。量子信息科學近年來有了爆炸性的發展,特別是在過去的二十年里。對這個問題的全面處理,即使局限于理論方面,也肯定需要一系列的書,而不僅僅是一本書。與這一事實相一致的是,本文所涉及的主題的選擇并不打算完全代表該主題。量子糾錯和容錯,量子算法和復雜性理論,量子密碼學,和拓撲量子計算是在量子信息科學的理論分支中發現的許多有趣的和基本的主題,在這本書中沒有涵蓋。然而,當學習這些主題時,人們很可能會遇到本書中討論的一些核心數學概念。
蒸汽機為工業革命提供了動力,并永遠地改變了制造業——但直到接下來的一個世紀,熱力學定律和統計力學原理得到發展,科學家們才能夠在理論層面上全面解釋蒸汽機為何以及如何工作。
當然,缺乏理論理解并沒有阻止人們對蒸汽機的改進,但是熱機原理的發現導致了迅速的改進。當科學家們最終掌握了統計力學,其結果遠遠超出了制造更好、更高效的發動機。統計力學使人們認識到物質是由原子構成的,它預示了量子力學的發展,(如果你從整體上看)甚至使我們看到了為我們今天使用的計算機提供動力的晶體管。
如今,人工智能正處于類似的關頭。深度神經網絡(DNNs)是現代人工智能研究的一部分,但它們或多或少被視為一個“黑盒子”。盡管人工智能從業者取得了重大進展,但DNN通常被認為過于復雜,無法從基本原理理解。模型在很大程度上是通過反復試驗來調整的——雖然反復試驗可以通過多年的經驗來明智地進行,但卻沒有任何統一的理論語言來描述DNN及其功能。
《深度學習理論原理:理解神經網絡的有效理論方法》的新書出版,該研究由Facebook AI Research的Sho Yaida、麻省理工學院和Salesforce的Dan Roberts以及普林斯頓的Boris Hanin共同完成。作為一個基本的層面,這本書提供了一個從第一原則理解DNNs的理論框架。對于人工智能從業者來說,這種理解可以顯著減少訓練這些DNN所需的試錯次數。例如,它可以揭示任何給定模型的最佳超參數,而不需要經過今天所需要的時間和計算密集的實驗。
《深度學習理論原理》將于2022年初由劍橋大學出版社出版,手稿現已公開。斯坦福大學物理學教授伊娃·西爾弗斯坦(Eva Silverstein)說:“這本書提出了一種機器學習理論方法。”看到這些方法在理解和改進人工智能方面取得的進展將是令人興奮的。
這只是重塑人工智能科學這一更大項目的第一步,這一項目既源自基本原理,同時也專注于描述現實模型的實際工作方式。如果成功,這種深度學習的一般理論可能會使人工智能模型更加強大,甚至可能引導我們建立一個研究通用智能方面的框架。
近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。
//compstat-lmu.github.io/seminar_nlp_ss20/
在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。
這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。
為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。
遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。
為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。
在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。
本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。
這些是我在2020年秋季在莫斯科物理與技術研究所(MIPT)和Yandex數據分析學院(YSDA)做的演講筆記。這些筆記涵蓋了初始化、損失曲面、泛化和神經切線核理論的一些方面。雖然許多其他的主題(如表達性,平均場理論,雙下降現象)在當前版本中缺失,我們計劃在未來的修訂中添加它們。
在過去的十年里,神經網絡在視覺、語音、語言理解、醫學、機器人和游戲等領域取得了驚人的成果。人們原本以為,這種成功需要克服理論上存在的重大障礙。畢竟,深度學習優化是非凸的、高度非線性的、高維的,那么我們為什么能夠訓練這些網絡呢?在許多情況下,它們擁有的參數遠遠多于記憶數據所需的參數,那么為什么它們能夠很好地推廣呢?盡管這些主題已經占據了機器學習研究領域的大部分注意力,但當涉及到更簡單的模型時,神經網絡領域的原則是先數據訓練再說。顯然,這招奏效了。
//www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/
結果,神經網絡的實際成功已經超過了我們理解它們如何工作的能力。這門課是關于開發概念工具來理解當神經網絡訓練時會發生什么。其中一些思想早在幾十年前就已經形成了(可能已經被社區的大部分人遺忘了),而另一些思想今天才剛剛開始被理解。我將試圖傳達我們最好的現代理解,盡管它可能不完整。
這門課從優化中汲取靈感,它不是一門優化課。一方面,優化的研究通常是指令性的,從優化問題的信息和明確定義的目標(如在特定規范下快速收斂)開始,并找出保證實現該目標的計劃。對于現代神經網絡來說,分析通常是描述性的: 采用在使用的程序,并找出它們(似乎)有效的原因。希望這種理解能讓我們改進算法。
與優化研究的另一個區別是,目標不是簡單地擬合一個有限的訓練集,而是一般化。盡管神經網絡有巨大的能力,但為什么它能泛化與訓練的動態密切相關。因此,如果我們從優化中引入一個想法,我們不僅需要考慮它是否會更快地最小化成本函數,還需要考慮它是否以一種有利于泛化的方式實現。
這類應用不會為您提供在ImageNet上實現最先進性能的方法。它也不是那種為了證明定理而去證明定理的理論課。相反,我們的目的是為您提供概念性工具,以便您在任何特定情況下推斷出影響訓練的因素。
除了讓你的網絡更好地訓練之外,學習神經網絡訓練動力學的另一個重要原因是,許多現代架構本身就足夠強大,可以進行優化。這可能是因為我們在體系結構中明確地構建了優化,就像在MAML或深度均衡模型中那樣。或者,我們可能只是在大量數據上訓練一個靈活的架構,然后發現它具有驚人的推理能力,就像GPT3一樣。不管怎樣,如果網絡架構本身在優化某些東西,那么外部訓練過程就會與本課程中討論的問題糾纏在一起,不管我們喜歡與否。為了有希望理解它提出的解決方案,我們需要理解問題。因此,本課程將以雙層優化結束,利用課程中涵蓋的所有內容。
目錄內容:
我們將通過分析一個簡單的模型開始這門課,梯度下降動力學可以被精確地確定:線性回歸。盡管線性回歸很簡單,但它提供了對神經網絡訓練驚人的洞察力。我們將使用線性回歸來理解兩種神經網絡訓練現象: 為什么對輸入進行歸一化是一個好策略,以及增加維度可以減少過擬合。
線性化是我們理解非線性系統最重要的工具之一。我們將涵蓋神經網絡的一階泰勒近似(梯度,方向導數)和二階近似(Hessian)。我們將看到如何用雅可比向量乘積有效地計算它們。我們將使用Hessian診斷緩慢收斂和解釋網絡預測。
度量給出了流形上距離的一個局部概念。在許多情況下,兩個神經網絡之間的距離可以更有效地定義為它們所代表的函數之間的距離,而不是權重向量之間的距離。這就引出了一個重要的優化工具,叫做自然梯度。
我們從幾個角度來激勵神經網絡的二階優化:最小化二階泰勒近似、預處理、不變性和近端優化。我們將看到如何使用共軛梯度或克羅內克因子近似來近似二階更新。
我們看看已經成為神經網絡訓練的主要內容的三個算法特征。我們試圖理解它們對動力學的影響,并找出構建深度學習系統的一些陷阱。
基于最近關于非凸優化算法在訓練深度神經網絡和數據分析中的其他優化問題中的應用,我們對非凸優化算法全局性能保證的最新理論成果進行了綜述。我們從經典的論證開始,證明一般的非凸問題不可能在合理的時間內得到有效的解決。然后,我們給出了一個可以通過盡可能多地利用問題的結構來尋找全局最優解的問題列表。處理非凸性的另一種方法是將尋找全局最小值的目標放寬到尋找一個平穩點或局部最小值。對于這種設置,我們首先給出確定性一階方法收斂速度的已知結果,然后是最優隨機和隨機梯度格式的一般理論分析,以及隨機一階方法的概述。然后,我們討論了相當一般的一類非凸問題,如α-弱擬凸函數的極小化和滿足Polyak- Lojasiewicz條件的函數,這些函數仍然可以得到一階方法的理論收斂保證。然后我們考慮非凸優化問題的高階、零階/無導數方法及其收斂速度。
【導讀】本文章從深度神經網絡(DNN)入手,對深度學習(DL)領域的研究進展進行了簡要的綜述。內容包括:卷積神經網絡(CNN)、循環神經網絡(RNN)、長時記憶(LSTM)和門控遞歸單元(GRU)、自動編碼器(AE)、深度信念網絡(DBN)、生成對抗性網絡(GAN)和深度強化學習(DRL)。
近年來,深度學習在各個應用領域都取得了巨大的成功。這個機器學習的新領域發展迅速,已經應用于大多數傳統的應用領域,以及一些提供更多機會的新領域。針對不同類型的學習,提出了不同的學習方法,包括監督學習、半監督學習和非監督學習。
實驗結果表明,與傳統機器學習方法相比,深度學習在圖像處理、計算機視覺、語音識別、機器翻譯、藝術、醫學成像、醫學信息處理、機器人與控制、生物信息學、自然語言處理、網絡安全等領域具有最先進的性能。
本研究從深度神經網絡(DNN)入手,對深度學習(DL)領域的研究進展進行了簡要的綜述。研究內容包括:卷積神經網絡(CNN)、循環神經網絡(RNN)、長時記憶(LSTM)和門控遞歸單元(GRU)、自動編碼器(AE)、深度信念網絡(DBN)、生成對抗性網絡(GAN)和深度強化學習(DRL)。
此外,我們還討論了最近的發展,例如基于這些DL方法的高級變體DL技術。這項工作考慮了2012年以后發表的大部分論文,當時深度學習的歷史開始了。此外,本文中還包括了在不同應用領域探索和評價的DL方法。我們還包括最近開發的框架、SDKs和基準數據集,用于實施和評估深度學習方法。目前有一些研究已經發表,例如使用神經網絡和一個關于強化學習(RL)的綜述。然而,這些論文還沒有討論大規模深度學習模型的個別高級訓練技術和最近發展起來的生成模型的方法。
關鍵詞:卷積神經網絡(CNN);循環神經網絡(RNN);自動編碼器(AE);受限Boltzmann機器(RBM);深度信念網絡(DBN);生成對抗性網絡(GAN);深度強化學習(DRL);遷移學習。
在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。
這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。
讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。
【導讀】紐約大學開設的離散數學課程,這是一門運用于計算機科學的離散數學課程。這只是一門一學期的課程,所以有很多話題是它沒有涉及到的,或者沒有深入討論。但我們希望這能給你一個技能的基礎,你可以在你需要的時候建立,特別是給你一點數學的成熟——對數學是什么和數學定義和證明如何工作的基本理解。
本備忘單是機器學習手冊的濃縮版,包含了許多關于機器學習的經典方程和圖表,旨在幫助您快速回憶起機器學習中的知識和思想。
這個備忘單有兩個顯著的優點:
清晰的符號。數學公式使用了許多令人困惑的符號。例如,X可以是一個集合,一個隨機變量,或者一個矩陣。這是非常混亂的,使讀者很難理解數學公式的意義。本備忘單試圖規范符號的使用,所有符號都有明確的預先定義,請參見小節。
更少的思維跳躍。在許多機器學習的書籍中,作者省略了數學證明過程中的一些中間步驟,這可能會節省一些空間,但是會給讀者理解這個公式帶來困難,讀者會在中間迷失。