亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

基于最近關于非凸優化算法在訓練深度神經網絡和數據分析中的其他優化問題中的應用,我們對非凸優化算法全局性能保證的最新理論成果進行了綜述。我們從經典的論證開始,證明一般的非凸問題不可能在合理的時間內得到有效的解決。然后,我們給出了一個可以通過盡可能多地利用問題的結構來尋找全局最優解的問題列表。處理非凸性的另一種方法是將尋找全局最小值的目標放寬到尋找一個平穩點或局部最小值。對于這種設置,我們首先給出確定性一階方法收斂速度的已知結果,然后是最優隨機和隨機梯度格式的一般理論分析,以及隨機一階方法的概述。然后,我們討論了相當一般的一類非凸問題,如α-弱擬凸函數的極小化和滿足Polyak- Lojasiewicz條件的函數,這些函數仍然可以得到一階方法的理論收斂保證。然后我們考慮非凸優化問題的高階、零階/無導數方法及其收斂速度。

付費5元查看完整內容

相關內容

機器學習是數學統計和計算機科學交叉的跨學科領域。機器學習研究統計模型和算法,以從經驗數據中得出預測因子或有意義的模式。機器學習技術主要應用于搜索引擎、語音識別和自然語言處理、圖像檢測、機器人技術等領域。在我們的課程中,我們將討論以下問題:學習的數學模型是什么?如何量化一個學習問題的難度/難度/復雜性?如何選擇學習模型和學習算法?如何衡量機器學習的成功?

我們的課程大綱:

  1. 監督學習,非監督學習,強化學習。

  2. 機器學習泛化能力

  3. 支持向量機,核機

  4. 神經網絡和深度學習

付費5元查看完整內容

這是我2004年,2006年和2009年在斯坦福大學教授的概率理論博士課程的講義。本課程的目標是為斯坦福大學數學和統計學系的博士生做概率論研究做準備。更廣泛地說,文本的目標是幫助讀者掌握概率論的數學基礎和在這一領域中證明定理最常用的技術。然后將此應用于隨機過程的最基本類的嚴格研究。

為此,我們在第一章中介紹了測度與積分理論中的相關元素,即事件的概率空間與格-代數、作為可測函數的隨機變量、它們的期望作為相應的勒貝格積分,以及獨立性的重要概念。

利用這些元素,我們在第二章中研究了隨機變量收斂的各種概念,并推導了大數的弱定律和強定律。

第三章討論了弱收斂的理論、分布函數和特征函數的相關概念以及中心極限定理和泊松近似的兩個重要特例。

基于第一章的框架,我們在第四章討論了條件期望的定義、存在性和性質,以及相關的規則條件概率分布。

第五章討論了過濾、信息在時間上的級數的數學概念以及相應的停止時間。關于后者的結果是作為一組稱為鞅的隨機過程研究的副產品得到的。討論了鞅表示、極大不等式、收斂定理及其各種應用。為了更清晰和更容易的表述,我們在這里集中討論離散時間的設置來推遲與第九章相對應的連續時間。

第六章簡要介紹了馬爾可夫鏈的理論,概率論的核心是一個龐大的主題,許多教科書都致力于此。我們通過研究一些有趣的特殊情況來說明這類過程的一些有趣的數學性質。

在第七章中,我們簡要介紹遍歷理論,將注意力限制在離散時間隨機過程的應用上。我們定義了平穩過程和遍歷過程的概念,推導了Birkhoff和Kingman的經典定理,并強調了該理論的許多有用應用中的少數幾個。

第八章建立了以連續時間參數為指標的右連續隨機過程的研究框架,引入了高斯過程族,并嚴格構造了布朗運動為連續樣本路徑和零均值平穩獨立增量的高斯過程。

第九章將我們先前對鞅和強馬爾可夫過程的處理擴展到連續時間的設定,強調了右連續濾波的作用。然后在布朗運動和馬爾可夫跳躍過程的背景下說明了這類過程的數學結構。

在此基礎上,在第十章中,我們利用不變性原理重新構造了布朗運動作為某些重新標定的隨機游動的極限。進一步研究了其樣本路徑的豐富性質以及布朗運動在clt和迭代對數定律(簡稱lil)中的許多應用。

//statweb.stanford.edu/~adembo/stat-310b/lnotes.pdf

付費5元查看完整內容

Improved Analysis of Clipping Algorithms for Non-convex Optimization

梯度裁剪在深度神經網絡訓練中應用廣泛,部分原因是其在解決梯度爆炸問題上的實用性。最近,Zhang等人[2020a]通過引入一個新的假設(L0, L1)-平滑性,證明剪切(隨機)梯度下降(GD)比普通的GD/SGD收斂得更快,該假設表征了深度神經網絡中通常遇到的梯度劇烈波動。然而,它們在問題相關參數上的迭代復雜性是相當悲觀的,并且裁剪與其他關鍵技術(如動量加速)相結合的理論證明仍然缺乏。在本文中,我們提出了一個研究剪切算法的一般框架來彌補這一差距,該框架也考慮了動量法。我們提供了框架在確定性和隨機設置的收斂性分析,并通過比較它們與現有的下界來證明我們的結果的緊密性。我們的結果表明,剪裁方法的效率不會退化,即使在景觀的高度非光滑的區域。實驗證明了基于裁剪的方法在深度學習任務中的優越性。

//arxiv.org/abs/2010.02519

付費5元查看完整內容

盡管它在機器學習中有重要的應用,非凸非凹目標的最小-最大優化仍然是難以實現的。不僅沒有已知的一階方法收斂甚至近似局部最小最大點,而且識別它們的計算復雜度也不為人所知。本文給出了非凸非凹目標和線性約束的約束最小-最優優化問題的計算復雜度,以及一階方法的局限性。

//arxiv.org/abs/2009.09623

付費5元查看完整內容

摘要: 深度學習已經廣泛應用到各個領域, 如計算機視覺和自然語言處理等, 并都取得了明顯優于早期機器學習算法的效果. 在信息技術飛速發展的今天, 訓練數據逐漸趨于大數據集, 深度神經網絡不斷趨于大型化, 導致訓練越來越困難, 速度和精度都有待提升. 2013年, Ioffe等指出訓練深度神經網絡過程中存在一個嚴重問題: 中間協變量遷移(Internal covariate shift), 使網絡訓練過程對參數初值敏感、收斂速度變慢, 并提出了批歸一化(Batch normalization, BN)方法, 以減少中間協變量遷移問題, 加快神經網絡訓練過程收斂速度. 目前很多網絡都將BN作為一種加速網絡訓練的重要手段, 鑒于BN的應用價值, 本文系統綜述了BN及其相關算法的研究進展. 首先對BN的原理進行了詳細分析. BN雖然簡單實用, 但也存在一些問題, 如依賴于小批量數據集的大小、訓練和推理過程對數據處理方式不同等, 于是很多學者相繼提出了BN的各種相關結構與算法, 本文對這些結構和算法的原理、優勢和可以解決的主要問題進行了分析與歸納. 然后對BN在各個神經網絡領域的應用方法進行了概括總結, 并且對其他常用于提升神經網絡訓練性能的手段進行了歸納. 最后進行了總結, 并對BN的未來研究方向進行了展望.

付費5元查看完整內容

非凸優化是機器學習中的基礎問題,迭代優化方法缺乏理論支撐。普林斯頓大學助理教授Yuxin Chen一直從事非凸優化方面的研究,這份報告講述了最近關于非凸統計估計的故事,它們強調了統計模型在實現有效的非凸優化中的重要作用。

Yuxin Chen 目前是普林斯頓大學電氣工程系的助理教授。在加入普林斯頓大學之前,他是斯坦福大學統計系的博士后學者,并在斯坦福大學完成了電子工程博士學位。他的研究興趣包括高維統計、凸與非凸優化、統計學習和信息論。他獲得了2019年AFOSR青年研究員獎。

//www.princeton.edu/~yc5/

非凸優化與統計學

近年來,利用非凸優化方法來解決統計估計和學習問題的研究工作層出不窮。由于非凸優化算法易受虛假局部極小值的影響,傳統工作通常對其持悲觀看法,而簡單的迭代方法,如梯度下降法,在實踐中已經取得了顯著的成功。然而,直到最近,這些理論基礎在很大程度上一直缺乏。這個報告展示了兩個最近關于非凸統計估計的故事,它們強調了統計模型在實現有效的非凸優化中的重要作用。第一個故事是關于一個相位檢索問題的隨機初始化非凸方法:即使沒有仔細的初始化,像梯度下降這樣的簡單算法也可以在對數迭代次數內找到全局解。第二個故事是關于非凸低秩矩陣補全的不確定性量化。我們在非凸估計的基礎上開發了一個去偏估計器,使未知矩陣缺失項的置信區間能得到最優構造。所有這些都是通過一個“一留一出”的統計分析框架實現的,該框架在處理和解耦復雜的統計依賴方面非常強大。

付費5元查看完整內容

近年來,神經網絡已成為分析復雜和抽象數據模型的有力工具。然而,它們的引入本質上增加了我們的不確定性,即分析的哪些特征是與模型相關的,哪些是由神經網絡造成的。這意味著,神經網絡的預測存在偏差,無法與數據的創建和觀察的真實本質區分開來。為了嘗試解決這些問題,我們討論了貝葉斯神經網絡:可以描述由網絡引起的不確定性的神經網絡。特別地,我們提出了貝葉斯統計框架,它允許我們根據觀察某些數據的根深蒂固的隨機性和我們缺乏關于如何創建和觀察數據的知識的不確定性來對不確定性進行分類。在介紹這些技術時,我們展示了如何從原理上獲得神經網絡預測中的誤差,并提供了描述這些誤差的兩種常用方法。我們還將描述這兩種方法在實際應用時如何存在重大缺陷,并強調在使用神經網絡時需要其他統計技術來真正進行推理。

付費5元查看完整內容

生成對抗網絡(GANs)是近年來受到廣泛關注的一類新型的深度生成模型。GANs通過圖像、音頻和數據隱式地學習復雜的高維分布。然而,在GANs的訓練中存在著主要的挑戰。由于網絡結構設計不當,使用目標函數和選擇優化算法,導致模式崩潰,不收斂和不穩定。最近,為了解決這些挑戰,一些更好地設計和優化GANs的解決方案已經被研究,基于重新設計的網絡結構、新的目標函數和替代優化算法的技術。據我們所知,目前還沒有一項綜述特別側重于這些解決辦法的廣泛和系統的發展。在這項研究中,我們進行了一個全面的綜述,在GANs的設計和優化解決方案提出,以處理GANs的挑戰。我們首先確定每個設計和優化技術中的關鍵研究問題,然后根據關鍵研究問題提出新的分類結構解決方案。根據分類,我們將詳細討論每個解決方案中提出的不同GANs變體及其關系。最后,在已有研究成果的基礎上,提出了這一快速發展領域的研究方向。

//arxiv.org/abs/2005.00065

概述

深度生成模型(DGMs),如受限玻爾茲曼機(RBMs)、深度信念網絡(DBNs)、深度玻爾茲曼機(DBMs)、去噪自編碼器(DAE)和生成隨機網絡(GSN),最近因捕獲音頻、圖像或視頻等豐富的底層分布和合成新樣本而引起了廣泛關注。這些深度生成模型采用基于馬爾科夫鏈蒙特卡羅(MCMC)的[1][2]算法進行建模。基于MCMC的方法計算訓練過程中梯度消失的對數似然梯度。這是由馬爾科夫鏈產生的樣本生成慢的主要原因,因為它不能足夠快地在模式間混合。另一個生成模型,變分自動編碼器(VAE),使用帶有統計推理的深度學習來表示潛在空間[3]中的一個數據點,并在難以處理的概率計算的近似過程中體驗復雜性。此外,這些生成模型是通過最大化訓練數據可能性來訓練的,其中基于概率的方法在許多數據集(如圖像、視頻)中經歷了維數的詛咒。此外,在高維空間中,從馬爾可夫鏈進行的采樣是模糊的,計算速度慢且不準確。

為了解決上述問題,Goodfellow等人提出了生成對抗網(GANs),這是生成模型的另一種訓練方法。GANs是一種新穎的深度生成模型,它利用反向傳播來進行訓練,以規避與MCMC訓練相關的問題。GANs訓練是生成模型和判別模型之間的極小極大零和博弈。GANs最近在生成逼真圖像方面得到了廣泛的關注,因為它避免了與最大似然學習[5]相關的困難。圖1顯示了GANs能力從2014年到2018年的一個進展示例。

GANs是一種結構化的概率模型,它由兩個對立的模型組成:生成模型(Generator (G))用于捕獲數據分布; 判別模型(Discriminator (D))用于估計生成數據的概率,以確定生成的數據是來自真實的數據分布,還是來自G的分布。D和G使用基于梯度的優化技術(同時梯度下降)玩一個兩人極小極大對策,直到納什均衡。G可以從真實分布中生成采樣后的圖像,而D無法區分這兩組圖像。為了更新G和D,由D通過計算兩個分布之間的差異而產生的損失來接收梯度信號。我們可以說,GANs設計和優化的三個主要組成部分如下:(i) 網絡結構,(ii) 目標(損失)函數,(iii)優化算法。

對多模態數據建模的任務,一個特定的輸入可以與幾個不同的正確和可接受的答案相關聯。圖2顯示了具有多個自然圖像流形(紅色)的插圖,結果由使用均方誤差(MSE)的基本機器學習模型實現,該模型在像素空間(即,導致圖像模糊)和GANs所獲得的結果,從而驅動重構向自然圖像流形方向發展。由于GANs的這一優勢,它在許多領域得到了廣泛的關注和應用。

GANs在一些實際任務中表現良好,例如圖像生成[8][9]、視頻生成[11]、域自適應[12]和圖像超分辨率[10]等。傳統的GANs雖然在很多方面都取得了成功,但是由于D和G訓練的不平衡,使得GANs在訓練中非常不穩定。D利用迅速飽和的邏輯損失。另外,如果D可以很容易的區分出真假圖像,那么D的梯度就會消失,當D不能提供梯度時,G就會停止更新。近年來,對于模式崩潰問題的處理有了許多改進,因為G產生的樣本基于少數模式,而不是整個數據空間。另一方面,引入了幾個目標(損失)函數來最小化與傳統GANs公式的差異。最后,提出了幾種穩定訓練的方法。

近年來,GANs在自然圖像的制作方面取得了突出的成績。然而,在GANs的訓練中存在著主要的挑戰。由于網絡結構設計不當,使用目標函數和選擇優化算法,導致模式崩潰,不收斂和不穩定。最近,為了解決這些挑戰,一些更好地設計和優化GANs的解決方案已經被研究,基于重新設計的網絡結構、新的目標函數和替代優化算法的技術。為了研究以連續一致的方式處理GANs挑戰的GANs設計和優化解決方案,本綜述提出了不同GANs解決方案的新分類。我們定義了分類法和子類尋址來構造當前最有前途的GANs研究領域的工作。通過將提出的GANs設計和優化方案分類,我們對其進行了系統的分析和討論。我們還概述了可供研究人員進一步研究的主要未決問題。

本文貢獻:

  • GAN新分類法。在本研究中,我們確定了每個設計和優化技術中的關鍵研究問題,并提出了一種新的分類法,根據關鍵研究問題來構造解決方案。我們提出的分類將有助于研究人員增強對當前處理GANs挑戰的發展和未來研究方向的理解。

  • GAN全面的調研。根據分類法,我們提供了對各種解決方案的全面審查,以解決GANs面臨的主要挑戰。對于每一種類型的解決方案,我們都提供了GANs變體及其關系的詳細描述和系統分析。但是,由于廣泛的GANs應用,不同的GANs變體以不同的方式被制定、訓練和評估,并且這些GANs之間的直接比較是復雜的。為此,我們進行了必要的比較,總結了相應的方法。他們提出了解決GANs挑戰的新方案。這個調查可以作為了解、使用和開發各種實際應用程序的不同GANs方法的指南。

付費5元查看完整內容

這本專著,我通過在線凸優化的現代視角介紹了在線學習的基本概念。這里,在線學習指的是在最壞情況假設下的后悔最小化框架。我提出了凸損失在線學習的一階和二階算法,在歐幾里德和非歐幾里德設置。所有的算法都清晰地呈現為在線鏡像下降或跟隨正則化及其變體的實例化。特別關注的是通過自適應和無參數在線學習算法來調整算法的參數和在無界域內學習的問題。非凸損失通過凸替代損失和隨機化處理。本文還簡要討論了強盜設置問題,討論了具有對抗性和隨機性的多武裝強盜問題。這些筆記不需要凸分析的先驗知識,所有必需的數學工具都得到了嚴格的解釋。此外,所有的證明都經過精心挑選,盡可能地簡單和簡短。

付費5元查看完整內容

本備忘單是機器學習手冊的濃縮版,包含了許多關于機器學習的經典方程和圖表,旨在幫助您快速回憶起機器學習中的知識和思想。

這個備忘單有兩個顯著的優點:

  1. 清晰的符號。數學公式使用了許多令人困惑的符號。例如,X可以是一個集合,一個隨機變量,或者一個矩陣。這是非常混亂的,使讀者很難理解數學公式的意義。本備忘單試圖規范符號的使用,所有符號都有明確的預先定義,請參見小節。

  2. 更少的思維跳躍。在許多機器學習的書籍中,作者省略了數學證明過程中的一些中間步驟,這可能會節省一些空間,但是會給讀者理解這個公式帶來困難,讀者會在中間迷失。

付費5元查看完整內容
北京阿比特科技有限公司