亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

機器學習是一種變革性的計算工具,它正在革新許多技術和科學應用。然而,最近在人工智能和機器學習方面的成功,以及隨之而來的模型的廣泛部署,已經改變了經典的機器學習管道。首先,可用數據的絕對規模——在數量和維度上——已經爆炸。此外,現代機器學習架構具有指數級的設計選擇和超參數,但它們都是使用通用的隨機梯度方法進行優化的。這突出了自適應梯度方法的需要,該方法在沒有事先知道實例的情況下充分執行。接著并期望它們即使在不分布的輸入中也能提供良好的預測——這強調了對可靠模型的需要。最后,隨著我們收集越來越多的用戶數據,我們希望在向公眾發布這些模型時,基于這些數據訓練的模型不會損害訓練集中存在的個人的隱私。在這篇論文中,我們證明了解決這些新出現的問題需要優化方面的基本進步。更具體地說,我們首先提出了理解自適應梯度算法的最優性的新的理論結果,并展示了在基于梯度的采樣器的背景下自適應方法的實際用例。然后,我們提出了可擴展的最小最大優化方法,以有效地解決魯棒目標。最后,我們開發了私有優化方法,在更嚴格的隱私要求下最優地學習,以及自適應方法,在簡單的實例上增加“適當數量的噪聲”并顯著降低隱私的代價。

//searchworks.stanford.edu/view/14053711

付費5元查看完整內容

相關內容

 (StanfordUniversity)位于加利福尼亞州,臨近舊金山,占地35平方公里,是美國面積第二大的大學。它被公認為世界上最杰出的大學之一,相比美國東部的常春藤盟校,特別是哈佛大學、耶魯大學,斯坦福大學雖然歷史較短,但無論是學術水準還是其他方面都能與常春藤名校相抗衡。斯坦福大學企業管理研究所和法學院在美國是數一數二的,美國最高法院的9個大法官,有6個是從斯坦福大學的法學院畢業的。

在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。

本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。

我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。

//www.zhuanzhi.ai/paper/c5e7a9742d6a6313d63c5976499166dc

付費5元查看完整內容

隨著機器學習模型越來越多地用于做出涉及人類的重大決策,重要的是,這些模型不能因為種族和性別等受保護的屬性而歧視。然而,模型持有人并不是受到歧視性模型傷害的首當其沖的人,因此模型持有人修復歧視性模型的自然動機很少。因此,如果其他實體也能發現或減輕這些模型中的不公平行為,將對社會有益。只需要對模型進行查詢訪問的黑盒方法非常適合這個目的,因為它們可以在不知道模型的全部細節的情況下執行。

在這篇論文中,我考慮了三種不同形式的不公平,并提出了解決它們的黑盒方法。第一個是代理使用,模型的某些組件是受保護屬性的代理。其次是個體公平性的缺乏,這使模型不應該做出任意決定的直覺觀念形式化。最后,模型的訓練集可能不具有代表性,這可能導致模型對不同的保護組表現出不同程度的準確性。對于這些行為中的每一個,我提出使用一個或多個方法來幫助檢測模型中的此類行為或確保缺乏此類行為。這些方法只需要對模型的黑箱訪問,即使模型持有者不合作,它們也能有效地使用。我對這些方法的理論和實驗分析證明了它們在這種情況下的有效性,表明它們是有用的技術工具,可以支持對歧視的有效回應。

付費5元查看完整內容

幾十年來,不斷增長的計算能力一直是許多技術革命背后的推動力,包括最近在人工智能方面的進步。然而,由于集成電路進程規模的放緩,對于系統架構師來說,要繼續滿足當今應用不斷增長的計算需求,他們現在必須采用具有專門加速器的異構系統。

然而,建構這些加速器系統是極其昂貴和耗時的。首先,硬件的開發周期是出了名的長,這使得它很難跟上算法的快速發展。同時,現有的編譯器無法導航由新型加速器架構暴露的棘手映射空間。最后算法的設計通常沒有將硬件效率作為關鍵指標,因此,在設計高效硬件方面提出了額外的挑戰。

本文解決了聯合設計和優化算法、調度和加速硬件設計的重大挑戰。我們的目標是通過三管齊下的方法來推進最先進的技術: 開發從高層抽象自動生成加速器系統的方法和工具,縮短硬件開發周期; 適應機器學習和其他優化技術,以改進加速器的設計和編譯流程; 以及協同設計算法和加速器,以開發更多的優化機會。

本文的目標應用領域是深度學習,它在計算機視覺、神經語言處理等廣泛的任務中取得了前所未有的成功。隨著智能設備的普及,可以預見,深度學習將成為我們日常生活中的主要計算需求。因此,本文旨在通過硬件加速進行端到端系統優化,釋放前沿深度學習算法的普遍采用,改變生活的各個方面。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-202.html

付費5元查看完整內容

機器學習正在醫療健康等各種關鍵應用得到實施。為了能夠信任機器學習模型,并在它出現故障時修復它,能夠解釋它的決策是很重要的。例如,如果一個模型在特定的子群體(性別、種族等)上的表現很差,找出原因并解決它是很重要的。在本文中,我們研究了現有可解釋性方法的不足,并介紹了新的ML可解釋性算法,旨在解決一些不足。數據是訓練機器學習模型的材料。如果不返回最初訓練ML模型的數據,就不可能解釋ML模型的行為。一個基本的挑戰是如何量化每個數據源對模型性能的貢獻。例如,在醫療健康和消費市場,有人提出個人應因其產生的數據而得到補償,但對個人數據的公平估值尚不清楚。在本文中,我們討論了數據公平價值評估的原則框架; 也就是說,給定一個學習算法和一個性能度量來量化結果模型的性能,我們試圖找到單個數據的貢獻。本論文分為3個部分,機器學習的可解釋性和公平性,數據估值,以及用于醫療健康的機器學習——所有這些都被一個共同的目標聯系在一起,即使機器學習的使用對人類的福祉更負責。

//searchworks.stanford.edu/view/13874839

付費5元查看完整內容

強化學習(RL)智能體需要探索他們的環境,以便通過試錯學習最優策略。然而,當獎勵信號稀疏,或當安全是一個關鍵問題和某些錯誤是不可接受的時候,探索是具有挑戰性的。在本論文中,我們通過修改智能體解決的潛在優化問題,激勵它們以更安全或更有效的方式探索,來解決深度強化學習設置中的這些挑戰。

在這篇論文的第一部分,我們提出了內在動機的方法,在獎勵稀少或缺乏的問題上取得進展。我們的第一種方法使用內在獎勵來激勵智能體訪問在學習動力學模型下被認為是令人驚訝的狀態,并且我們證明了這種技術比單純探索更好。我們的第二種方法使用基于變分推理的目標,賦予個體不同的多種技能,而不使用特定任務的獎勵。我們證明了這種方法,我們稱為變分選擇發現,可以用來學習運動行為的模擬機器人環境。

在論文的第二部分,我們重點研究了安全勘探中存在的問題。在廣泛的安全強化學習研究的基礎上,我們提出將約束的RL標準化為安全探索的主要形式; 然后,我們繼續開發約束RL的算法和基準。我們的材料展示按時間順序講述了一個故事:我們首先介紹約束策略優化(Constrained Policy Optimization, CPO),這是約束深度RL的第一個算法,在每次迭代時都保證接近約束的滿足。接下來,我們開發了安全健身基準,它讓我們找到CPO的極限,并激勵我們向不同的方向前進。最后,我們發展了PID拉格朗日方法,其中我們發現對拉格朗日原-對偶梯度基線方法進行小的修改,可以顯著改善求解Safety Gym中約束RL任務的穩定性和魯棒性。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-34.html

付費5元查看完整內容

機器學習中部分非凸和隨機優化算法研究

機器學習是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算 法復雜度理論等多門學科。算法理論與應用是機器學習中最為重要的核心之一。其中一階優化算法因其簡單有效性,而被廣泛研究與應用。另一方面由于近年來 數據規模的不斷增大,數據集的規模使得二階或更高階的算法應用受阻。這使得 一階算法進一步成為機器學習的研究重點。隨著機器學習中問題模型的不斷擴張, 例如深度學習,非凸問題和模型也激發了學者們廣泛的研究興趣。這使得研究非 凸算法顯得更加急迫。而且由于數據集的龐大性,確定算法難以逃出鞍點,因此 隨機算法受到了史無前例的關注。本文主要結果可以歸納如下:

一、研究了三種 ADMM 算法。第一個 ADMM 的工作是關于一般的 ADMM 收 斂性分析統一框架。在此框架下,很多現有的 ADMM 收斂性分析可以歸納進該 框架。除了現有的 ADMM 算法,根據統一框架還能夠設計出新的 ADMM 算法。第二個和第三個 ADMM 都是針對結構非凸優化問題提出的:一個是針對泛 ?q 正 則化約束優化問題,而另一個是針對 ?1?2 正則化約束優化。給出了后面兩種非凸 ADMM 算法的收斂性分析,所得到的結果可以指導用戶選擇合適的超參數。

二、研究了兩種一階優化領域常用的非精確算法。第一種是非精確的加速算 法。相較于之前的研究,該算法的假設更為真實。而且還囊括了一大類隨機噪聲 的情況,使得算法更為實用。而機器學習中的一階催化劑算法由于是該加速算法 帶上了隨機噪聲,因此可以看做本算法的特例。在第二部分給出了非精確非凸算 法的收斂性框架理論。可以被廣泛應用到各種一階非凸算法。

三、證明了在有界和無界延遲以及隨機和確定性塊選擇下異步并行梯度下降法 的收斂結果。這些結果不需要迄今為止絕大多數其他工作中出現的獨立性假設。這是由于本文使用了 Lyapunov 函數技術,可直接處理延遲,而不是像之前的工作 一樣僅僅將它們建模為噪聲。

四、分析了馬爾可夫鏈隨機梯度下降法,其中樣本采用了某個馬爾可夫鏈的軌跡。主要貢獻之一是給出了馬爾可夫鏈隨機梯度下降法的在凸情況下的非遍歷收 斂分析。結果然后擴展到不精確的格式。這種分析使得能夠建立不可逆有限狀態 馬爾可夫鏈和非凸最小化問題的收斂性。這樣的結果適用于不知道具體的概率分 布,但可以通過馬爾可夫鏈進行采樣的情形。

付費5元查看完整內容

近年來,深度學習徹底改變了機器學習和計算機視覺。許多經典的計算機視覺任務(例如目標檢測和語義分割),傳統上非常具有挑戰性,現在可以使用監督深度學習技術來解決。雖然監督學習是一個強大的工具,當標簽數據是可用的,并考慮的任務有明確的輸出,這些條件并不總是滿足。在這種情況下,生成建模給出了一個很有前途的方法。與純粹的判別型模型相比,生成型模型可以處理不確定性,甚至在沒有標簽訓練數據的情況下也可以學習強大的模型。然而, 雖然目前的方法生成建模取得可喜的成果, 他們遭受兩個方面,限制他們的表現力: (i) 為圖像數據建模的一些最成功的方法不再使用優化算法來訓練,而是使用其動力學尚未被很好理解的算法,(ii) 生成模型往往受到輸出表示的內存需求的限制。我們在本文中解決了這兩個問題:在第一部分中,我們介紹了一個理論,它使我們能夠更好地理解生成式對抗網絡(GANs)的訓練動力學,這是生成式建模最有前途的方法之一。我們通過引入可解析理解的GAN訓練的最小示例問題來解決這個問題。隨后,我們逐漸增加了這些示例的復雜性。通過這樣做,我們對GANs的訓練動力學有了新的認識,并推出了新的正則化器,也適用于一般的GANs。新的正則化器使我們能夠——第一次——以百萬像素的分辨率訓練GAN,而不必逐漸增加訓練分布的分辨率。在本論文的第二部分,我們考慮生成模型的三維輸出表示和三維重建技術。通過將隱式表示法引入深度學習,我們能夠在不犧牲表現力的情況下將許多2D領域的技術擴展到3D領域。

//publikationen.uni-tuebingen.de/xmlui/handle/10900/106074

付費5元查看完整內容

凸優化作為一個數學問題已經被研究了一個多世紀,并在許多應用領域的實踐中應用了大約半個世紀,包括控制、金融、信號處理、數據挖掘和機器學習。本文主要研究凸優化的幾個問題,以及機器學習的具體應用。

付費5元查看完整內容

在過去的20年里,基因組學、神經科學、經濟學和互聯網服務等許多領域產生了越來越多的大數據集,這些數據集有高維、大樣本,或者兩者兼之。這為我們從數據中檢索和推斷有價值的信息提供了前所未有的機會。同時,也對統計方法和計算算法提出了新的挑戰。一方面,我們希望建立一個合理的模型來捕獲所需的結構,并提高統計估計和推斷的質量。另一方面,面對越來越大的數據集,計算可能成為一個巨大的障礙,以得出有意義的結論。這篇論文站在兩個主題的交叉點,提出了統計方法來捕獲所需的數據結構,并尋求可擴展的方法來優化計算非常大的數據集。我們提出了一種可擴展的靈活框架,用于利用lasso/elastic-net解決大規模稀疏回歸問題; 提出了一種可伸縮的框架,用于在存在多個相關響應和其他細微差別(如缺失值)的情況下解決稀疏縮減秩回歸問題。分別在snpnet和multiSnpnet R包中以PLINK 2.0格式為基因組數據開發了優化的實現。這兩種方法在超大和超高維的英國生物樣本庫研究中得到了驗證,與傳統的預測建模方法相比有了顯著的改進。此外,我們考慮了一類不同的高維問題,異質因果效應的估計。與監督學習的設置不同,這類問題的主要挑戰在于,在歷史數據中,我們從未觀察到硬幣的另一面,因此我們無法獲得處理之間真正差異的基本真相。我們提出適應非參數統計學習方法,特別是梯度增強和多元自適應回歸樣條,以估計處理效果的預測器可用。實現被打包在一個R包causalLearning中。

付費5元查看完整內容
北京阿比特科技有限公司