本文介紹了一種正在開發的方法,利用機器學習技術對大型 X 射線圖像數據集進行異常和/或缺陷檢測分析。異常和/或缺陷的特征可通過圖像分類(監督學習--卷積神經網絡)或異常檢測(非監督學習--自動編碼器)模型的性能精度來確定。每種學習技術都有獨特的超參數和設計架構,以幫助創建穩健的模型,針對不同方向、亮度和對比度的 X 射線圖像進行預測。這種方法是對傳統的高能材料/組件特性測試套件的有力補充,特別是在熔融澆注爆炸物、與性能相關的設計意圖、安全性和/或與性能相關的缺陷檢測方面。對于安全或性能相關的缺陷檢測,該方法可在開發新的次規模測試和基于物理的模型時將缺陷作為反饋回路,以更好地了解和預測高能失效模式,這是美國陸軍DEVCOM 軍備中心正在開發的一種能力,稱為高能缺陷表征(EDC)。
圖5:彈藥異常
目前和未來對火炮彈藥的能量要求都超過了傳統的火炮和炮管設計以及飛行環境。這意味著今天的非關鍵缺陷在未來可能會成為嚴重缺陷。有缺陷的火炮已造成火炮發射時的災難性故障、人員傷亡和平臺損壞(Ismay; Kumar; Singh)。預防和減少這些潛在的重大缺陷是美國陸軍的首要任務。雖然目前已有檢測缺陷的流程,但這些方法耗時長、成本高,而且已經過時。現在是建立未來檢測方法的時候了。考慮到這項任務的影響,美國陸軍作戰能力發展司令部-軍備中心正在努力開發和演示現代缺陷檢測能力。
能力開發工作--高能缺陷表征(CDE - EDC)是由位于皮卡廷尼兵工廠的美國陸軍作戰能力開發司令部軍備中心資助的一項新的能力開發計劃。該項目旨在開發實驗和計算能力,對有缺陷的能量學進行評估和預測,特別是針對增強型彈藥(LRPF)。除了設在皮卡廷尼兵工廠的工作組外,還與北約工作組和技術合作計劃(TTCP)開展了國際合作。此外,分析人員還與西點軍校的學員開展合作。CDE - EDC 由三個核心分組組成: 實驗分組、數據分析分組和計算分組均設在發展司令部--航空航天中心(DEVCOM-AC)。三個分組之間的關系見圖 1。本報告重點介紹數據分析分組完成的工作。憑借這三個分組的綜合技術專長,DEVCOM-AC 正努力為缺陷檢測、表征和緩解提供最新的能力和指導。
實驗測試分組隸屬于高能物理、彈頭和制造技術局,其任務是確定和量化可能導致缺陷高能物理意外點火的基本物理和化學機制。為收集這些數據,該分組正在完成各種物理測試。這項任務的一部分包括改進物理測試的現實缺陷復制。
數據分析分組隸屬于系統分析部,其任務是利用機器學習來標記和描述異常和缺陷檢測圖像。通過使用這些模型獲得的知識將有助于實驗分組和計算分組完成其任務。
計算分組隸屬于能量學、彈頭和制造技術局,其任務是對能量學缺陷進行建模,以評估是否可能過早點火。該分組模擬給定能量參數的火炮發射,以確定缺陷的影響。該分組使用 Abaqus 和 STAR-CCM+ 等模型。計算分組將模型輸出與實驗分組的物理測試輸出進行比較。因此,它在很大程度上依賴于實驗分組,反之亦然。
這項工作的成果將是一個獨立預測工具,可供檢查人造彈藥的放射線研究者使用。本報告將重點介紹機器學習部分。
模型構建工作流程將由三部分組成,如圖 13 所示。每一層都像一個漏斗,將有缺陷和無缺陷的圖像分開。
適應性記憶(AC)是作為一種查找表(LUT)通用技術新推出的。它由一系列生成模型組成,其設計方式是學習每種算法的輸出。在本報告中,我們重點介紹基于條件生成對抗網絡(cGAN)的 AC 改進版。與之前的結構相比,新開發的生成式結構具有多項優勢。從本質上講,它不需要生成模型陣列。相反,兩個適當制作的生成模型就足夠了,從而大大縮短了整體寫入時間。此外,它還能在感興趣的區域提供更好的抑制水平。最后,它還能在抑制水平性能和損失函數衡量的生成保真度之間做出選擇。
認知雷達(CR)是當前雷達理論研究中一個引人注目的趨勢。盡管不同學者對這一概念的定義大相徑庭[11],但這些定義都有其主要內容。例如,[12]、[10]和[6]認為從環境和經驗中學習是認知雷達的主要特征,而[10]則認為具有適應復雜情況的能力。認知雷達與完全自適應雷達的區別還在于,認知雷達應 "學會調整操作和處理參數,并能在較長時間內做到這一點"[1]。因此,學習和存儲知識是一個必備要素[13, 15]。
與此同時,Gurbuz 等人[11] 綜述了與認知雷達有關的 83 種期刊和 238 篇會議論文。他們發現,大多數研究至少涉及某種形式的波形選擇、優化或設計。在這些研究中,通常使用收集到的認知來決定哪種波形適合當前環境。一種突出的方法是利用在時頻觀察到的雜波認知[5, 21,18, 20]。由于雷達界廣泛使用模糊函數(AF)來表示時頻景觀,因此幾乎所有此類研究都涉及設計或塑造發射波形的模糊函數。在本報告中,我們給出了一種基于 AF 塑造研究的深度學習方法,它可以復制任何迭代算法的結果。我們首先在文獻[7]中以容納記憶(AM)的名稱引入了這一概念,然后在本報告中對其進行了優化和改進。
下面,我們首先回顧一下它在學習方面提出的條件生成對抗網絡。接著,我們在第 2 節中提出了認知接收波形,并觀察到為了最小化總干擾功率(PTD),應基于雜波認知設計離散時間模糊函數。然后,我們提出了一種基于 cGAN 的雙生成深度結構,它可以學習信號-AF 對并對其進行再生。這里我們將最小平方損失函數和 Wasserstein 損失函數作為模型損失函數。第 3 節專門報告給定方法的實證結果,其中我們研究了名為條件部分的特定結構超參數的影響。最后。第 4 節是本報告的結尾。
本文通過機器學習方法提出了一種雷達任務選擇的主動方法,并將其設計在雷達調度流程之前,以提高雷達資源管理過程中的性能和效率。該方法由兩個過程組成:任務選擇過程和任務調度過程,其中任務選擇過程利用強化學習能力來探索和確定每個雷達任務的隱藏重要性。在雷達任務不堪重負的情況下(即雷達調度器超負荷工作),將主動選擇重要性較高的任務,直到任務執行的時間窗口被占滿,剩余的任務將被放棄。這樣就能保證保留潛在的最重要任務,從而有效減少后續調度過程中的總時間消耗,同時使任務調度的全局成本最小化。本文對所提出的方法進行了數值評估,并將任務丟棄率和調度成本分別與單獨使用最早開始時間(EST)、最早截止時間(ED)和隨機偏移開始時間EST(RSST-EST)調度算法進行了比較。結果表明,與EST、ED和RSST-EST相比,本科學報告中提出的方法分別將任務丟棄率降低了7.9%、6.9%和4.2%,還將調度成本降低了7.8倍(EST為7.8倍)、7.5倍(ED為7.5倍)和2.6倍(RSST-EST為2.6倍)。使用我們的計算環境,即使在超負荷的情況下,擬議方法所消耗的時間也小于 25 毫秒。因此,它被認為是提高雷達資源管理性能的一種高效實用的解決方案。
雷達資源管理(RRM)對于優化作為飛機、艦船和陸地平臺主要傳感器的現代相控陣雷達的性能至關重要。報告》討論了雷達資源管理,包括任務選擇和任務調度。該課題對國防科技(S&T)非常重要,因為它與現代相控陣雷達的大多數應用相關。它對當前的海軍雷達項目尤為重要,該項目探索了雷達波束控制的人工智能(AI)/機器學習(ML)方法。所提出的算法有可能升級未來的艦船雷達,從而做出更好的決策并提高性能。
為了解決如何利用現有數據的增長來建立有用的模型的問題,一個自動發現模型和管道的方法是有序的,它可以利用這些數據。我們已經探索了自動發現模型和管道所需的許多方面:建立一個模型知識庫和基于推薦系統方法的模型排名,通過數據集的圖形表示進行模型推薦,通過擴展基于樹的管道優化工具(TPOT)和基于強化學習的方法進行管道生成。我們探索了一種預算意識到的超參數調整算法和神經網絡的不確定性估計。我們探索了不同的訓練方法,包括無梯度優化、零點學習和持續學習。我們還解決了神經網絡架構的問題。我們將所有這些結合起來,形成了一個模塊化的自動機器學習(AutoML)系統,該系統支持廣泛的任務類型,在項目評估中一直處于前三名。
目前的自動空中加油(AAR)工作利用機器視覺算法來估計接收飛機的姿勢。然而,這些算法取決于幾個條件,如精確的三維飛機模型的可用性;在沒有事先給出高質量信息的情況下,管道的準確性明顯下降。本文提出了一個深度學習架構,該架構基于立體圖像來估計物體的三維位置。研究了使用機器學習技術和神經網絡來直接回歸接收飛機的三維位置。提出了一個新的位置估計框架,該框架基于兩個立體圖像之間的差異,而不依賴于立體塊匹配算法。分析了其預測的速度和準確性,并證明了該架構在緩解各種視覺遮擋方面的有效性。
圖3:利用的坐標系統。紅軸代表X軸,綠軸代表Y軸,藍軸代表Z軸。所有顯示的箭頭表示該軸上的正方向。
本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:
出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。
新興的數字孿生概念是任何為未來準備的實體建模和仿真需求的關鍵促成因素。與傳統方法相比,數字孿生通過增強模塊化和可擴展性,能夠以更低的成本將需求快速轉化為能力。本文討論了數字孿生建模和仿真的要素。這些能力包括但不限于智能體建模、優化、并行化、高性能計算、云架構設計等。這些概念與將建模和仿真技術整合到單一界面的數字孿生中有關,用于工程系統的快速原型設計和鑒定。與傳統方法相比,使用這些新興技術可以大大減少模擬計算時間(從幾小時/幾天減少到幾秒鐘甚至幾微秒)。本研究發現,與所有利益相關者合作的便利性、測試時間的減少、最小的現場基礎設施要求是減少成本的關鍵優勢。分析了這種智能和在線數字孿生的信息優勢的適用性,以加強網絡安全和天基(防御)服務的機載威脅評估。使用這些同步和互操作的能力可以減輕對國防空間基礎設施的可逆和不可逆的物理和網絡威脅。
在情報、國防或空間部門使用技術,盡管還不是很廣泛,但由于對系統的快速、可擴展、自主和智能的需求,正在獲得巨大的發展勢頭。與此同時,由于空間的擴散、商業化和競爭加劇,國防對空間部門的依賴也變得更加強烈。美國國防情報局的一份題為 "空間安全的挑戰"[35]的報告指出,基于空間的能力正在出現,為軍事提供整體支持,因此需要確保這些新型服務產生的新風險。空間的軍事化和碰撞風險的增加,以及其他人為的和自然的危害,使得有必要通過使用像DTs這樣的先進技術來減輕風險。衛星技術不僅促進空間系統的故障診斷和健康監測[36],而且還通過快速和有效地使用數據實現網絡安全[37]。使用這些同步和互操作的能力可以減輕對國防空間基礎設施的可逆和不可逆的物理和網絡威脅。
DT也大大加強了對天基(防御)服務的機載威脅評估[38]。空間資產的連接和安全服務,DT技術能夠提供的好處不僅僅是操作上的好處。例如,整個衛星群及其環境的數字孿生使威脅評估成為可能,因為可以模擬碰撞情景,并預測、預防和糾正單個衛星的故障。它還可以幫助檢測干擾和共址,以防止軍事威脅,并使整個系統更具彈性。因此,DT有助于保護空間資產免受各種類型的威脅。
SpaceR-SnT擁有的最初的數字孿生方法,Zero-G Lab是在Gazebo軟件中建模的。Zero-G實驗室的數字孿生,減少了測試時間,加快了開發步驟,被用來測試和驗證集成到Zero-G實驗室機器人操作系統(ROS)網絡的任何硬件(HW)組件的代碼。最初的硬件在環(HIL)方法被用來模擬不同的硬件組件,作為Zero-G實驗室的ROS網絡中的數學模型。這些模擬作為模擬的HW組件和Zero-G Lab之間的接口。對于Zero-G實驗室的浮動平臺和機器人操縱器,ROS基礎設施被用來在HW和軟件組件之間創建一個元數據流框架。此外,零-G實驗室的浮動平臺和機器人操縱器可以在零-G實驗室的同一個ROS網絡中使用。這樣的軟硬件互動模擬是實現國防部門敏捷DT系統的最初步驟。
孿生孿生之外,擁有一個與軌道上的衛星的彈性和快速連接也幾乎是重要的。這包括對數據存儲的快速和安全訪問。在過去,這涉及大量的操作努力以及一些深刻的技術理解。如今,有一些由云驅動的替代解決方案--如Azure Orbital[39]--使衛星地面站更容易訪問,以及將這些數據集傳送到安全的存儲地點并從那里真正使用的周轉時間。這些解決方案還將消費者從一些操作任務中解脫出來,而不犧牲安全、性能或技術的多樣性,因為地面站即服務的產品支持廣泛的行業已知技術,但以虛擬化的方式。使用像這樣的云計算解決方案還提供了一個機會,通過管理一個界面來利用地球上的幾個地面站供應商,與每個供應商的專門合同相比,這反過來提供了一個巨大的操作多樣性和敏捷性,并降低了成本。
另一個重要的用例是傳統衛星的生命周期擴展,這些衛星仍處于運行模式,但像數字孿生這樣的新能力應該擴展到該解決方案。國家海洋局通過合作研究與發展協議對其傳統的極地衛星進行了這方面的實踐[40]。這項工作提供了證據,即使用像Azure Orbital這樣的云計算服務,這些傳統的星座仍然可以用可接受的操作努力和較低的成本來運行。這使得該項目更具有可持續性,即使它已接近壽命終點。
從 NOAA 星座中學習生命周期支持主題。還有一個有遠見的成就值得一提,它使澳大利亞國防部通過在偏遠地區利用衛星支持的連接安全地訪問云存儲數據。"通過釋放SATCOM、5G和云計算的力量,國防組織可以在偏遠地區保持連接,快速、安全地分享數據以提高戰略意識,并對數據進行深入分析以改善決策[41]"。
這可能會導致提供實時的預測性維護指導,在解決方案的數字孿生中可視化。與沉浸式協作平臺相結合,就像之前提到的那樣,這些數據可視化可以提供真正的洞察力,避免誤解,從而推動更好的數據驅動決策。
為了在高度不確定和未建模的環境條件下成功完成防御任務,必須開發高度適應性、響應式和穩健的數字孿生方法。這種極其不確定和多變的物理環境可以在數字孿生環境中建模,以增加任務的成功可能性。從這個角度來看,數字孿生結構有如下的未來應用領域:
國防領域的數字孿生結構將有機會在不斷增長的空間市場中提高其有效性,并與這些市場的不同參與者建立聯系。
國防領域的數字孿生結構將能夠在概念開發階段利用接近真實的測試環境在低成本工程系統的新細分市場中更快地定位。
與北約未來幾十年的空間政策保持一致,使北約的空間生態系統能夠與大規模的空間市場競爭。
為未來的應用提供了創新的資產:
大的集成范圍。在證明了數字孿生的可靠性后,數字孿生框架將有可能擴展到任何空間/防御應用[42]。
高競爭力。數字孿生的擬議整合將加速其工業生態系統中的先進技術研發競爭。
廣泛的可擴展性。由機構、組織和私人倡議開發的許多不同的空間系統系統將被整合到數字孿生結構。
在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。
無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。
為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。
城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。
第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。
圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。
低成本的物聯網(IoT)分布式電力監測可以對電網的穩定性、可靠性和復原力產生有利影響。然而,隨著物聯網設備的發展速度,需要一個外部的物理校準設備,以確保性能在更新期間不受不利影響。本報告介紹了一種小尺寸、低重量、低功率和成本(SWaP-C)的校準設備,可用于生成一系列測試波形,并確保電壓和電流感應電能表的正常運行。該校準裝置足夠小,可用于現場測試和現場調試的便攜式。此外,該校準器既能取電,又能通過USB進行串行通信,允許被測物聯網設備托管它,并根據需要循環使用校準波形。
這些校準序列包括測試電力系統波形的:
該裝置是圍繞著一個低成本的基于ATmega32u4微控制器的開發板建立的,它在數字輸出引腳上產生一個脈沖寬度調制波形。這個數字輸出可以被低通濾波(LPFed)或直接傳遞給美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)自主實時電場和磁場綜合傳感器(ARTEMIS)單元,板載濾波將低通測試信號。測試音是用查找表(LUTs)產生的,它提供了一個容易實現的波形,但不能產生一個任意的音。本系統包括的波形是針對60-Hz電力系統的,但也可以擴展到其他電網頻率。
一般來說,這些功能和它們所描述的測試用例由以下內容給出:
本報告重點討論了如何利用模擬或生成模型創建的合成數據來解決深度學習的數據挑戰。這些技術有很多優點:1)可以為現實世界中難以觀察到的罕見情況創建數據;2)數據可以在沒有錯誤的情況下被自動標記;3)數據的創建可以很少或沒有侵犯隱私和完整性。
合成數據可以通過數據增強等技術整合到深度學習過程中,或者在訓練前將合成數據與真實世界的數據混合。然而,本報告主要關注遷移學習技術的使用,即在解決一個問題時獲得的知識被遷移到更有效地解決另一個相關問題。
除了介紹合成數據的生成和轉移學習技術,本報告還介紹了實驗結果,這些結果對合成數據方法在飛行員行為克隆、車輛檢測和人臉驗證任務中的潛力提供了寶貴的見解。實驗的初步結果表明,軍事模擬器和生成模型可以用來支持深度學習應用。然而,性能往往受限于合成數據和真實世界數據之間的保真度差距。
深度學習(DL)是一種技術,它提高了在廣泛的現實世界應用中實現復雜任務自動化的能力。翻譯、轉錄、視頻監控、推薦系統和自動駕駛汽車都是基于DL的解決方案已經被開發和部署用于商業目的的例子。在軍事領域,DL有可能支持人類在所有領域和戰爭級別的決策,其應用包括自動目標識別、預測性維護和無人駕駛車輛的自動控制。
與其他機器學習(ML)技術類似,DL使用算法來從數據中提取知識。在這種情況下,知識被編碼在大容量的深度神經網絡(DNNs)中,這些網絡可能由數千、數百萬甚至數十億的可調整參數組成,這取決于所考慮的任務的復雜性。為了正確調整這些參數,學習算法需要大量的訓練數據。沒有這些數據,DNN將無法泛化,因此,當遇到以前未見過的數據時,它將不會有好的表現。
獲取DL的訓練數據是困難的。這在商業應用中是存在的,而在軍事領域更是如此。瓶頸之一是,學習算法通常需要經過人工標注的數據(即為每個輸入數據點提供一個正確的答案)。因此,即使在獲取大量輸入數據相對低成本的情況下,正確標記所有的數據也往往是高成本和費時的。例如,Cityscapes數據集中的5,000個樣本中,每個樣本平均需要1.5個小時來標注(整個數據集大約需要十個月)[1]。此外,由于標注是由人類來完成的,其結果可能是不正確的、有偏見的甚至是有成見的,這也會反映在訓練過的模型的行為上。
此外,訓練數據往往存在長尾分布的問題。也就是說,對于數量有限的普通案例,訓練數據相對容易獲得,但對于大量重要的邊緣案例,訓練數據本身就很難獲得。例如,考慮一個基于無人機的軍用車輛監視和跟蹤系統。在這種情況下,友好車輛的空中圖像相對容易獲得。車輛數據可以在不同的地點、高度、角度、天氣條件、環境等方面獲得。獲取代表合格敵方車隊的類似現實世界的數據集通常是不可能的,因為這種侵入性的情報行動會導致對手的行動。使用遵循長尾分布的數據集訓練的系統通常實用價值有限,因為它只能在條件理想時使用(即,輸入數據與常見情況相似)。當遇到代表邊緣案例的真實世界的數據時,該系統將不會有好的表現,也不能被依賴。
本報告的目的是介紹可用于解決軍事背景下有限訓練數據所帶來的一些挑戰的技術。具體來說,本報告重點討論如何將使用軍事模擬或生成模型創建的合成數據與微調、領域適應、多任務學習和元學習等遷移學習技術結合起來,以加速未來DL在軍事領域應用的開發和部署。
本報告的目標讀者是操作、獲取或開發AI/ML/DL技術,用于或嵌入軍事系統的人員。
本報告假定讀者具有關于ML和DL概念的基本知識,如監督學習、強化學習、損失函數、梯度下降和反向傳播。鼓勵缺乏此類知識的讀者在繼續閱讀本報告之前,先閱讀FOI-報告FOI-R-4849-SE[2]中的第二章。
第2章概述了在深度學習中可以用來生成和整合合成訓練數據的技術和方法。第3章概述了轉移學習技術,可以用來促進知識從一個任務到另一個任務的重用。在第4章中,對這些技術的一個子集進行了評估,并提供了深入了解合成數據方法潛力的實驗結果。第5章中提出了結論。
圖2.2: 一幅戰斗機的圖像(2.2a)通過添加噪聲(2.2b)、濾色器(2.2c)和模糊(2.2d),以及通過縮放(2.2e)和縮放后的旋轉(2.2f)得到增強。每幅圖像都附有所有像素的平均RGB值分布的相應圖表。雖然所有圖像在語義上是不變的,但分布的形狀卻有很大的不同。
圖4.7:從我們的訓練數據集中隨機選擇的合成圖像。對于每一對圖像,左邊顯示的是最初生成的臉,右邊顯示的是編輯過的臉。請注意,所有圖像都在臉部周圍進行了裁剪。
異常檢測已經得到了廣泛的研究和應用。建立一個有效的異常檢測系統需要研究者和開發者從嘈雜的數據中學習復雜的結構,識別動態異常模式,用有限的標簽檢測異常。與經典方法相比,近年來深度學習技術的進步極大地提高了異常檢測的性能,并將異常檢測擴展到廣泛的應用領域。本教程將幫助讀者全面理解各種應用領域中基于深度學習的異常檢測技術。首先,我們概述了異常檢測問題,介紹了在深度模型時代之前采用的方法,并列出了它們所面臨的挑戰。然后我們調查了最先進的深度學習模型,范圍從構建塊神經網絡結構,如MLP, CNN,和LSTM,到更復雜的結構,如自動編碼器,生成模型(VAE, GAN,基于流的模型),到深度單類檢測模型,等等。此外,我們舉例說明了遷移學習和強化學習等技術如何在異常檢測問題中改善標簽稀疏性問題,以及在實際中如何收集和充分利用用戶標簽。其次,我們討論來自LinkedIn內外的真實世界用例。本教程最后討論了未來的趨勢。