亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

作為解決序貫決策的機器學習方法,強化學習采用交互試錯的方法學習最優策略,能夠契合人類的智能決策方 式。基于課程學習的深度強化學習是強化學習領域的一個研究熱點,它針對強化學習智能體在面臨高維狀態空間和動作 空間時學習效率低、難以收斂的問題,通過抽取一個或多個簡單源任務訓練優化過程中的共性知識,加速或改善復雜目標 任務的學習。論文首先介紹了課程學習的基礎知識,從四個角度對深度強化學習中的課程學習最新研究進展進行了綜 述,包括基于網絡優化的課程學習、基于多智能體合作的課程學習、基于能力評估的課程學習、基于功能函數的課程學習。然后對課程強化學習最新發展情況進行了分析,并對深度強化學習中的課程學習的當前存在問題和解決思路進行了總結 歸納。最后,基于當前課程學習在深度強化學習中的應用,對課程強化學習的發展和研究方向進行了總結。

1. 引言

強化學習(Reinforcement Learning,RL) 作為機器 學習分支之一,在人工智能領域具有重要地位[1] :智能 體在環境中通過“交互-試錯冶獲取正/ 負獎勵值,調整 自身的動作策略,從而生成總獎勵值最大的動作策略 模型[2]。傳統強化學習方法在有限狀態空間和動作空間的 任務中能夠取得較好的收斂效果[3] ,但復雜空間狀態 任務往往具有很大的狀態空間和連續的動作空間,尤 其當輸入數據為圖像和聲音時,傳統強化學習很難處 理,會出現維度爆炸問題[4 -5 ] 。解決上述問題的一個 方法,就是將強化學習和深度神經網絡(Deep Neural Network,DNN)結合,用多層神經網絡來顯式表示強 化學習中的值函數和策略函數[6] 。

深度 強 化 學 習 ( Deep Reinforcement Learning, DRL)將深度學習的感知能力和強化學習的決策能力 相結合[7],近年來在人工智能領域迅猛發展,例如 Atari 游戲[8 -9 ] 、復雜機器人動作控制[10 -11 ] ,以及圍棋 AlphaGo 智能的應用[12]等,2015 年機器學習領域著名 專家 Hinton、Bengio、Lecun 在《Nature》 上發表的深度 學習綜述一文將深度強化學習作為深度學習的重要發 展方向[13] 。

盡管在過去三十年間取得很大進步,但由于標準 強化學習智能體的初始設定都是隨機策略,在簡單環 境中通過隨機探索和試錯,能夠達成較好的訓練效 果[14] 。但在復雜環境中由于狀態空間的復雜性、獎勵 信號的稀疏性,強化學習從環境中獲取樣本的成本不 斷提高,學習時間過長,從而影響了智能體的有效 探索[15]

解決上述問題的一個有效途徑,就是將課程學習 (Curriculum Learning,CL)和深度強化學習相結合[16]。2009 年,以機器學習領軍人物 Bengio 為首的科研團隊 在國際頂級機器學習會議 ICML 上首次提出課程學習 的概念[17] ,引起機器學習領域的巨大轟動。課程學習 借鑒人類從簡單到復雜的學習思想,首先在任務集中 篩選出部分簡單任務進行學習以產生訓練課程,而后 在剩余的復雜任務中利用訓練課程進行學習,最后在 整個訓練集中進行訓練。將課程學習和深度強化學習 相結合,可以有以下兩個方面的作用[18] :(1)可以加快 訓練模型的收斂速度,避免訓練初期對于復雜任務投 入過多訓練時間;(2)提高模型的泛化能力,增強對復 雜任務的學習能力。

該文首先對課程學習進行簡要描述,從四個角度 對深度強化學習中的課程學習進行了分類整理,之后 對近三年的基于課程學習的深度強化學習新算法進行 了總結分析,最后討論了基于課程學習的深度強化學 習的發展前景和挑戰。

1 基于課程學習的深度強化學習

課程學習的目標是自動設計和選擇完整序列的任 務(即課程) M1 ,M2 ,…,Mt 對智能體進行訓練,從而提 高對目標任務的學習速度或性能[19] ,課程學習流程如 圖 1 所示。 課程 馬 爾 可 夫 決 策 過 程 ( Curriculum Markov Decision Process,CMDP) [20] 是一個 6 元組 (S,A,p,r, 駐s0 ,Sf) ,其中 S 是狀態空間集, A 是動作空間集, p(s ' | s,a) 代表智能體在狀態 s 時采取動作 a 后轉移到狀 態 s ' 的概率, r(s,a,s ' ) 代表在狀態 s 采取動作 a 到達 狀態 s ' 所獲得的即時獎勵, 駐s0 代表初始狀態分布, Sf 代表最終狀態集。

常見的課程創建方法有以下兩種[21] :(1)在線創 建課程,根據智能體對給定頂點樣本的學習進度動態 添加邊;(2)離線創建課程,在訓練前生成圖,并根據 與不同頂點相關聯的樣本的屬性選擇邊。 課程設計流 程如圖 2 所示。

課程學習方法可認為包括三部分[22] :任務生成、 排序和遷移學習。 任務生成是創建一組好的中間任務 的過程,從中獲取經驗樣本。 排序研究了如何在一組 經驗樣本上創建部分排序 D ,也就是說,如何生成課 程圖的邊。 遷移學習主要研究如何將知識從一個或多 個源任務直接轉移到目標任務。 為了評價源任務遷移 到目標任務的性能優劣[23 -24 ] ,有以下指標可以量化。 (1)學習速度提升。 即智能體在遷移知識的前提下能 夠以多快的速度學習到最優策略,從而在目標任務上 實現預期的性能值 GO 逸 啄 ,其中 啄 是總任務期望的性 能閾值。 (2) 初始性能提升。 通過從源任務進行遷 移,觀察智能體在學習過程中對目標任務的初始性能 提升來衡量遷移效果。 (3)漸近性能提升。 通過比較 智能體在使用遷移與不使用遷移時目標任務收斂后的 最終性能來衡量遷移效果。

2 深度強化學習中的課程學習研究進展

對于強化學習智能體來說,自主學習一項復雜任 務需要很長的時間。 在深度強化學習中應用課程學 習,可以通過利用一個或多個源任務的知識來加速或 改善復雜目標任務的學習[25] 。 Felipe 等人提出了新方法[26] :(1) 將目標任務劃 分為簡單任務;(2)在盡量小的專家經驗支持下,根據 面向對象的任務描述自動生成課程;(3) 使用生成的 課程來跨任務重用知識。 實驗表明在人工指定和生成子任務方面都取得了更好的性能。 為了提高多智能體的學習性能,Jayesh 等人應用 前饋神經網絡( Feedforward Neural Network,FNN) 完 成協 同 控 制 任 務[27] , 包 括 離 散 和 連 續 動 作 任 務, Daphna 等人提出了推斷課程( Inference Curriculum, IC)的方法[28] ,從另一個網絡遷移學習的方式,接受不 同任務的訓練。 為了解決從稀疏和延遲獎勵中學習的 局限性問題,Atsushi 提出了一種基于漸進式神經網絡 (Progressive Neural Network, PNN ) 的 課 程 學 習 方 法[29] ,帶參數的模塊被附加上預先確定的參數,該策 略比單組參數的效果更好。

3 算法分析與總結

強化學習是處理序列決策任務的流行范式[46] ,盡 管在過去的三十年中取得了許多進步,但在許多領域 的學習仍然需要與環境進行大量的交互,導致模型的 訓練時間過長,收斂速度過慢。 為了解決這個問題,課程學習被用于強化學習,這樣在一個任務中獲得的經 驗可以在開始學習下一個更難的任務時加以利用。 然 而,盡管課程學習理論、算法和應用研究在國內外已普 遍開展,并且也已經取得了較多的研究成果[47 -48 ] ,但 仍然有許多問題還亟待解決。

3. 1 強化學習中的課程學習算法理論分析與對比

在算法和理論方面,傳統課程學習對于小規模的 多智能體強化學習性能提升明顯,但在大規模多智能 體環境中,由于環境和智能體之間的復雜動態以及狀 態-行動空間的爆炸,因此在實際問題的解決上進展 不大[49] 。 得益于深度神經網絡的數據處理能力,使用 深度神經網絡表示回報函數,避免了特征提取工作,當 前基于課程學習的深度強化學習算法在實驗場景中應 用于 StarCraft [50] 、 grid - world [51] 、 hide - and - seek [52] 、 Sokoban [53]等經典強化學習問題的解決。 隨著課程學 習技術的發展,算法在智能決策[54] 、困難編隊下的合 作導航[55] 、在 SUMO 交通模 擬 器 中 協 商 多 車 輛 變 道[56]以及在 Checkers 環境下的戰略合作[57] 等領域也 取得了一定的成功。 該綜述分四個角度對目前強化學習中的課程學習 方法進行分類并介紹,希望能夠為相關研究人員提供 一點幫助。 為方便了解和對比,該文分析、對比了這幾 類方法的優缺點,并歸納在表 1 中。

(1)基于網絡優化的課程學習。 解決大規模問題 的方法是從小型多智能體場景開始學習,逐步增加智 能體的數量,最終學習目標任務。 使用多種傳輸機制 以加速課程學習過程,課程設計是影響課程遷移成績 的關鍵因素。 如何選擇合適的課程(包括如何決定每 個任務的訓練步長,如何選擇合適的學習模型重新加 載等)是至關重要的。 如何自動生成多智能體課程可 能是目前尚存在的主要局限性,這將在今后的工作中 進一步研究[58] 。

(2)基于多智能體合作的課程學習。 是根據全局 目標和個體目標之間的關系進行學習探索,使用信度 分配[33] 、種群進化課程[34] 、任務排序框架[36] ,通過函 數增強方案來連接價值和策略函數的階段,在具有高 維狀態空間的多目標多智能體環境中執行高挑戰性任 務性能較好,缺點是沖突較為頻繁、更高的方差和無法 維持合作解決方案[59] ,目前難以推廣到非齊次系統或 沒有已知目標分配的設置的工作。

(3)基于能力評估的課程學習。 通過限制其最初 行動空間來設置內部課程,使用非策略強化學習同時 估計多個行動空間的最優值函數,建立技能、表述和有 意義的經驗數據集,從而避免從頭開始學習,加快學習 效率。 缺點是集群對每個狀態都會改變[60] ,這可能會 干擾泛化,因為沒有一致的語義。

(4)基于功能函數的課程學習。 通過設定級數函 數和映射函數來為智能體量身定制在線課程,通過高 斯過程定義智能體函數,學習策略在單位之間共享,以鼓勵合作行為。 使用神經網絡作為函數逼近器來估計 動作-價值函數,并提出一個獎勵函數來幫助單位平 衡它們的移動和攻擊。 缺點是只提供最初的啟發式解 決方案[61] ,而且質量不能得到保證。

3. 2 基于課程學習的深度強化學習研究方向

通過對最新課程學習算法理論的研究分析,本節 對當前基于課程學習的深度強化學習存在的開放性問 題和可能的研究方向進行討論。 (1)自動創建任務課程。 任務創建是課程學習方法的重要組成部分,任務 質量會影響課程的生成質量,任務數量會影響課程排 序算法的搜索空間和效率。 現有課程學習中的任務大 多由人工創建,減少任務創建過程中的人工輸入量是 未來工作的重要發展方向[62] 。 (2)遷移不同類型知識。 課程任務之間,知識必須從一個任務遷移到另一 個任務。 目前大部分研究中,知識遷移的類型是固定 的。 例 如, Narvekar 等 人 在 任 務 之 間 遷 移 價 值 函 數[63] ,而 Svetlik 等人遷移成型獎勵[64] 。 這種知識遷 移類型的局限性在于,不同的任務對于知識類型的需 求可能是不同的,因此可以從不同任務中分別提取知 識進行組合。 例如,從一個任務中提取一個選項,從另 一個任務中提取模型,從而達成更好的學習效果。 (3)課程重用的成本分攤。 當前課程學習方法的另一個局限性是,生成課程 的時間可能比直接學習目標任務的時間更長。 原因在 于,課程通常是為每個智能體和目標任務獨立學習的。 因此,分攤成本的一種方法是學習一門課程來訓練多 個不同的智能體[65] ,或解決多個不同的目標任務。

4 結束語

該文對基于課程學習的深度強化學習進行了回 顧,由淺入深地對課程學習進行了分析,介紹了課程學 習的概念理論、經典算法、研究進展和發展展望等,從 基于網絡優化的課程學習、基于多智能體合作的課程 學習、基于能力評估的課程學習、基于功能函數的課程 學習四個角度對強化學習中的課程學習進行了分類梳 理、對比分析,最后對基于課程學習的深度強化學習的 未來展望進行簡要分析。 根據當前深度強化學習中存在的狀態空間復雜、 維數災難、學習時間長等問題,課程學習會是未來的一 個發展方向。 課程學習算法可以將目標任務分解成多 個子任務,結合大多數的強化學習算法,使用多種傳輸 機制以加速強化學習進程,大大提高了學習探索效率 和通用性。 最后,目前課程算法在大規模多智能體場 景的研究進展緩慢,其主要原因在于多智能體場景的 復雜性。 然而大規模多智能體場景更加貼近現實,優 質的課程學習算法能夠在很大程度上提高學習探索的 效率。 因此,相信課程學習算法會成為深度強化學習 的熱門方向,加快深度強化學習的發展速度。

付費5元查看完整內容

相關內容

強化學習(RL)是機器學習的一個領域,與軟件代理應如何在環境中采取行動以最大化累積獎勵的概念有關。除了監督學習和非監督學習外,強化學習是三種基本的機器學習范式之一。 強化學習與監督學習的不同之處在于,不需要呈現帶標簽的輸入/輸出對,也不需要顯式糾正次優動作。相反,重點是在探索(未知領域)和利用(當前知識)之間找到平衡。 該環境通常以馬爾可夫決策過程(MDP)的形式陳述,因為針對這種情況的許多強化學習算法都使用動態編程技術。經典動態規劃方法和強化學習算法之間的主要區別在于,后者不假設MDP的確切數學模型,并且針對無法采用精確方法的大型MDP。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

深度強化學習是目前機器學習領域中重要的研究分支之一,它可以通過直接與環境進行交互實現端到端的學習,對高維度和大規模的問題有著很好的解決能力.雖然深度強化學習已經取得了矚目的成果,但其仍面臨著對環境探索能力不足、魯棒性差、容易受到由欺騙性獎勵導致的欺騙性梯度影響等問題.進化算法普遍具有較好的 全局搜索能力、良好的魯棒性和并行性等優點,因此將進化算法與深度強化學習結合用于彌補深度強化學習不足 的方法成為了當前研究的熱點.該文主要關注進化算法在無模型的深度強化學習方法中的應用,首先簡單介紹了 進化算法和強化學習基本方法,之后詳細闡述了兩類結合進化算法的強化學習方法,分別是進化算法引導策略搜 索的強化學習和結合進化算法的深度強化學習,同時對這些方法進行了對比與分析,最后對該領域的研究重點和 發展趨勢進行了探究. 長期以來,強化學習都是機器學習方法中不可 或缺的一部分,在國際上也一直是機器學習領域中 炙手可熱的研究分支.在強化學習中,智能體首先根 據環境狀態進行決策從而產生動作,之后通過產生 的動作與環境進行交互獲得強化信號,調整產生決 策的函數映射,使得智能體能夠選擇獲得環境最大 獎勵的決策方案.智能體經過長期與環境的交互,不 斷向累積回報最大的方向優化策略,最終使累積回 報盡可能地最大化.2013年,DeepMind團隊的 Mnih 等人首先將 傳統強化學習中的Q-Learning算法[1]與深度神經網 絡相結合,并提出了深度Q 網絡(Deep Q-Network, DQN)算法[23],使用 DQN 算法訓練的智能體在Atari游戲中取得了超過人類得分的驚人表現.這一成 果開拓了深度強化學習這一新的方向,并成為了當今人工智能領 域新的研究熱點.深度強化學習是一種端到端的學習方法,它不需要標記的數據作為輸入,而是通過與環境進行交互獲取原始輸入信息,從而學習動作策略,通過不斷的試錯形成具有強大學習能力的智能體[4].2016年,DeepMind團隊使用深度強化學習訓練的AlphaGo智能體[5]擊敗了人類最頂尖的圍棋 選手,是機器學習領域的重大標志性事件,使得深度強化學習成為研究者們關注的焦點.目前深度強化 學習在機器博弈[57]、機器人控制[8]、自然語言處理[9]、最優控制[10]和計算機視覺[1]等領域中取得了廣泛的應用,被認為是通向通用人工智能的重要方 法之一[12].

付費5元查看完整內容

南京大學最新《基于模型的強化學習》綜述論文,值得關注!

強化學習(RL)通過與環境交互的試錯過程來解決順序決策問題。雖然RL在允許大量試錯的復雜電子游戲中取得了杰出的成功,但在現實世界中犯錯總是不希望的。為了提高樣本效率從而減少誤差,基于模型的強化學習(MBRL)被認為是一個有前途的方向,它建立的環境模型中可以進行試錯,而不需要實際成本。本文對MBRL的研究現狀進行了綜述,并著重介紹了近年來研究的進展。對于非表格環境,學習到的環境模型與實際環境之間存在泛化誤差。因此,分析環境模型中策略訓練與實際環境中策略訓練的差異,對算法設計、模型使用和策略訓練具有重要的指導意義。此外,我們還討論了離線在線學習、目標條件在線學習、多智能體在線學習和元在線學習等基于模型的在線學習技術的最新進展。此外,我們還討論了MBRL在實際任務中的適用性和優勢。最后,我們討論了MBRL未來的發展前景。我們認為MBRL在實際應用中具有巨大的潛力和優勢,但這些優勢往往被忽視,希望本文的綜述能夠吸引更多關于MBRL的研究。

強化學習(Reinforcement learning, RL)研究了提高自主智能體序列決策性能的方法[Sutton and Barto, 2018]。由于深度RL在圍棋和電子游戲中的成功展示了超越人類的決策能力,因此將其應用范圍擴展到現實任務中是非常有意義的。通常,深度RL算法需要大量的訓練樣本,導致樣本復雜度很高。在一般的RL任務中,特定算法的樣本復雜度是指學習一個近似最優策略所需的樣本量。特別地,與監督學習范式從歷史標記數據中學習不同,典型的RL算法需要通過在環境中運行最新的策略來獲得交互數據。一旦策略更新,基礎數據分布(正式的入住率測量[Syed et al., 2008])就會發生變化,必須通過運行策略再次收集數據。因此,具有高樣本復雜度的RL算法很難直接應用于現實世界的任務中,因為在這些任務中,試錯代價很高。

因此,近年來深度強化學習(deep reinforcement learning, DRL)研究的一個主要重點是提高樣本效率[Yu, 2018]。在不同的研究分支中,基于模型的強化學習(MBRL)是最重要的方向之一,人們普遍認為它具有極大的潛力使RL算法顯著提高樣本效率[Wang et al., 2019]。這種信念直觀地來自于對人類智慧的類比。人類能夠在頭腦中擁有一個想象的世界,在這個世界中,隨著不同的行動,事情會如何發生可以被預測。通過這種方式,可以根據想象選擇適當的行動,這樣就可以降低反復試驗的成本。MBRL中的短語模型是期望扮演與想象相同角色的環境模型。

在MBRL中,環境模型(或簡稱為模型)指的是學習智能體與之交互的環境動態的抽象。RL中的動態環境通常被表述為一個馬爾可夫決策過程(MDP),用元組(S, A, M, R, γ)表示,其中S, A和γ分別表示狀態空間、行動空間和未來獎勵的折扣因子,M: S × A→S表示狀態轉移動力學,R: S × A→R表示獎勵函數。通常情況下,給定狀態和行為空間以及折扣因子,環境模型的關鍵組成部分是狀態轉移動力學和獎勵函數。因此,學習模型對應于恢復狀態轉移動力學M和獎勵函數r。在許多情況下,獎勵函數也被明確定義,因此模型學習的主要任務是學習狀態轉移動力學[Luo et al., 2018, Janner et al., 2019]。

有了環境模型,智能體就有了想象的能力。它可以與模型進行交互,以便對交互數據進行采樣,也稱為仿真數據。理想情況下,如果模型足夠準確,可以在模型中學習到一個好的策略。與無模型強化學習(model-free reinforcement learning, MFRL)方法相比,智能體只能使用從與真實環境的交互中采樣的數據,稱為經驗數據,MBRL方法使智能體能夠充分利用學習模型中的經驗數據。值得注意的是,除了MBRL,還有其他一些方法試圖更好地利用經驗數據,如off-policy算法(使用重放緩沖區記錄舊數據)和actor-critic算法(通過學習評論家來促進策略更新)。圖1描述了不同類型的RL結構。圖1(a)是最簡單的on-policy RL,其中智能體使用最新的數據來更新策略。在off-policy中,如圖1(b)所示,代理在重放緩沖區中收集歷史數據,在重放緩沖區中學習策略。在行動者-評論者RL中,如1(c)所示,智能體學習評論者,其是長期回報的價值函數,然后學習批評者輔助的策略(行動者)。如圖1(d)所示,MBRL顯式地學習一個模型。與策略外RL相比,MBRL重構了狀態轉移的動態過程,而策略外RL只是簡單地使用重放緩沖區來更穩健地估計值。雖然價值函數或批評的計算涉及到轉移動力學的信息,但MBRL中的學習模型與策略解耦,因此可以用于評估其他策略,而價值函數與抽樣策略綁定。此外,請注意,非策略、演員-評論者和基于模型是三個并行的結構,圖1(e)顯示了它們的可能組合。

RL算法的體系結構。圖中顯示了RL的訓練迭代,重點是如何利用交互數據。

通過足夠準確的模型,可以直觀地看到MBRL比MFRL產生更高的樣本效率,這一點在最近的理論研究[Sun el.,2019年]和經驗研究[Janner et al.,2019年,Wang et al.,2019年]的視角都表明了這一點。然而,在大量具有相對復雜環境的DRL任務中,要學習一個理想的模型并非易事。因此,我們需要仔細考慮模型學習和模型使用的方法。

在這一綜述中,我們對基于模型的強化學習方法進行了全面的綜述。首先,我們關注模型是如何在基本設置中學習和使用的,如第3節的模型學習和第4節的模型使用。對于模型學習,我們從經典的表格表示模型開始,然后使用神經網絡等近似模型,我們回顧了在面對復雜環境時的理論和關鍵挑戰,以及減少模型誤差的進展。對于模型的使用,我們將文獻分為兩部分,即用于軌跡采樣的黑箱模型rollout和用于梯度傳播的白箱模型。將模型使用作為模型學習的后續任務,我們還討論了在模型學習和模型使用之間建立橋梁的嘗試,即價值感知模型學習和策略感知模型學習。此外,我們簡要回顧了基于模型的方法在其他形式的強化學習中的組合,包括離線強化學習、目標條件強化學習、多智能體強化學習和元強化學習。我們還討論了MBRL在現實任務中的適用性和優勢。最后,我們對MBRL的研究前景和未來發展趨勢進行了展望。

付費5元查看完整內容

近年來,深度強化學習的取得了飛速發展,為了提高深度強化學習處理高維狀態空間或動態復雜環境的能力,研究者將記憶增強型神經網絡引入到深度強化學習,并提出了不同的記憶增強型深度強化學習算法,記憶增強型深度強化學習已成為當前的研究熱點.本文根據記憶增強型神經網絡類型,將記憶增強型深度強化學習分為了4類:基于經驗回放的深度強化學習、基于記憶網絡的深度強化學習算法、基于情景記憶的深度強化學習算法、基于可微分計算機的深度強化學習.同時,系統性地總結和分析了記憶增強型深度強化學習的一系列研究成果存在的優勢和不足.另外,給出了深度強化學習常用的訓練環境.最后,對記憶增強型深度強化學習進行了展望,指出了未來研究方向.

//xwxt.sict.ac.cn/CN/volumn/current_abs.shtml#

付費5元查看完整內容

深度學習在大量領域取得優異成果,但仍然存在著魯棒性和泛化性較差、難以學習和適應未觀測任務、極其依賴大規模數據等問題.近兩年元學習在深度學習上的發展,為解決上述問題提供了新的視野.元學習是一種模仿生物利用先前已有的知識,從而快速學習新的未見事物能力的一種學習定式.元學習的目標是利用已學習的信息,快速適應未學習的新任務.這與實現通用人工智能的目標相契合,對元學習問題的研究也是提高模型的魯棒性和泛化性的關鍵.近年來隨著深度學習的發展,元學習再度成為熱點,目前元學習的研究百家爭鳴、百花齊放. 本文從元學習的起源出發,系統地介紹元學習的發展歷史,包括元學習的由來和原始定義,然后給出當前元學習的通用定義,同時總結當前元學習一些不同方向的研究成果,包括基于度量的元學習方法、基于強泛化新的初始化參數的元學習方法、基于梯度優化器的元學習方法、基于外部記憶單元的元學方法、基于數據增強的元學方法等. 總結其共有的思想和存在的問題,對元學習的研究思想進行分類,并敘述不同方法和其相應的算法.最后論述了元學習研究中常用數據集和評判標準,并從元學習的自適應性、進化性、可解釋性、連續性、可擴展性展望其未來發展趨勢.

引言

隨著計算設備并行計算性能的大幅度 進步,以及近些年深度神經網絡在各個領域 不斷取得重大突破,由深度神經網絡模型衍 生而來的多個機器學習新領域也逐漸成型, 如強化學習、深度強化學習[1] [2] 、深度監督 學習等。在大量訓練數據的加持下,深度神 經網絡技術已經在機器翻譯、機器人控制、 大數據分析、智能推送、模式識別等方面取 得巨大成果[3] [4] [5] 。

實際上在機器學習與其他行業結合的 過程中,并不是所有領域都擁有足夠可以讓 深度神經網絡微調參數至收斂的海量數據, 相當多領域要求快速反應、快速學習,如新 興領域之一的仿人機器人領域,其面臨的現 實環境往往極為復雜且難以預測,若按照傳 統機器學習方法進行訓練則需要模擬所有 可能遇到的環境,工作量極大同時訓練成本 極高,嚴重制約了機器學習在其他領域的擴 展,因此在深度學習取得大量成果后,具有 自我學習能力與強泛化性能的元學習便成 為通用人工智能的關鍵。

元學習(Meta-learning)提出的目的是 針對傳統神經網絡模型泛化性能不足、對新 種類任務適應性較差的特點。在元學習介紹 中往往將元學習的訓練和測試過程類比為 人類在掌握一些基礎技能后可以快速學習并適應新任務,如兒童階段的人類也可以快 速通過一張某動物照片學會認出該動物,即 機 器 學 習 中 的 小 樣 本 學 習 ( Few-shot Learning)[6] [7] ,甚至不需要圖像,僅憑描 述就可學會認識新種類,對應機器學習領域 中的(Zero-shot Learning)[8] ,而不需要大 量該動物的不同照片。人類在幼兒階段掌握 的對世界的大量基礎知識和對行為模式的 認知基礎便對應元學習中的“元”概念,即一 個泛化性能強的初始網絡加上對新任務的 快速適應學習能力,元學習的遠期目標為通 過類似人類的學習能力實現強人工智能,當 前階段體現在對新數據集的快速適應帶來 較好的準確度,因此目前元學習主要表現為 提高泛化性能、獲取好的初始參數、通過少 量計算和新訓練數據即可在模型上實現和 海量訓練數據一樣的識別準確度,近些年基 于元學習,在小樣本學習領域做出了大量研 究[9] [10] [11] [12] [13] [14] [15] [16] [17] ,同時為模擬 人類認知,在 Zero-shot Learning 方向也進行 了大量探索[18] [19] [20] [21] [22] 。

在機器學習盛行之前,就已產生了元學習的相關概念。當時的元學習還停留在認知 教育科學相關領域,用于探討更加合理的教 學方法。Gene V. Glass 在 1976 年首次提出 了“元分析”這一概念[23] ,對大量的分析結 果進行統計分析,這是一種二次分析辦法。G Powell 使用“元分析”的方法對詞匯記憶 進行了研究[24] ,指出“強制”和“誘導”意象有 助于詞匯記憶。Donald B.Maudsley 在 1979 年首次提出了“元學習”這一概念,將其描述 為“學習者意識到并越來越多地控制他們已 經內化的感知、探究、學習和成長習慣的過 程”,Maudsley 將元學習做為在假設、結構、 變化、過程和發展這 5 個方面下的綜合,并 闡述了相關基本原則[25] 。BIGGS J.B 將元學 習描述為“意識到并控制自己的學習的狀 態” [26] ,即學習者對學習環境的感知。P Adey 將元學習的策略用在物理教學上[27] , Vanlehn K 探討了輔導教學中的元學習方法 [28] 。從元分析到元學習,研究人員主要關 注人是如何意識和控制自己學習的。一個具 有高度元學習觀念的學生,能夠從自己采用 的學習方法所產生的結果中獲得反饋信息,進一步評價自己的學習方法,更好地達到學 習目標[29] 。隨后元學習這一概念慢慢滲透 到機器學習領域。P.Chan 提出的元學習是一 種整合多種學習過程的技術,利用元學習的 策略組合多個不同算法設計的分類器,其整 體的準確度優于任何個別的學習算法[30] [31] [32] 。HilanBensusan 提出了基于元學習的決 策樹框架[33] 。Vilalta R 則認為元學習是通 過積累元知識動態地通過經驗來改善偏倚 的一種學習算法[34] 。

Meta-Learning 目前還沒有確切的定義, 一般認為一個元學習系統需結合三個要求:系統必須包含一個學習子系統;利用以前學 習中提取的元知識來獲得經驗,這些元知識 來自單個數據集或不同領域;動態選擇學習偏差。

元學習的目的就是為了設計一種機器學習模型,這種模型有類似上面提到的人的 學習特性,即使用少量樣本數據,快速學習 新的概念或技能。經過不同任務的訓練后, 元學習模型能很好的適應和泛化到一個新任務,也就學會了“Learning to learn”。

付費5元查看完整內容

近年來, 深度強化學習(Deep reinforcement learning, DRL)在諸多復雜序貫決策問題中取得巨大突破.由于融合了深度學習強大的表征能力和強化學習有效的策略搜索能力, 深度強化學習已經成為實現人工智能頗有前景的學習范式.然而, 深度強化學習在多Agent系統的研究與應用中, 仍存在諸多困難和挑戰, 以StarCraft Ⅱ為代表的部分觀測環境下的多Agent學習仍然很難達到理想效果.本文簡要介紹了深度Q網絡、深度策略梯度算法等為代表的深度強化學習算法和相關技術.同時, 從多Agent深度強化學習中通信過程的角度對現有的多Agent深度強化學習算法進行歸納, 將其歸納為全通信集中決策、全通信自主決策、欠通信自主決策3種主流形式.從訓練架構、樣本增強、魯棒性以及對手建模等方面探討了多Agent深度強化學習中的一些關鍵問題, 并分析了多Agent深度強化學習的研究熱點和發展前景.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c180372

付費5元查看完整內容

摘要

本文綜述了遷移學習在強化學習問題設置中的應用。RL已經成為序列決策問題的關鍵的解決方案。隨著RL在各個領域的快速發展。包括機器人技術和游戲,遷移學習是通過利用和遷移外部專業知識來促進學習過程來幫助RL的一項重要技術。在這篇綜述中,我們回顧了在RL領域中遷移學習的中心問題,提供了一個最先進技術的系統分類。我們分析他們的目標,方法,應用,以及在RL框架下這些遷移學習技術將是可接近的。本文從RL的角度探討了遷移學習與其他相關話題的關系,并探討了RL遷移學習的潛在挑戰和未來發展方向。

關鍵詞:遷移學習,強化學習,綜述,機器學習

介紹

強化學習(RL)被認為是解決連續決策任務的一種有效方法,在這種方法中,學習主體通過與環境相互作用,通過[1]來提高其性能。源于控制論并在計算機科學領域蓬勃發展的RL已被廣泛應用于學術界和工業界,以解決以前難以解決的任務。此外,隨著深度學習的快速發展,應用深度學習服務于學習任務的集成框架在近年來得到了廣泛的研究和發展。DL和RL的組合結構稱為深度強化學習[2](Deep Reinforcement Learning, DRL)。

DRL在機器人控制[3]、[4]、玩[5]游戲等領域取得了巨大的成功。在醫療保健系統[6]、電網[7]、智能交通系統[8]、[9]等領域也具有廣闊的應用前景。

在這些快速發展的同時,DRL也面臨著挑戰。在許多強化學習應用中,環境模型通常是未知的,只有收集到足夠的交互經驗,agent才能利用其對環境的知識來改進其性能。由于環境反饋的部分可觀察性、稀疏性或延遲性以及高維觀察和/或行動空間等問題,學習主體在沒有利用任何先驗知識的情況下尋找好的策略是非常耗時的。因此,遷移學習作為一種利用外部專業知識來加速學習過程的技術,在強化學習中成為一個重要的課題。

在監督學習(SL)領域[10]中,TL得到了廣泛的研究。與SL場景相比,由于MDP環境中涉及的組件更多,RL中的TL(尤其是DRL中的TL)通常更復雜。MDP的組件(知識來自何處)可能與知識轉移到何處不同。此外,專家知識也可以采取不同的形式,以不同的方式轉移,特別是在深度神經網絡的幫助下。隨著DRL的快速發展,以前總結用于RL的TL方法的努力沒有包括DRL的最新發展。注意到所有這些不同的角度和可能性,我們全面總結了在深度強化學習(TL in DRL)領域遷移學習的最新進展。我們將把它們分成不同的子主題,回顧每個主題的理論和應用,并找出它們之間的聯系。

本綜述的其余部分組織如下:在第2節中,我們介紹了強化學習的背景,關鍵的DRL算法,并帶來了這篇綜述中使用的重要術語。我們還簡要介紹了與TL不同但又緊密相關的相關研究領域(第2.3節)。

在第3節中,我們采用多種視角來評價TL方法,提供了對這些方法進行分類的不同方法(第3.1節),討論了遷移源和目標之間的潛在差異(第3.2節),并總結了評價TL有效性的常用指標(第3.3節)。

第4節詳細說明了DRL領域中最新的TL方法。特別是,所討論的內容主要是按照遷移知識的形式組織的,如成型的獎勵(4.1節)、先前的演示(4.2節)、專家策略(4.3節),或者按照轉移發生的方式組織的,如任務間映射(4.4節)、學習可轉移表示(4.5節和4.6節)等。我們在第5節討論了TL在DRL中的應用,并在第6節提供了一些值得研究的未來展望。

付費5元查看完整內容

指南簡介

最近神經網絡在計算機視覺、機器翻譯和時間序列預測等問題上得到了重大突破,但它們也可以與強化學習算法相結合,創造出像AlphaGo這樣令人震驚的東西。強化學習指的是面向目標的算法,它學習如何獲得復雜的目標(目標)或在許多步驟中沿著特定的維度最大化;例如,在許多動作中最大化在游戲中贏得的分數。他們可以從一塊白板開始,在適當的條件下,他們可以達到超人的表現。就像一個被鞭打和糖果激勵的孩子,當他們做出錯誤的決定時,這些算法會受到懲罰,當他們做出正確的決定時,這些算法會得到獎勵——這就是強化。包含深度學習的強化算法可以在圍棋游戲中擊敗世界冠軍,也可以在玩許多阿塔里電子游戲的人類專家。雖然這聽起來微不足道,但與他們之前的成就相比,這是一個巨大的進步,目前的技術正在迅速進步。強化學習解決了將即時行為與其產生的延遲回報關聯起來的難題。與人類一樣,強化學習算法有時需要等待一段時間才能看到決策的成果。它們在延遲返回的環境中運行,在這種環境中,很難理解在許多時間步驟中哪些操作會導致哪些結果。強化學習算法可以期望在更模糊、真實的環境中執行得越來越好,同時可以從任意數量的可能動作中進行選擇,而不是從視頻游戲的有限選項中進行選擇。也就是說,隨著時間的推移,我們期望它們對實現現實世界中的目標是有價值的。Skymind將深度強化學習應用于真實世界用例的模擬,以幫助企業優化他們如何建立工廠、員工呼叫中心、建立倉庫和供應鏈以及管理流量。

內容目錄

  • 強化學習定義
  • 強化學習的領域選擇
  • 狀態-行為對&報酬的復概率分布
  • 機器學習與時間的關系
  • 神經網絡與深度強化學習
  • 模擬與深度強化學習
  • 腳注
付費5元查看完整內容
北京阿比特科技有限公司