亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在對抗性空域環境中,決策者間的安全協調至關重要。盡管美國國防部(DoD)將人工智能僚機(AI wingmen)開發列為空戰優先事項,但目前缺乏在同一環境中設計人機僚機間安全、整體協調的方法論。本論文提出一種框架,采用系統理論過程分析協調擴展(STPA-Coord)方法,分析并設計空優任務中忠誠僚機(Loyal Wingman)概念的整體協調機制。STPA-Coord是一種基于系統理論的安全與危害分析流程,用于在系統之系統架構中分析與設計決策者間的協調關系。通過該框架,本研究識別出290個損失場景與因果因素,最終提煉出83項適用于忠誠僚機架構的設計考量。

此外,本研究采用基于模型的系統工程(MBSE)方法,運用風險分析與評估建模語言(RAAML)實施STPA-Coord分析。論文建議修改SysML的RAAML指導規范,以優化SysML中STPA文檔的生成,并適配STPA的協調擴展特性。研究結果揭示了相較于傳統基于文檔的方法論,采用基于模型的方法執行STPA-Coord分析的優勢,并量化了在SysML中實施STPA-Coord所需的時間成本。

對工程知識的貢獻包括:

  1. ?用于分析并設計忠誠僚機概念安全協調的STPA-Coord框架。已有研究強調空戰環境中人機僚機安全協調的重要性(Dantas等,2021;de Lima Filho等,2021;Floyd等,2017;Hobbs等,2022;Li等,2022;Ma等,2020),但設計安全協調的方法論稀缺。本研究的忠誠僚機STPA-Coord框架具備系統無關性,不依賴戰術、技術與流程(TTPs),可隨對手與環境變化適配不同物理環境。該框架通過抽象化設計保持通用性,使任務工程、軟件開發、網絡安全等領域的專家均能將其應用于特定領域。據作者所知,這是首個為空戰環境中的忠誠僚機設計安全協調的框架。本研究還通過忠誠僚機用例分析驗證了該框架的實用性,最終提出83項適用于忠誠僚機架構的設計考量。

?2. 基于SysML的RAAML實施STPA-Coord分析的建議。隨著STPA與基于模型的系統工程(MBSE)在國防部的普及,工程實踐者需要一種有效方法利用SysML(國防部最主流的MBSE建模語言)完成復雜系統的STPA-Coord分析。這些建議符合國防部數字工程戰略中關于構建"權威真相源"(Department of Defense, 2018a)的目標,可提升分析效能并減少SysML建模時間,從而為國防部節約成本。

本論文后續結構如下:第二、三章包含基于本研究的待發表成果。第二章提出并描述用于空戰人工智能體安全協調設計的STPA-Coord框架。第三章展示通過SysML(而非傳統文檔方法)實施STPA-Coord的發現,并提出基于RAAML的STPA-Coord分析方法論。第二章回應研究問題1與2,第三章回應問題3與4。第四章總結研究目標、提出未來研究方向,并闡述對學術界與國防部的影響。附錄包含第二章未列出的補充STPA-Coord分析結果。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本研究探討超視距(BVR)環境下的2v2空戰機動問題(ACMP)。通過構建離散時間、無限視野的馬爾可夫決策過程(MDP)模型對BVR-ACMP進行建模,旨在為雙機協同的自主飛行器確定執行戰術機動與火力決策的高質量策略。高級仿真、集成與建模框架(AFSIM)被用于表征復雜的六自由度(6-DOF)飛行器動態,涵蓋運動學、傳感器與武器系統特性。鑒于狀態與決策變量的高維度和連續性特征,研究采用深度強化學習(RL)解決方法,通過神經網絡(NN)實現價值函數近似。研究內容包括設計中立初始狀態場景用于訓練,并評估對抗行為與導彈特性對決策策略的影響。通過三階段超參數調優實驗獲取高質量策略,并開展多案例研究驗證深度RL方法在空戰行為建模中的有效性,論證了該方法為基于AFSIM的空戰仿真研究生成飛行器行為模型的可行性。

人工智能(AI)方法論的持續發展,包括強化學習(RL)的進步,對全球軍事力量而言既是復雜化的挑戰,也是戰略機遇。2022年美國《國家國防戰略》明確指出AI技術進步帶來的復雜性,強調美國對手可能引入復雜的升級動態,并對美國戰略穩定性構成新型挑戰。尤其是受這些技術飛躍推動的自主系統廣泛擴散,使軍事力量面臨來自非國家行為體與政府實體通過技術削弱其優勢的潛在脆弱性。針對這些已識別的威脅,美國空軍(USAF)認識到AI在增強自身能力、決策流程與作戰效能方面的潛力。隨著聯合部隊作戰日益依賴數據驅動技術,美國國防部(DoD)計劃實施機構改革,通過提供競爭性激勵與更靈活的任務分配來強化AI研發。此外,推動強化學習領域的國內進展可為美國空軍的一項核心任務——獲取對對手的空中優勢——提供支持力量。自主載具系統領域,尤其是空中領域的自主系統,對美國空軍具有重大戰略意義。隨著該研究領域的技術突破,美國軍方必須正視AI對實現空中優勢的潛在威脅與利益。

美國空軍正與國防高級研究計劃局(DARPA)合作推進自主無人戰斗飛行器(AUCAVs)領域的技術發展。DARPA“空戰演進”(ACE)項目下開發的AI算法已成功完成概念驗證,展示了AI指揮全尺寸戰斗機并在模擬視距內(WVR)環境中超越經驗豐富的F-16戰斗機飛行員的能力。然而,在視距內學習算法取得進展的同時,雷達制導導彈的進步使得從超視距(BVR)發起攻擊成為可能,為空戰策略帶來了新挑戰。

超視距(BVR)空戰的起源可追溯至第二次世界大戰后,其標志性事件是1946年美國海軍研發的AIM-7“麻雀”導彈的問世。在冷戰的緊張態勢中,蘇聯轟炸機或戰斗機可能配備新興BVR導彈技術被視為對美國國家安全利益的重大威脅。盡管這一威脅從未真正實現,但隨著冷戰接近尾聲,戰斗機領域先進機動性與導彈技術的融合顯著推動了BVR空戰活動的發展。與受光照條件、目標尺寸、視覺敏銳度及目標方位等因素高度影響的視距內空對空(A2A)作戰不同,現代BVR空戰的機制主要圍繞遠程制導導彈的使用展開。在實際作戰場景中,配備先進雷達系統的技術優勢戰斗機通過此類高精度遠程導彈實現對敵機的壓制。BVR空戰的性質帶來了獨特挑戰:由于缺乏成熟的戰斗機戰術與敵我識別(IFF)技術,飛行員常面臨有效運用此類武器的局限性。為解決這些難題,基于強化學習(RL)的人工智能方法有望突破這些限制,提升美國空軍(USAF)及其作戰人員在BVR場景下的能力。

自主載具訓練的傳統策略通常采用基于規則的邏輯,即自主智能體根據預定義標準做出決策。然而,該方法已被證明易受挫敗,且無法為此復雜問題提供新穎的智能解決方案。針對基于規則邏輯的局限性,強化學習(RL)提供了一種解決途徑,其核心在于考慮目標導向型智能體在不確定環境中的整體交互問題。RL具備運用先進搜索技術的能力,例如AlphaZero算法在象棋等復雜游戲中實現超越人類水平的性能即為明證。空對空作戰固有的復雜性與不確定性要求開發獨特且具有挑戰性的戰略方法。

強化學習已展現出為這一多維度問題設計制勝策略的能力,泰勒(Taylor)、波普(Pope)等人、麥格魯(McGrew)等人、樸(Piao)等人以及克倫帕克(Crumpacker)等人早期的研究均對此進行了驗證。麥格魯等人開創性地采用基于模型的方法解決空戰機動問題(ACMP),為后續ACMP的無模型研究奠定了基礎。在麥格魯等人工作的基礎上,樸等人提出了一種端到端的基于RL的競爭性空戰智能體訓練方法。泰勒則致力于以獨特方法填補超視距空戰機動問題(BVR-ACMP)研究領域的空白,其利用Q-Learning對1v1 BVR作戰場景中的自主無人戰斗飛行器(AUCAV)進行建模,以優化其作戰機動與武器運用能力。

本研究主要擴展泰勒(Taylor)的研究成果,旨在設計與評估一種基于強化學習(RL)的方法,以解決雙機對抗(2v2)超視距空戰機動問題(BVR-ACMP),并通過概念驗證填補文獻空白——該驗證不僅評估潛在新型武器能力,還探索兩架自主無人戰斗飛行器(AUCAV)因交互與通信產生的涌現行為。本研究通過多種通信方案及其實施路徑的探究,確定雙AUCAV在空戰中高效協同與通信的最優模式。

本研究將2v2 BVR-ACMP概念化為馬爾可夫決策過程(MDP)。求解MDP需要在既定策略集中識別出能夠優化該MDP對應準則的最優策略。泰勒的研究聚焦于1v1場景,其模型負責控制一架飛行器相對于被稱為敵機的對抗目標進行定位。本研究中引入的2v2場景顯著增加了環境模型的復雜性。為模擬真實戰場條件,研究在概念驗證中引入第二架敵機實施監視,要求每個智能體在機動過程中追蹤三架飛行器。除了每個智能體需追蹤敵我雙方戰斗機的復雜性外,友方戰斗機之間還需一定程度的協同合作,以在空戰中實現最優結果。這種合作體現為友方戰斗機在機動與導彈部署方面的戰略協調,從而有效壓制敵方編隊。

為應對2v2 BVR-ACMP帶來的更高復雜度,本研究采用深度Q學習(DQN)算法的能力。DQN作為Q學習算法的進階版本,通過神經網絡優化長期累積獎勵。研究中使用的RL方法依托政府所有的C++仿真框架——高級仿真、集成與建模框架(AFSIM)構建空戰環境。AFSIM專為開發與實施交戰級、任務級分析仿真及虛擬實驗設計,具備空戰戰術建模、武器運動學模擬與傳感器系統仿真的能力。作為研究的基礎平臺,AFSIM支持RL解決方案的實現,并協助生成效能指標(MOE)。這些指標(如任務成功率(友方成功交戰次數)與交戰時長)為評估RL算法性能提供了量化依據。

本研究的剩余章節分為四部分,分別聚焦2v2 BVR-ACMP的不同維度。第二章系統綜述現有BVR-ACMP相關文獻,深入解析1v1 BVR-ACMP并探討其他潛在解決方案。第三章闡述本研究針對2v2 BVR-ACMP的RL方法,詳細解釋構建的模型框架。第四章展示模型運行結果及基于AFSIM環境生成的效能指標。第五章總結研究成果,提出未來研究方向,并給出2v2 BVR-ACMP研究的最終結論。

付費5元查看完整內容

技術發展的步伐催生了對可容納各種技術組合的開放式系統的需求。現有的研究主要集中在集成成熟技術的模塊化系統的開發上,很少有關于可容納實驗技術的開放式系統的研究。本研究解決的問題是如何評估系統的模塊化和開放性,特別是導彈組件試驗臺的模塊化和開放性。本研究的目的是提出一種評估測試系統架構的方法,以確定其模塊化和開放程度。本研究包括文獻綜述、方法建議、方法實施和結果分析。文獻綜述包括與模塊化和開放性評估相關的著作。提出的方法結合了基于模型的系統工程(MBSE)和評估模塊性和開放性的算法。建議的方法在兩個理論系統和一個測試平臺的四種情況下實施。結果表明,所提出的方法是有效的。所提出的測量方法可以捕捉模塊性和開放性。MBSE 框架為實施評估和生成計算模塊性和開放性指標所需的輸入提供了有效的工具集。應進一步探索利用 MBSE 應用程序的現有功能納入更多指標。還應考慮對 MBSE 應用程序的潛在改進。

模塊化系統引起了工程師、建筑師和設計公司的極大興趣,涉及多個學科。雖然研究主要集中在模塊化系統的開發上,其中包含了廣為人知且相對成熟的技術,但有關可容納實驗技術的開放式系統的研究卻寥寥無幾。與傳統測試相比,模塊化測試系統具有多種優勢,雖然模塊化開放系統的優勢已被充分理解和接受,但很難確定系統的模塊化程度。本研究提出了一種評估導彈實驗組件測試平臺模塊化程度的方法。同時還考慮了接口的標準化和開放性,因為開放式標準接口可以實現更多的模塊化設計并降低集成成本。關于本研究目的的一個重要說明是,它不是模塊化架構設計的規范;相反,它提出了一種評估現有或擬議系統架構的方法,以確定其模塊化和開放程度。

本研究包括文獻綜述、方法建議、方法實施和結果分析。文獻綜述包括與模塊化和開放性評估相關的幾部著作。建議的方法結合了基于模型的系統工程(MBSE)工具和算法來評估模塊性和開放性。建議的方法在理論系統以及導彈組件測試系統的實例中實施,分為四種情況,尤其關注測試臺子系統。

文獻綜述包括介紹和討論與系統和組件模塊化、模塊化分析和系統架構相關的幾部著作。文中介紹并討論了模塊化的定義、模塊化的測量方法以及可用于輔助測量的工具。雖然本章介紹的方法并未全部納入最終提案,但它們與模塊化評估相關,值得考慮。

評估模塊化程度需要對模塊化一詞進行定義。本研究將模塊化系統定義為那些其組件顯示出高度功能隔離和可分離性的系統。評估導彈組件試驗臺的模塊化程度需要對其組件進行建模。本研究采用基于模型的系統工程(MBSE)工具來表示系統,更好地理解系統的交互和接口,并生成用于分析評估系統模塊化程度的數據。建議的方法首先應用于兩個理論系統模型--一個在設計上基本是整體的,另一個在設計上基本是模塊化的。整體式系統的特點是連接度高,各組成部分之間缺乏功能獨立性,而模塊式系統的連接度較低,各組成部分之間的功能配對明顯。將所提出的方法應用于這些系統,可以解決有關模塊化測量有效性的問題。

然后,將該方法應用于導彈組件測試系統,重點關注四個不同環境下的導彈組件測試臺子系統。首先討論頂層系統模型,即 “導彈組件測試系統”。它有助于了解試驗臺在整個系統中的作用。然后對試驗臺本身進行建模,并在飛行試驗、帶有前端試驗的彈體試驗部分以及彈體和前端試驗部分中進行討論。此外,還對地面試驗進行了建模和討論。

結果表明,所提出的評估導彈部件測試系統模塊性和開放性的方法是有效的。在 MBSE 應用程序中創建的系統模型的數據可以導出和處理,以推斷組件和系統級模塊化。通過對不同系統配置的指標進行比較,可以確定潛在的設計改進措施,以及實現合理接口標準化的機會。未來的工作還有很多機會。應探索利用 MBSE 應用程序的現有功能納入更多指標的進一步工作。通過開發與本建議中使用的模型信息相同的算法,有可能獲得有關系統和組件級模塊化的更多見解。此外,還有機會改進分析中使用的 SysML 應用程序以及類似的應用程序。

付費5元查看完整內容

由于全球定位系統在室內容易受到干擾和失去覆蓋范圍,因此在全球定位系統缺失的環境中進行可靠導航仍然是自主無人系統面臨的一項挑戰。本研究通過將卷積神經網絡(CNN)與視覺傳感器集成,研究如何在不依賴 GPS 的情況下實現實時姿態估計,從而解決無人地面車輛(UGV)面臨的這一挑戰。針對位置和航向估算實施了雙 CNN 架構,并在具有相應姿態的大量圖像數據集上進行了訓練。通過與改進的勢場算法集成,實現了周期性漂移估計和校正。其中一個主要貢獻是用于漂移校正的世界表示調整方法,該方法可根據 CNN 估計值動態調整航點位置。利用這種方法,在受控環境中實現了連續多圈的成功導航,大大提高了沒有漂移校正的基線性能。這項研究的結果表明,通過這種方法可以大大降低自主導航系統對全球定位系統的依賴性,從而有可能提高無人系統對電子戰戰術的應變能力,使其能夠在有爭議的環境中持續運行。

美海軍部(DON)無人作戰框架強調了海軍部 “投資于先進自主和無人系統 ”的承諾。隨著這些技術的進步和實施,無人系統對可靠定位能力的依賴程度也在增加。然而,在干擾和欺騙等電子攻擊成為普遍威脅的有爭議環境中,期望全球定位系統(GPS)成為可靠的定位手段變得不那么可行。此外,在室內環境或衛星能見度有限的區域工作時,GPS 的可靠性也會降低。隨著無人駕駛系統的使用日益增多,在 GPS 無法使用或不可靠的情況下,有必要提供替代解決方案。

隨著無人駕駛系統的分布越來越廣,相互連接越來越緊密,GPS 拒絕或欺騙所造成的脆弱性也隨之加劇。定位中的單點故障會產生連鎖效應,降低整個系統的能力并增加風險。因此,為自主輪式無人飛行器探索可靠、精確的導航技術至關重要,這種技術可在 GPS 信號被屏蔽的環境中有效運行,確保無人駕駛行動在有爭議的復雜場景中繼續取得成功。

這項研究旨在為在室內環境或 GPS 信號不可靠或不可用的地區運行的無人潛航器開發一種穩健的導航解決方案。該方法將利用兩個主要來源的數據:車輪編碼器和視覺傳感器。車輪編碼器數據將使用死算模型進行處理,而 CNN 將用于分析視覺傳感器數據。通過將這些技術相結合,該系統將實現無需 GPS 的同步自主導航。這種方法的一個關鍵方面是實時激活 CNN,CNN 可以解釋環境的獨特特征,并相應地引導 UGV。

這項研究的范圍包括利用深度學習技術為 UGV 開發無 GPS 定位和導航解決方案。將通過 P3-DX Pioneer 機器人系統在室內實驗室環境中使用模擬 UGV 進行廣泛的驗證和測試。不過,某些領域被認為不屬于本研究的范圍。其中包括路徑規劃算法的開發,因為車輛將使用現有的反應式自主方法。此外,除視覺數據外,也不會考慮探索其他傳感器模式。研究重點將不是在有移動障礙物的高動態環境中進行導航。預計面臨的主要技術挑戰是優化計算時間以實現實時性能、減少長時間漂移以及在激烈機動過程中保持定位精度。在項目限制條件下,將盡可能利用和調整現有技術和算法,以最大限度地提高魯棒性。

本論文共分五章,每一章都側重于研究的一個特定方面。第 2 章:“背景 ”通過介紹和解釋與論文工作相關的基本概念,為研究奠定了基礎。本章包括對該領域現有文獻的全面回顧,重點介紹了當前的技術,并指出了本研究要解決的差距。

第 3 章:“方法與實驗設計 ”介紹了論文工作中采用的方法和手段。它詳細描述了實驗中使用的硬件組件和實施的具體算法。本章還討論了實驗設置、數據收集過程以及用于評估所提解決方案性能的評價指標。

第 4 章:“結果與分析 ”主要評估本研究中開發的 CNN 的性能。本章介紹了獲得的實驗結果,并對結果進行了深入分析。本章還包括圖表等可視化內容,以支持對結果的解釋。本章討論了所提方法的優勢和局限性,并將結果與文獻中的現有方法進行了比較。

第 5 章:“結論與未來工作 ”總結了論文研究的主要發現和貢獻。本章強調了這項工作的意義及其對自主導航和定位領域的潛在影響。此外,本章還確定了未來的研究領域,并為進一步改進和擴展所提出的方法提供了建議。

最后,為簡潔起見,“UGV ”和 “機器人 ”這兩個術語在本論文中交替使用。

圖 3.8. 增強型數據存儲過程的可視化表示,這是 CNN 訓練的準備階段。這既減少了圖像所需的存儲空間,又為 CNN 訓練過程保持了適當的預期輸出響應。

付費5元查看完整內容

無人水面艦艇(USV)通常依靠全球定位系統(GPS)和射頻(RF)通信進行導航和多車協調。在戰時環境中,全球定位系統和無線電信號屏蔽對 USV 的有效導航和控制提出了挑戰。本論文研究了使用低成本人工智能(AI)立體相機作為傳感器,實現 USV 的無 GPS 和 RF 導航與協調。這些相機還可用于對水面船只進行分類和定位。我們使用安裝在多艘 Mokai USV 上的 OAK-D AI 攝像機進行了實驗。對神經網絡 (NN) 模型進行了訓練,以識別兩個對象類別:Mokai USV 和其他船只。利用開源 Python 庫,該模型被直接加載到攝像頭上,并集成到機器人操作系統 (ROS) 軟件中,以提取檢測到的物體的相對姿態信息。為了分析該模型的有效性,我們在未見過的視頻上以及使用 Mokai USV 和其他水面艦艇進行的現場實驗中對 NN 進行了測試。將攝像機估計的物體定位與在實驗室環境中通過物理驗證收集的物體地面實況位置進行了比較。最后,還探討了特定相機硬件和立體視覺在此應用中的局限性,以評估其進一步開發的可行性。

付費5元查看完整內容

本報告由兩部分組成,第二部分旨在介紹根據小型航行器自動目標識別(SCATR)數據集建立的雷達截面(RCS)預測模型。本部分提供了用于開發 RCS 模型的自適應機器學習策略的路線圖。介紹了分別基于五個自適應特征、兩個真實特征和四個全球定位系統(GPS)特征的 RCS 模型的八個變體。此外,每個 RCS 模型還考慮了 26 個子變體。這些模型子變體涵蓋了大量流行的回歸方法,我們的目標是找到一個最忠實地代表反合成孔徑雷達(ISAR)數據集的回歸器,用于 RCS 預測。性能結果以判定系數和均方根誤差表示。高斯過程回歸在 RCS 建模方面表現突出。報告末尾提出了重要的意見和結論。

加拿大政府(GoC)為其最新的監視衛星星座 RADARSAT Constellation Mission (RCM) 投資超過 15 億美元。國防部/加拿大武裝部隊(DND/CAF)極地 Epsilon 2 (PE2) 資本項目利用從加拿大的三顆 RCM 衛星獲得的合成孔徑雷達 (SAR) 圖像,對海上航道進行全天候監視,以完成其主要國防任務之一。從一開始,加拿大空軍就對其專用的 RCM 船舶探測模式 (SDM) 的性能質量提出了嚴格要求,以履行其保障加拿大海上進場的運行任務。PE2 目前的運行要求是在五級海況下探測大于 25 米的船只,對于大型船只的 RCS,存在相當簡單的半經驗模型,通常用于設計和評估 C 波段專用廣域 SDM 的性能。目標的 RCS 以物理單位平方米(m2)或相對于平方米的分貝(dBsm)為單位,用于衡量反射回雷達的能量大小。盡管 RCS 會因目標屬性(包括尺寸、方向、形狀、入射角、結構和材料等)的不同而產生數量級的變化,但所提出的簡單模型包含一個僅取決于艦船長度的平均值,而忽略了所有其他因素。

未來的下一代系統將面臨更嚴格的要求,例如,DND/CAF 最新版本的《天基監視要求文件》(SBS-RD)中[要求 400.7]規定的對小至 5 米的船只的探測。SBS-RD 正式確定了未來天基監視系統的設計和開發所需的 UNCLASSIFIED 監視要求,代表了整個 CAF 的業務和職能當局所確定的需求,為繼續研究和開發(R&D)提供了信息,并旨在影響未來任務中實施的設計。然而,對于此類小型艦艇而言,簡單的模型無法移植到其他同頻或異頻雷達上,而且任何射頻(RF)都不存在可靠的 RCS 模型。文獻[3]首次嘗試將文獻[1]中的簡單模型適用于 5 至 15 米的小型船只,但仍然只考慮了船只的長度。

本科學報告中的工作旨在向更復雜的 RCS 模型邁出一步,該模型包含多個相關的目標屬性,可用于行業設計符合更嚴格要求的特定 SDM,并評估小型船只的探測性能。這種 RCS 模型可用于可靠地預測未來雷達傳感器的性能和針對小型船只探測進行優化的模式,例如,為 DND/CAF 主要資本國防空間監視增強項目(DESSP)所設想的模式。

付費5元查看完整內容

在未知和不確定的環境中開辟安全路徑是領導者-追隨者編隊控制的一項挑戰。在這種結構中,領導者通過采取最佳行動向目標前進,追隨者也應在保持理想隊形的同時避開障礙物。該領域的大多數研究都將編隊控制和障礙物規避分開考察。本研究提出了一種基于深度強化學習(DRL)的新方法,用于欠驅動自主水下航行器(AUV)的端到端運動規劃和控制。其目的是為 AUV 的編隊運動規劃設計基于行動者批判結構的最優自適應分布式控制器。這是通過控制 AUV 的速度和航向來實現的。在避障方面,采用了兩種方法。第一種方法的目標是為領導者和跟隨者設計控制策略,使每個領導者和跟隨者都能學習自己的無碰撞路徑。此外,跟隨者遵守整體編隊維護策略。在第二種方法中,領跑者只學習控制策略,并安全地帶領整個團隊向目標前進。在這里,跟隨者的控制策略是保持預定的距離和角度。在存在洋流、通信延遲和傳感誤差的情況下,展示了所提出方法在現實擾動環境下的魯棒性。通過大量基于計算機的模擬,對算法的效率進行了評估和認可。

付費5元查看完整內容

該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。

在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。

如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。

A. 系統定義

在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。

B. 系統建模

項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。

設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。

C. 系統分析

為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。

分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。

有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。

付費5元查看完整內容

數字工程和數字設計是美國空軍(USAF)的一個新興重點領域,特別是用于現代復雜系統。高復雜度系統的一個例子是網絡合作自主彈藥群(NCAM),它優先考慮廣域搜索和多視角目標確認。首先,本研究討論了在基于模型的系統工程(MBSE)工具中建立行為模型的方法。然后,本研究介紹了NCAM在兩個環境中的并行建模工作:Cameo系統建模器中的MBSE模型,以及仿真、集成和建模高級框架(AFSIM)中的基于物理學的模型。每個數字模型在其環境中都為設計過程中的利益相關者提供了不同的好處,所以這些模型必須呈現出一致和平行的信息。因此,這項研究也提出了在模型之間翻譯設計信息的自動化方法。總的來說,這對協同工作的模型通過系統認知和數字場景模擬對自主過程的理解,與決策部門建立信任關系。

引言

1.1 一般問題

在始于1903年萊特兄弟首次飛行的重于空氣的飛行歷史中,美國軍隊促進了空對地攻擊能力的持續和快速發展。最初,飛行在軍事上的應用僅限于1909年美國陸軍信號部隊的偵察和監視;然而,第一次世界大戰和后來的第二次世界大戰的爆發創造了軍用飛機技術和理論的繁榮。到1946年,簡單的偵察雙翼飛機被可以超過音速的噴氣機所取代。美國看到了這種快速發展的技術的可行性,并在1947年創建了獨立的美國空軍(USAF)服務。空中力量的勢頭一直持續到現在,現代美國空軍的飛機可以隱藏他們的雷達信號,并精確地投擲制導彈藥,在地面上的同一個洞里投擲5枚炸彈!這就是美國空軍。

在美國空軍這個令人難以置信的組合中,一個合乎邏輯的下一個能力是合作和自主的彈藥,它利用相互通信來尋找、識別和打擊一個目標,同時評估對目標的損害。國防部研究與工程助理部長(USD(R&E))對這種能力有兩個關鍵定義。

  • "自動化。該系統的功能沒有或很少有人類操作者的參與。然而,系統的性能被限制在它被設計為做的具體行動上。通常,這些都是定義明確的任務,有預先確定的反應(即基于規則的簡單反應)。

  • 自主性。系統有一套基于智能的能力,使其能夠對系統部署前沒有預先編程或預期的情況做出反應(即基于決策的反應)。自治系統具有一定程度的自治和自我指導行為(由人類代理決策)"。[4]

目前的制導彈藥非常嚴格地遵循自動化的定義。通過激光或全球定位手動指定目標,然后彈藥執行程序化的行動以擊中指定位置。在這種情況下,控制權被操作者緊緊抓住,對目標開火的決定需要多個人為步驟。這些人為步驟使操作者對自動化有一種信任感,因為扣動扳機時風險最小化;與操作者使用無制導彈藥相比,彈藥利用其自動化技術更準確地擊中目標。當討論下一步的自主化發展時,人們有一種理性的擔心,即人類通常控制的決定將由自主系統的機器大腦來代替。這種不信任導致人們對部署旨在自主摧毀目標的武器猶豫不決。

理解與系統自主決策相關的行為是建立對自主性信任的絕佳方式。有多種方法可以將行為理解傳達給人類評估者:首先是提供描述系統各個方面的正式文件,接下來是創建一個數字模型,用圖表表示系統結構和行為,另一個是運行涵蓋廣泛場景的模擬,最后演示可以證明物理系統在測試和評估中的能力。文檔方法一直是所有國防部采購的標準,可以追溯到手繪示意圖的設計時代。然而,最近,國防部對使用建模和仿真來記錄和管理系統表示了興趣。已經出現的一個概念是數字孿生,系統的每個方面都被虛擬建模,以實現快速的修改原型和精確的配置控制。[5]這種數字孿生的焦點也為它所代表的系統的物理結構和行為創造了清晰的、可瀏覽的數據,從而使系統得到合理的理解。

1.2 問題陳述

如Reed[6]所示,基于模型的系統工程(MBSE)已經迅速被美國空軍的數字工程工作所采用,用于程序和系統結構建模項目。然而,復雜系統的行為MBSE建模在美國空軍的相同項目中并不常見。對于自主系統,算法的復雜性和這些自主系統協作時出現的突發行為使得評估邏輯行為和性能影響變得困難。對系統行為進行建模的能力是MBSE過程所固有的,但MBSE模型通常缺乏提供詳細的基于物理學的模型的能力,無法對系統的運行情況進行性能評估。有一些專門建立的基于物理的仿真平臺,如高級仿真、集成和建模框架(AFSIM),就是為了這后一種目的而存在的,但它們往往與MBSE工具中的定義模型脫節[3]。一種將復雜系統的MBSE行為模型和同一復雜系統的基于物理學的仿真模型聯系起來的方法和工具是必要的。要確保這對模型之間的行為一致,需要有能力在建模平臺之間傳輸設計數據。

1.3 研究目標和問題

本研究的目的是建立一個復雜的合作彈藥系統的行為MBSE模型,并建立一個自動和可重復的方法,將數據從MBSE模型轉移到AFSIM場景中,以執行相同的合作彈藥行為的模擬。MBSE模型將足以驗證單個自主彈藥的邏輯行為,以及在合作概念中同一彈藥的數量。AFSIM模擬將反過來為建模者提供反饋,以便對彈藥模型進行潛在的修改,從而實現更高的性能。

合作彈藥模型的研究問題包括:

  • SysML在行為建模中的優勢和劣勢是什么?

  • 哪些MBSE元素和/或屬性適合翻譯成AFSIM的原生語言用于情景模擬?

  • SysML數字模型在多大程度上可以代表AFSIM模擬中使用的合作彈藥的行為?

  • 在SysML模型和AFSIM場景之間可以利用哪些自動和可重復的方法進行數據交換?

1.4 方法學總結

這項研究必須首先確定連接點和集成到AFSIM的所需變量,這將有助于定義合作彈藥的MBSE系統模型的邏輯接口。這些接口有助于定義合作彈藥的MBSE模型的邊界,并為整合到AFSIM的場景模型提供數據點。設計和測試的關鍵領域是:為AFSIM實體所需的變量和基本方程建模;提供從MBSE模型到AFSIM的彈藥和場景參數的自動導出可用性;以及確定MBSE模型中會影響模擬的可修改區域。基于對連接點的評估,研究將轉向創建一個MBSE模型,以保持連接點,同時建立與AFSIM模型平行的行為。MBSE模型中的行為將根據AFSIM模型的情況進行評估。

1.5 假設和局限性

本研究僅限于虛擬彈藥的建模和模擬。此外,本研究定義的合作彈藥概念是名義上的;因此,彈藥模型將由名義上的數據填充。

1.6 提綱

第2章是對與彈藥建模、AFSIM集成、自主無人機系統行為建模和美國空軍先進彈藥的歷史應用有關的出版物的文獻回顧。第3章介紹了合作彈藥概念的設計方法和將數據自動傳輸到AFSIM場景模擬的方法。第4章討論了已完成的網絡化合作自主彈藥(NCAM)MBSE模型的行為分析、自動轉換結果和平行模型之間的比較。第5章總結了研究的重要發現,并推薦了未來的研究課題。

付費5元查看完整內容

前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。

第1章:導言

1.1 背景和動機

2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。

從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。

目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。

考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。

1.2 研究目標

這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。

輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。

1.3 方法論

基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。

在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。

ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。

在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。

1.4 結果

最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。

1.5 論文組織

本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。

第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。

第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。

第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。

第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。

最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。

付費5元查看完整內容
北京阿比特科技有限公司