優化和機器學習是當今決策領域的兩個主要領域。近年來,數據的日益豐富促進了這兩個領域交叉點的進展,從而催生了更好的決策支持工具。優化通過改進傳統機器學習模型的訓練方法顯著提升了這些模型的性能,而機器學習則通過準確的預測能力改進了許多優化算法,從而實現了更優的決策。
然而,將優化理論與現代機器學習方法(如神經網絡和核函數)相結合面臨兩大主要挑戰。首先,這些模型不滿足優化理論中的基本凸性假設。其次,這些模型主要用于具有大量參數和高維數據的任務,因此需要高度高效且可擴展的算法。這種對效率的關注限制了對離散變量和優化中典型的一般約束的考慮。本論文介紹了應對這些挑戰的新算法。
本文分為四章,涵蓋嚴格的理論、計算工具和多樣化的應用。在第一章中,我們將穩健優化的最新工具擴展到非凸和非凹的環境中,從而使得生成對輸入擾動具有魯棒性的神經網絡成為可能。在第二章中,我們開發了一個整體的深度學習框架,通過適當修改損失函數,共同優化神經網絡的魯棒性、穩定性和稀疏性。在第三章中,我們介紹了TabText,這是一種靈活的方法論,它利用大語言模型的力量從表格數據中預測患者流動。最后,在第四章中,我們提出了一種基于數據驅動的方法,通過稀疏化核方法解決多階段隨機優化問題。
大型基礎模型在實現人工智能領域的最新突破中發揮了核心作用。通過同時將數據集和模型規模擴展到前所未有的水平,這些基礎模型在蛋白質結構預測、圖像/視頻生成、代碼生成、聊天機器人等許多領域表現出色。然而,它們的計算和內存成本也急劇增長,使得這些基礎模型在實際應用中的部署變得困難,尤其是在資源受限的邊緣設備上。此外,巨大的訓練成本也顯著阻礙了新基礎模型的發展,并引發了對巨大能源消耗和二氧化碳排放的擔憂。為了解決這些問題,構建有效的模型加速技術對于縮小計算供需之間的差距至關重要。 本論文將涵蓋模型加速的三個重要方面。首先,我們將討論高效表示學習,包括用于高分辨率視覺的EfficientViT(一種新的視覺Transformer架構)和用于條件圖像生成的條件感知神經網絡(一個新的控制模塊)。其次,我們將介紹硬件感知的加速技術,以創建針對不同硬件平臺和效率限制的專用神經網絡。第三,我們將介紹TinyTL,這是一種內存高效的遷移學習技術,用于實現設備上的模型定制。通過我們的設計,我們可以顯著提高深度神經網絡在硬件上的效率,而不損失準確性,使它們更易于訪問并降低其服務成本。例如,我們的模型在A100 GPU上實現了48.9倍的吞吐量提升,同時在零樣本實例分割性能上略微優于最新的模型。在條件圖像生成方面,我們的方法實現了52倍的計算成本降低,而性能沒有下降。
大型基礎模型在許多人工智能領域(包括自然語言處理[1], [2]、計算機視覺[3]–[5]、科學領域的AI應用[6]等)引發了革命性的變化。通過擴大模型規模并在網絡規模的數據集上訓練,這些基礎模型展示了驚人的少樣本/零樣本學習能力,能夠解決復雜的任務。這些卓越的表現引發了在實際應用中使用這些基礎模型的熱潮,將人工智能引入了我們的工作和日常生活。 然而,由于模型規模和計算成本的增加,這些基礎模型的訓練和推理成本非常高昂。例如,GPT-3[7]模型擁有1750億個參數,僅存儲它就已經超出了目前最強大的GPU(如NVIDIA H100 GPU)的容量。這對在云平臺上提供這些模型服務或在邊緣設備上部署它們提出了巨大挑戰。此外,高昂的訓練成本還導致了巨大的能源消耗和二氧化碳排放,引發了對這些AI基礎模型的可持續性問題的擔憂。 在本論文中,我們旨在研究模型加速技術,以提高深度神經網絡的效率,從而應對這一挑戰。我們的方法從三個方面加速深度神經網絡。首先,我們將討論高效的表示學習,旨在構建高效的構建模塊/神經網絡架構,從原始數據中提取有用信息。其次,我們將討論硬件感知的加速方法,旨在為不同的硬件平臺和效率約束定制專用的神經網絡,以獲得精度和硬件效率之間的最佳平衡。第三,我們將討論高效的模型定制,允許內存高效的設備端學習,以提供定制化的AI服務而不犧牲隱私。我們總結了本論文的主要內容如下:
第2章 描述了高效表示學習的技術。內容基于[8]和[9]。首先,Transformer架構是當前大型基礎模型的核心組件。然而,Transformer架構在處理長序列時表現不佳,因為其計算成本隨著輸入序列長度的增加而呈二次增長。我們提出了EfficientViT,這是一種用于高分辨率視覺的新型視覺Transformer架構。它通過僅使用硬件高效的操作,達到了全局感受野和強大的容量。EfficientViT在不同的硬件平臺上提供了顯著的性能提升。其次,添加控制是將圖像/視頻生成模型轉化為人類生產工具的關鍵步驟。我們提出了條件感知神經網絡(CAN),這是一種為圖像生成模型添加控制的新方法。與以往的條件控制方法并行,CAN通過動態操控神經網絡的權重來控制圖像生成過程。CAN在擴散Transformer模型中持續帶來顯著改進。
第3章 介紹了硬件感知的AutoML技術,以有效地為不同的硬件平臺和效率約束定制專用的深度神經網絡。內容基于[10]和[11]。不同的硬件平臺具有不同的屬性(例如并行度、緩存大小、帶寬等)。針對不同的目標硬件平臺和不同的效率約束,我們需要定制化的神經網絡以實現性能與效率之間的最佳平衡。然而,手動為每個案例定制神經網絡是不可擴展的。因此,我們提出了硬件感知的AutoML技術來應對這一挑戰。我們的方法在不同的硬件平臺上提供了顯著的加速,包括手機、CPU、GPU、FPGA等。此外,我們的方法在多個低功耗計算機視覺挑戰賽中獲得了第一名。
第4章 介紹了TinyTL[12],一種用于內存高效的設備端學習技術。TinyTL凍結了權重,只學習內存高效的偏置模塊,因此不需要存儲中間激活。為了保持適應能力,我們引入了一種新的內存高效偏置模塊,即輕量殘差模塊,通過學習小的殘差特征圖來優化特征提取器,僅增加了3.8%的內存開銷。廣泛的實驗表明,TinyTL在與微調整個網絡相比僅有微小的準確性損失的情況下,顯著節省了內存。
在過去的十年里,經典機器學習與現代機器學習之間的差距不斷擴大。現代學習的預測性能不可比擬地更好,但更容易對經典學習進行分析,并保證其安全性、效率、公平性等特性。在本論文中,我探討了通過審慎和戰略性地結合經典技術,是否有可能將這些期望的特性恢復到現代機器學習中。我將經典與現代學習的結合歸納為兩種高級策略:(1)封裝,即通過經典分析技術從現代的、不透明的模型中提取可靠的性能保證,或(2)替換,即從經典的基礎構建現代模型的某些組件,以提高整體的效率、可處理性和/或表達能力。這些努力在機器學習的多個領域帶來了新的進展。本論文的最重要貢獻涉及元分析,這是一種結構化的問答形式,作為循證醫學的基礎。經典元分析技術基于隨機對照試驗,其因果效度受到信任;相比之下,現代回歸模型是在大型觀察性數據庫上訓練的,其因果效度不被信任。我展示了如何在不犧牲效度的情況下將不可信的數據納入元分析中。這涉及對完全共形預測的基本改進,這些改進具有普遍的意義。在一個更聚焦的醫療保健應用中,我推廣了經典的、手工設計的心率變異性統計,使其能夠通過監督學習進行微調,成為深度神經網絡的一部分,從而生成更準確的、生理學知情的模型。我還提出了一些可以在未來機器學習模型和算法中使用的基礎計算原語。第一個是一種算法,可以在O(log T)的并行時間內(近似)運行T步非線性RNN。該算法的關鍵創新在于通過一種證明一致的局部、可并行修正方案,用深度上的非線性替代時間上的非線性。通過這種方式,經典線性動態系統(也稱為狀態空間模型)可以堆疊起來形成快速的非線性序列模型。另一個新的計算原語是在所有正交多項式序列集合上進行基于梯度的優化。這種優化形式與信號處理和優化中的許多不同問題都有聯系。最后,我提出了基于學習理論和優化中廣泛使用的幾何邊界概念的公平性標準,以規避計算的不可處理性。
優化算法是機器學習和統計推斷的基石。隨著大規模數據集的出現,計算挑戰日益增加,迫使人們追求更高效的算法。現代優化技術通常針對特定的機器學習問題進行定制,這些方法利用問題的獨特結構特征,使其比當前應用于這些問題的方法效率更高。另一個關鍵方面是理解所得到估計量的估計精度。在某些情況下,盡管在訓練集上實現精確優化可能不切實際,但某些簡單而有效的啟發式方法在適當的統計框架內可以表現出令人贊嘆的估計精度。 在本文中,我們從優化和統計的角度研究了幾種大規模算法。第2章和第3章研究了兩種針對結構約束的連續優化算法。第2章集中討論了具有圓柱形約束的無界約束的一種廣義Frank-Wolfe方法。第3章則研究了具有少量極點的多面體約束的類似坐標下降(CD)方法。這兩種方法由于對問題結構的敏感性而表現出最先進的性能。 第4章研究了一種帶有解釋器-響應對之間可能存在不匹配的線性回歸變體。我們研究了一種簡單且高效的啟發式方法,并在統計環境中對其估計誤差進行了嚴格分析。 第5章和第6章研究了兩種決策樹算法。第5章研究了最優決策樹的計算,并引入了一種新的分支定界方法,用于具有一般連續特征的最優決策樹。第6章則轉向在足夠雜質減少條件下對CART算法的分析。我們為滿足該條件的信號函數證明了嚴格的誤差界,并討論了一些滿足該條件的函數類。 第7章研究了一種具有形狀約束的密度估計問題。我們提出了一種立方-牛頓法框架用于計算,并研究了有限混合的逼近性質。
隨著機器學習算法在高風險應用中不斷開發和部署,確保其可靠性已變得至關重要。本論文介紹了在機器學習中提高可靠性的算法進展,重點強調兩個關鍵維度:魯棒性和可解釋性。 本論文的第一部分側重于魯棒性,即保證算法在各種數據不確定性下仍能提供穩定和可預測的性能。我們研究了在不同數據不確定性來源下的學習魯棒性,包括基本的統計誤差以及數據噪聲和損壞。我們的研究揭示了這些不同來源如何相互作用并對數據驅動決策產生影響。我們引入了針對特定不確定性來源量身定制的新穎的分布魯棒優化方法。我們的研究結果表明,對一種來源的保護可能會增加對另一種來源的脆弱性。為了解決這個問題,我們開發了分布模糊集,能夠同時提供對所有來源的整體魯棒性。在每種情況下,我們證明了我們的新方法實現了“高效”的魯棒性,在平均性能與樣本外保證之間實現了最佳平衡。我們的新算法被應用于各種場景,包括訓練魯棒神經網絡,在這些場景中顯著優于現有基準。 本論文的第二部分探討了可解釋性,這是高風險環境下決策支持工具的一個關鍵屬性,要求算法能夠為其決策提供可理解的解釋。我們的工作在這一部分的動機來自于數據驅動的個性化患者治療——一種越來越受歡迎的機器學習應用。在這個強化學習問題中,可解釋性至關重要:醫生不能依賴于一個黑箱算法來開具治療方案。我們在理論上引入了學習連續狀態空間動態系統最簡潔離散表示的問題。在患者治療的背景下,這相當于基于患者治療過程中不斷變化的特征來確定治療組。令人驚訝的是,我們在理論上證明,僅從觀察到的歷史樣本路徑數據中就有可能學習到動態系統的最簡潔表示。隨后,我們開發了一種算法,MRL,能夠學習這種簡潔的表示,從而增強可解釋性和可操作性。
在快速發展的機器學習領域,計算能力和數據的激增推動了深度學習成為學術研究的前沿。隨著模型和數據集規模的不斷擴大,越來越多的注意力集中在算法改進上,以應對日益增長的計算和內存需求。此外,由于其在廣泛應用中的成功,該領域見證了多種多樣的神經網絡架構的涌現,每種架構都有其獨特的訓練挑戰。本論文介紹了利用模型結構來提高資源和算法效率的流行神經網絡架構的高效訓練方法。 在第一部分中,我們首先提出了針對隱式深度學習模型和基于變壓器的語言模型的具有較低計算和內存需求的新訓練算法。具體來說,我們首先提出了一種高效的順序訓練方法,用于隱式平衡模型,消除了在現有訓練過程中求解計算昂貴的固定點方程和投影步驟的需求。然后,我們引入了方差減少的零階方法,以僅使用內存高效的推理過程來有效微調大型語言模型。
在第二部分中,我們轉向探索可微分優化在元優化和矢量量化中的訓練增強應用。具體來說,對于前者,我們提出了一種利用可微分凸優化結構來參數化新型一階優化器的方法。對于后者,我們引入了可微分凸優化作為一種改進通過矢量量化層反向傳播的技術。
我們希望這項工作能為研究社區提供新的視角,并作為進一步發展深度學習高效訓練策略的基礎。 在過去的十年中,人工智能(AI)領域取得了前所未有的進展,這些進展使其在自然語言處理和計算機視覺等多個專門任務領域達到了超越人類的表現。深度學習架構創新和計算改進的協同作用促進了AI的飛躍發展 [1], [2]。
直到最近,深度學習領域的研究通常是專門化的,聚焦于特定領域,如自然語言處理(NLP)或視覺。在每個應用領域,研究的目標是開發旨在解決特定應用挑戰的定制神經網絡架構。例如,循環神經網絡(RNN)及其變體用于處理NLP中常見的序列數據。而視覺應用則常使用卷積神經網絡(CNN),因為它們能夠高效處理視覺數據。這種專門化被認為是必要的,因為不同的數據模態需要定制的處理方法來學習其潛在模式。這促使了各個領域中架構類型的激增。
最近,變壓器和隱式深度學習的引入帶來了從開發領域特定架構的轉變。變壓器模型建立在注意力機制的基礎上,這種機制能夠處理序列數據中的長期依賴關系,支持并行處理,并且與反向傳播兼容。尤其是基于變壓器的架構現在在NLP和視覺任務中都成為了最先進模型的標準,設立了性能基準。隱式深度學習則摒棄了將神經網絡視為顯式、前饋層堆疊的概念,而是通過一組輸出應滿足的條件隱式地表示它們。這種范式提供了一種具有多種實例的表達模型類別,包括神經常微分方程、可微優化和深度平衡模型。具體而言,文獻[3]中展示了隱式模型在許多流行深度學習架構中的推廣,并在各種示例應用中表現出色。
新興的、更具表現力的深度學習架構突顯了開發高效優化策略以釋放其全部性能潛力的重要性。更具體地說,針對不同架構類型開發優化策略是高效模型訓練的基礎,它能有效地從數據中學習。這強調了需要不斷改進訓練技術和架構設計,以充分實現深度學習技術的潛力。
本論文為應對最先進深度學習架構的獨特需求,貢獻了開發定制訓練策略的更廣泛努力。第一部分中,我們首先審視了現有隱式深度學習和變壓器模型訓練方法的資源密集特性,并提出了新算法以克服計算和內存需求的障礙。第二部分我們重點探討如何利用特定的隱式深度學習實例——可微優化作為一種技術來增強元優化和矢量量化中的訓練過程。
在這一部分中,我們關注流行架構類型在訓練中面臨的挑戰,并提出旨在緩解這些特定挑戰的優化算法。具體來說,我們旨在克服現有隱式深度學習和基于變壓器的語言模型訓練方法中禁止性的計算和內存需求。
我們強調了通過固定點方程描述的隱式模型的現有訓練方法的缺點:這種端到端優化方案利用了計算繁重的隱式微分和投影步驟。我們提出了一種新的順序、分塊訓練算法,適用于上三角隱式深度模型,從而減輕了隱式微分和投影步驟的需求。
我們解決了在微調基于變壓器的語言模型(LM)時一階方法的大內存需求。基于零階(ZO)方法僅使用內存高效的推理過程來估計梯度的觀察,我們將ZO方法與方差減少技術結合,以增強基于推理的LM微調的穩定性和收斂性。我們的實驗表明,相比于現有的ZO微調基準,我們的方法在保持顯著較低內存占用的同時,性能也有了持續的改善。
在第二部分中,我們集中探討了如何應用可微優化來改進元優化和矢量量化中的學習過程。
我們展示了如何利用凸優化來推廣許多現有的一階更新規則。隨后我們提出了一種新的數據驅動優化算法設計方法,利用可微凸優化(DCO)。這種利用以往優化經驗的方法可以提出新的更新規則,能夠高效解決來自相同基礎問題類的新優化任務。通過示例實驗,我們展示了DCO優化器在實際應用中能夠超越流行的一階方法。
我們利用DCO來緩解矢量量化(VQ)層帶來的訓練挑戰。嵌入VQ的模型在圖像和語音生成等多個應用中顯示出令人印象深刻的結果。VQ作為一種參數化的K均值算法,在前向傳遞中使用單個代碼本向量對輸入進行量化。盡管強大,該技術面臨實際挑戰,包括代碼本坍塌、不可微性和有損壓縮。為緩解上述問題,我們提出了軟凸量化(SCQ),作為VQ的直接替代。SCQ像一個可微凸優化(DCO)層一樣工作:在前向傳遞中,我們求解出量化輸入的最佳凸組合代碼本向量。在反向傳遞中,我們利用前向解決方案的最優性條件進行微分。隨后,我們介紹了SCQ優化的可擴展放松,并在CIFAR-10 [4]、GTSRB [5]和LSUN [6]數據集上驗證了其有效性。我們訓練了強大的SCQ自動編碼器模型,這些模型顯著超越了匹配的基于VQ的架構,在圖像重建和代碼本使用方面表現出數量級的提升,同時保持了可比的量化運行時間。
本論文的核心目標是通過提高深度學習模型的標簽和訓練效率來增強深度學習的實用性。為此,我們研究了基于信息論原理的數據子集選擇技術,特別是主動學習和主動采樣。主動學習提高了標簽效率,而主動采樣提高了訓練效率。監督式深度學習模型通常需要大量的帶標簽數據進行訓練。標簽獲取可能既昂貴又耗時,且訓練大型模型資源密集型,這限制了其在學術研究和“大科技”公司之外的應用。深度學習中現有的數據子集選擇方法通常依賴于啟發式方法或缺乏一個原理化的信息論基礎。相比之下,本論文檢查了數據子集選擇的幾種目標及其在深度學習中的應用,力求采用一種由信息論啟發的更原理化的方法。
我們首先在單次前向傳播的深度神經網絡中區分了認知不確定性和隨機不確定性,這提供了有用的直覺和洞見,關于不同形式的不確定性及其對數據子集選擇的相關性。然后,我們提出并研究了在(貝葉斯)深度學習中進行主動學習和數據子集選擇的各種方法。最后,我們將各種現有和提出的方法與在權重或預測空間中信息量的近似聯系起來。
支撐這項工作的是一個原理化且實用的信息論量符號,包括隨機變量和觀察到的結果。這篇論文展示了從統一視角出發工作的好處,并強調了我們的貢獻對深度學習實際應用潛在影響的可能性。
//www.ccf.org.cn/Focus/2022-12-08/781244.shtml
近年來,深度學習在許多應用領域取得了巨大成功。隨著深度學習模型規模 的不斷增大,單一計算設備已遠遠無法滿足深度學習模型訓練的算力需求。為了 提供強大的算力,利用數據中心內的海量服務器進行分布式深度學習訓練已經非 常普遍。然而,為了保證分布式訓練結果與單機訓練結果的一致性,分布式深度 學習訓練系統的不同節點間需要頻繁地同步模型參數。許多研究工作和本文的研 究都發現,參數同步所帶來的網絡通信開銷已經成為限制分布式深度學習訓練系 統性能的重要因素。
本文通過對參數同步的通信現狀進行分析,歸納出分布式深度學習訓練面臨 的三項主要挑戰:(1)大規模分布式訓練的參數同步耗時長;(2)模型計算和參 數傳輸之間存在依賴關系;(3)分布式訓練性能受限于慢節點的訓練速度。針對 上述挑戰,本文從網絡拓撲優化和流量調度等方面入手,優化數據中心在支持分 布式深度學習訓練時的網絡通信性能。本文的主要研究內容和貢獻總結如下:
(1)提出了層次化參數同步算法 HiPS,并研究了多種參數同步算法和網絡拓 撲組合對參數同步速度的影響。傳統的扁平化參數同步算法往往存在帶寬競爭或 通信時延累積問題。通過分層同步,HiPS 算法可以在減少參數同步流量的同時避 免上述問題。本文還基于參數同步算法的通信特點對網絡拓撲進行了優化。理論 分析和仿真測試均發現,由于服務器帶寬更高、負載均衡性能更優并且高效支持 RoCE 協議,HiPS+BCube 組合可以顯著降低參數同步耗時。
(2)提出了基于深度學習模型感知的網絡流量調度方案 Geryon。現有深度學 習框架在傳輸多層參數時未考慮其消耗順序,導致模型計算難以和參數同步重疊。 為了實現全網規模參數傳輸調度,Geryon 根據模型計算順序為參數同步流量分配 優先級,并借助全網配置的嚴格優先級調度策略保證較早被消耗的參數更快到達 接收端。對于多種深度學習模型,Geryon 均取得了顯著的端到端訓練性能提升。
(3)提出了面向異構分布式訓練的網絡流量調度方案 CEFS。現有深度學習框 架在向多個計算節點傳輸參數時未考慮其計算性能,因此慢節點不得不與其他節 點同時開始計算。CEFS 在參數傳輸調度的基礎上,還優先調度慢節點的參數同步 流量,以使其更早地觸發前向計算,從而緩解慢節點對分布式系統的阻塞。實驗 結果表明,CEFS 可大幅提高慢節點的計算速度,并顯著提升端到端訓練性能。
我們探索機器學習(ML)和因果推理之間的關系。通過相互借鑒,我們專注于改進每一個方面。機器學習已經成功地應用于許多問題,但由于缺乏強有力的理論保證,導致了許多意想不到的失敗。當應用于不同的分布時,在訓練分布上表現良好的模型往往會崩潰;微小的擾動可以“欺騙”訓練好的模型,并極大地改變它的預測;訓練算法中的任意選擇會導致截然不同的模型;等等。另一方面,雖然因果推理方法的發展已經取得了巨大的進步,有很強的理論保證,但現有的方法通常不能應用于實踐,因為它們假設有大量的數據。研究ML和因果推理的交集,我們直接解決了ML中缺乏魯棒性的問題,并提高了因果推理技術的統計效率。
本論文工作背后的動機是改進用于指導決策的預測模型和因果模型的構建方法。自始至終,我們主要關注醫療健康上下文中的決策制定。在ML的因果關系方面,我們使用ML工具和分析技術來開發統計上有效的因果模型,可以指導臨床醫生在兩種治療方法之間選擇。在ML的因果關系方面,我們研究如何使用產生觀測數據的因果機制知識來有效地正則化預測模型,而不引入偏差。在臨床環境中,我們展示了如何使用因果知識來建立穩健和準確的模型來預測傳染性感染的傳播。在非臨床環境中,我們研究了如何使用因果知識來訓練在圖像分類中對分布轉移具有魯棒性的模型。
機器學習是一種從數據中提取預測模型,從而能夠將預測泛化到未觀察數據的技術。根據已知數據集選擇良好模型的過程需要進行優化。具體地說,優化過程在約束集中生成一個變量來最小化目標。這個過程包含了包括神經網絡訓練在內的許多機器學習管道,這將是我們在本文中進行理論分析的主要試驗場。在各種優化算法中,梯度方法因其高維可擴展性和反向傳播的自然局限性而成為深度學習中的主導算法。然而,盡管基于梯度的算法很受歡迎,但我們從理論的角度對機器學習環境中的這種算法的理解似乎還遠遠不夠。一方面,在現有的理論框架內,大多數上下界是封閉的,理論問題似乎得到了解決。另一方面,理論分析很難產生比實踐者發現的經驗更快的算法。本文回顧了梯度法的理論分析,指出了理論與實踐的差異。然后,我們解釋了為什么會發生不匹配,并通過發展由經驗觀察驅動的理論分析,提出了一些初始解決方案。
//dspace.mit.edu/handle/1721.1/143318
機器學習是一種變革性的計算工具,它正在革新許多技術和科學應用。然而,最近在人工智能和機器學習方面的成功,以及隨之而來的模型的廣泛部署,已經改變了經典的機器學習管道。首先,可用數據的絕對規模——在數量和維度上——已經爆炸。此外,現代機器學習架構具有指數級的設計選擇和超參數,但它們都是使用通用的隨機梯度方法進行優化的。這突出了自適應梯度方法的需要,該方法在沒有事先知道實例的情況下充分執行。接著并期望它們即使在不分布的輸入中也能提供良好的預測——這強調了對可靠模型的需要。最后,隨著我們收集越來越多的用戶數據,我們希望在向公眾發布這些模型時,基于這些數據訓練的模型不會損害訓練集中存在的個人的隱私。在這篇論文中,我們證明了解決這些新出現的問題需要優化方面的基本進步。更具體地說,我們首先提出了理解自適應梯度算法的最優性的新的理論結果,并展示了在基于梯度的采樣器的背景下自適應方法的實際用例。然后,我們提出了可擴展的最小最大優化方法,以有效地解決魯棒目標。最后,我們開發了私有優化方法,在更嚴格的隱私要求下最優地學習,以及自適應方法,在簡單的實例上增加“適當數量的噪聲”并顯著降低隱私的代價。