亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

機器學習中部分非凸和隨機優化算法研究

機器學習是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算 法復雜度理論等多門學科。算法理論與應用是機器學習中最為重要的核心之一。其中一階優化算法因其簡單有效性,而被廣泛研究與應用。另一方面由于近年來 數據規模的不斷增大,數據集的規模使得二階或更高階的算法應用受阻。這使得 一階算法進一步成為機器學習的研究重點。隨著機器學習中問題模型的不斷擴張, 例如深度學習,非凸問題和模型也激發了學者們廣泛的研究興趣。這使得研究非 凸算法顯得更加急迫。而且由于數據集的龐大性,確定算法難以逃出鞍點,因此 隨機算法受到了史無前例的關注。本文主要結果可以歸納如下:

一、研究了三種 ADMM 算法。第一個 ADMM 的工作是關于一般的 ADMM 收 斂性分析統一框架。在此框架下,很多現有的 ADMM 收斂性分析可以歸納進該 框架。除了現有的 ADMM 算法,根據統一框架還能夠設計出新的 ADMM 算法。第二個和第三個 ADMM 都是針對結構非凸優化問題提出的:一個是針對泛 ?q 正 則化約束優化問題,而另一個是針對 ?1?2 正則化約束優化。給出了后面兩種非凸 ADMM 算法的收斂性分析,所得到的結果可以指導用戶選擇合適的超參數。

二、研究了兩種一階優化領域常用的非精確算法。第一種是非精確的加速算 法。相較于之前的研究,該算法的假設更為真實。而且還囊括了一大類隨機噪聲 的情況,使得算法更為實用。而機器學習中的一階催化劑算法由于是該加速算法 帶上了隨機噪聲,因此可以看做本算法的特例。在第二部分給出了非精確非凸算 法的收斂性框架理論。可以被廣泛應用到各種一階非凸算法。

三、證明了在有界和無界延遲以及隨機和確定性塊選擇下異步并行梯度下降法 的收斂結果。這些結果不需要迄今為止絕大多數其他工作中出現的獨立性假設。這是由于本文使用了 Lyapunov 函數技術,可直接處理延遲,而不是像之前的工作 一樣僅僅將它們建模為噪聲。

四、分析了馬爾可夫鏈隨機梯度下降法,其中樣本采用了某個馬爾可夫鏈的軌跡。主要貢獻之一是給出了馬爾可夫鏈隨機梯度下降法的在凸情況下的非遍歷收 斂分析。結果然后擴展到不精確的格式。這種分析使得能夠建立不可逆有限狀態 馬爾可夫鏈和非凸最小化問題的收斂性。這樣的結果適用于不知道具體的概率分 布,但可以通過馬爾可夫鏈進行采樣的情形。

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

凸優化提供了一個統一的框架,以獲得數據分析問題的數值解決方案,并在充分理解的計算成本下,以可證明的統計保證正確性。

為此,本課程回顧了大數據之后在凸優化和統計分析方面的最新進展。我們提供了新興的凸數據模型及其統計保證的概述,描述了可擴展的數值求解技術,如隨機,一階和原對偶方法。在整個課程中,我們將數學概念運用到大規模的應用中,包括機器學習、信號處理和統計。

在整個課程中,我們將數學概念運用到大規模的應用中,包括機器學習、信號處理和統計。

//www.epfl.ch/labs/lions/teaching/ee-556-mathematics-of-data-from-theory-to-computation/

本課程包括以下主題

第一講:緒論。模型和數據的作用。最大似然公式。估計和預測的樣本復雜度界限。

第二講:計算的作用。優化算法的挑戰。最優測度。結構優化。梯度下降法。梯度下降的收斂速度。

第三講:收斂速度的最優性。加速梯度下降法。全部復雜性的概念。隨機梯度下降法。

第四講:簡潔的信號模型。壓縮傳感。估計和預測的樣本復雜度界限。非光滑優化對優化算法的挑戰。

第五講:近端算子介紹。近端梯度方法。線性最小化神諭。約束優化的條件梯度法。

第六講:時間-數據的權衡。方差減少以改進權衡。

第七講:深度學習的數學介紹。雙下降曲線和過度參數化。隱式規則化。

第八講:非凸優化中的結構。最優的措施。逃避鞍點。自適應梯度方法。

第九講:對抗性機器學習和生成式對抗性網絡(GANs)。Wasserstein GAN。極大極小優化的難點。

第十講: 原對偶優化- i:極大極小問題的基礎。梯度下降-上升法的陷阱。

第十一講: 原對偶優化- ii:額外梯度法。Chambolle-Pock算法。隨機非方法。

第十二講:原對偶III:拉格朗日梯度法。拉格朗日條件梯度法。

付費5元查看完整內容

矩陣在許多理論計算機科學和機器學習問題中起著至關重要的作用。在這篇論文中,我們將研究對矩陣更好的理解,以展望這些應用。我們的見解對許多老的、經過充分研究的算法問題產生了改進。在本文中,我們從三個方面來研究矩陣。我們首先考慮它們在優化中的作用。我們研究了若干矩陣優化問題,并提出了線性規劃、經驗風險最小化、常微分方程、深度神經網絡的新解和結果。接下來我們考慮隨機矩陣是如何集中的。具體地,我們將一些標量chernoff型濃度不等式和spencer型差異定理推廣到矩陣上。最后,我們開發了矩陣問題的新算法。這些問題大致可分為兩類,即矩陣分解問題和結構恢復問題。

在第一類中,我們針對各種低秩矩陣分解問題提出了一些新的算法。在第二類中,我們給出了一些有結構矩陣的恢復任務的新算法。我們為壓縮感知任務設計了矩陣和相應的算法,并給出了稀疏傅里葉變換問題的快速算法,該問題可以看作是一個不能自由選擇矩陣的稀疏恢復問題。我們現在更詳細地描述我們的貢獻。

付費5元查看完整內容

基于最近關于非凸優化算法在訓練深度神經網絡和數據分析中的其他優化問題中的應用,我們對非凸優化算法全局性能保證的最新理論成果進行了綜述。我們從經典的論證開始,證明一般的非凸問題不可能在合理的時間內得到有效的解決。然后,我們給出了一個可以通過盡可能多地利用問題的結構來尋找全局最優解的問題列表。處理非凸性的另一種方法是將尋找全局最小值的目標放寬到尋找一個平穩點或局部最小值。對于這種設置,我們首先給出確定性一階方法收斂速度的已知結果,然后是最優隨機和隨機梯度格式的一般理論分析,以及隨機一階方法的概述。然后,我們討論了相當一般的一類非凸問題,如α-弱擬凸函數的極小化和滿足Polyak- Lojasiewicz條件的函數,這些函數仍然可以得到一階方法的理論收斂保證。然后我們考慮非凸優化問題的高階、零階/無導數方法及其收斂速度。

付費5元查看完整內容

在生態學、流行病學和天文學等許多應用領域中,仿真模型被用來研究發生在自然界中的復雜現象。通常,這些模型的似然函數的分析形式要么是不可用的,要么是太昂貴而無法評估,從而使統計推斷復雜化。無概率推理(LFI)方法,如近似貝葉斯計算(ABC),基于用模型的正演模擬代替難以處理的似然評估,已成為對仿真模型進行推理的一種流行方法。然而,當前的LFI方法在計算和統計方面存在一些挑戰。特別是,標準的ABC算法需要大量的仿真,這使得它們在前向仿真代價昂貴的情況下不可行。

本文討論了計算代價高的模型的無概率推理。主要貢獻是基于高斯過程代理模型的LFI一致性框架。GP模型允許對仿真模型輸出的平滑假設進行編碼,以減少所需的仿真量。此外,由于模擬預算有限,所產生的基于模型的后驗逼近的不確定性可以被量化。我們提出貝葉斯實驗設計策略來選擇評估地點,以使計算成本最小化。順序設計(每次選擇一個模擬)和批處理策略(允許利用并行計算)都是推導出來的。除了LFI場景外,本文提出的方法也適用于可能性可以評估但代價昂貴的情況。

本質上,所提出的框架可以被視為概率數值方法的LFI對等物,如貝葉斯優化,用于優化昂貴的目標函數,貝葉斯求積,用于計算昂貴函數的積分。我們通過大量的經驗模擬證明了所提出的LFI方法的優點。文中還對所提算法進行了理論分析,并討論了它們與其他GP代理方法的關系。

//aaltodoc.aalto.fi/handle/123456789/46310

付費5元查看完整內容

近年來,深度學習徹底改變了機器學習和計算機視覺。許多經典的計算機視覺任務(例如目標檢測和語義分割),傳統上非常具有挑戰性,現在可以使用監督深度學習技術來解決。雖然監督學習是一個強大的工具,當標簽數據是可用的,并考慮的任務有明確的輸出,這些條件并不總是滿足。在這種情況下,生成建模給出了一個很有前途的方法。與純粹的判別型模型相比,生成型模型可以處理不確定性,甚至在沒有標簽訓練數據的情況下也可以學習強大的模型。然而, 雖然目前的方法生成建模取得可喜的成果, 他們遭受兩個方面,限制他們的表現力: (i) 為圖像數據建模的一些最成功的方法不再使用優化算法來訓練,而是使用其動力學尚未被很好理解的算法,(ii) 生成模型往往受到輸出表示的內存需求的限制。我們在本文中解決了這兩個問題:在第一部分中,我們介紹了一個理論,它使我們能夠更好地理解生成式對抗網絡(GANs)的訓練動力學,這是生成式建模最有前途的方法之一。我們通過引入可解析理解的GAN訓練的最小示例問題來解決這個問題。隨后,我們逐漸增加了這些示例的復雜性。通過這樣做,我們對GANs的訓練動力學有了新的認識,并推出了新的正則化器,也適用于一般的GANs。新的正則化器使我們能夠——第一次——以百萬像素的分辨率訓練GAN,而不必逐漸增加訓練分布的分辨率。在本論文的第二部分,我們考慮生成模型的三維輸出表示和三維重建技術。通過將隱式表示法引入深度學習,我們能夠在不犧牲表現力的情況下將許多2D領域的技術擴展到3D領域。

//publikationen.uni-tuebingen.de/xmlui/handle/10900/106074

付費5元查看完整內容

非凸優化是機器學習中的基礎問題,迭代優化方法缺乏理論支撐。普林斯頓大學助理教授Yuxin Chen一直從事非凸優化方面的研究,這份報告講述了最近關于非凸統計估計的故事,它們強調了統計模型在實現有效的非凸優化中的重要作用。

Yuxin Chen 目前是普林斯頓大學電氣工程系的助理教授。在加入普林斯頓大學之前,他是斯坦福大學統計系的博士后學者,并在斯坦福大學完成了電子工程博士學位。他的研究興趣包括高維統計、凸與非凸優化、統計學習和信息論。他獲得了2019年AFOSR青年研究員獎。

//www.princeton.edu/~yc5/

非凸優化與統計學

近年來,利用非凸優化方法來解決統計估計和學習問題的研究工作層出不窮。由于非凸優化算法易受虛假局部極小值的影響,傳統工作通常對其持悲觀看法,而簡單的迭代方法,如梯度下降法,在實踐中已經取得了顯著的成功。然而,直到最近,這些理論基礎在很大程度上一直缺乏。這個報告展示了兩個最近關于非凸統計估計的故事,它們強調了統計模型在實現有效的非凸優化中的重要作用。第一個故事是關于一個相位檢索問題的隨機初始化非凸方法:即使沒有仔細的初始化,像梯度下降這樣的簡單算法也可以在對數迭代次數內找到全局解。第二個故事是關于非凸低秩矩陣補全的不確定性量化。我們在非凸估計的基礎上開發了一個去偏估計器,使未知矩陣缺失項的置信區間能得到最優構造。所有這些都是通過一個“一留一出”的統計分析框架實現的,該框架在處理和解耦復雜的統計依賴方面非常強大。

付費5元查看完整內容

在過去的20年里,基因組學、神經科學、經濟學和互聯網服務等許多領域產生了越來越多的大數據集,這些數據集有高維、大樣本,或者兩者兼之。這為我們從數據中檢索和推斷有價值的信息提供了前所未有的機會。同時,也對統計方法和計算算法提出了新的挑戰。一方面,我們希望建立一個合理的模型來捕獲所需的結構,并提高統計估計和推斷的質量。另一方面,面對越來越大的數據集,計算可能成為一個巨大的障礙,以得出有意義的結論。這篇論文站在兩個主題的交叉點,提出了統計方法來捕獲所需的數據結構,并尋求可擴展的方法來優化計算非常大的數據集。我們提出了一種可擴展的靈活框架,用于利用lasso/elastic-net解決大規模稀疏回歸問題; 提出了一種可伸縮的框架,用于在存在多個相關響應和其他細微差別(如缺失值)的情況下解決稀疏縮減秩回歸問題。分別在snpnet和multiSnpnet R包中以PLINK 2.0格式為基因組數據開發了優化的實現。這兩種方法在超大和超高維的英國生物樣本庫研究中得到了驗證,與傳統的預測建模方法相比有了顯著的改進。此外,我們考慮了一類不同的高維問題,異質因果效應的估計。與監督學習的設置不同,這類問題的主要挑戰在于,在歷史數據中,我們從未觀察到硬幣的另一面,因此我們無法獲得處理之間真正差異的基本真相。我們提出適應非參數統計學習方法,特別是梯度增強和多元自適應回歸樣條,以估計處理效果的預測器可用。實現被打包在一個R包causalLearning中。

付費5元查看完整內容

高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。

這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。

付費5元查看完整內容
北京阿比特科技有限公司