目標檢測是用于軍事應用的計算機視覺的最流行領域之一。在這種情況下,目標檢測模型的使用方式之一是用于戰場上的實時目標識別。許多這些模型開始被納入士兵使用的技術中(即無人駕駛地面車輛和平視顯示器),以幫助他們識別周圍可能代表對其安全的潛在威脅的目標。通過正確檢測和分類戰場上的危險目標,這些模型能夠為士兵提供關于他們周圍環境的有用信息,以便他們能夠就如何進行任務做出決定。
目前的目標檢測模型出現的一個主要問題是,它們難以檢測到只有部分可見或被遮擋的目標。在這些情況下,目標探測模型往往根本無法探測到這些目標。它們也可能檢測到部分被遮擋的目標,但卻用錯誤的目標類別對它們進行分類。遮擋是許多研究人員在開發和訓練他們的目標檢測模型時沒有考慮的一個條件,盡管它在現實世界中很常見。為了確保士兵的安全,以及改善未來目標檢測模型的狀況,有必要確定當前的目標檢測模型在面對這種情況時的工作情況。
這項工作的主要目的是對三種最先進的目標檢測模型進行基線評估,這些模型是在一個包含許多部分遮擋目標的流行目標識別數據集上進行的。這樣做之后,對每個模型的結果進行了比較。本實驗中使用的模型是Gonzalez-Garcia模型、Detectron的Faster R-CNN和YOLOv5。它們被訓練和測試的數據集是流行的模式分析、統計建模和計算學習視覺對象類(PASCAL VOC)挑戰數據集之一,特別是VOC 2010。本報告首先介紹了每個目標檢測模型和VOC數據集的概況。然后給出了關于實驗的更多細節,以及結果和結論。
人工智能解決方案在陸軍野戰應用中的使用將在很大程度上依賴于機器學習(ML)算法。當前的ML算法需要大量與任務相關的訓練數據,以使其在目標和活動識別以及高級決策等任務中表現出色。戰場數據源可能是異構的,包含多種傳感模式。目前用于訓練ML方法的開源數據集在內容和傳感模式方面都不能充分反映陸軍感興趣的場景和情況。目前正在推動使用合成數據來彌補與未來軍事多域作戰相關的真實世界訓練數據的不足。然而,目前還沒有系統的合成數據生成方法,能夠在一定程度上保證在此類數據上訓練的ML技術能夠改善真實世界的性能。與人工生成人類認為逼真的語音或圖像相比,本文為ML生成有效合成數據提出了更深層次的問題。
人工智能(AI)是美國國防現代化的優先事項。美國國防部的人工智能戰略指示該部門加快采用人工智能并創建一支適合時代的部隊。因此,它自然也是陸軍現代化的優先事項。從陸軍多域作戰(MDO)的角度來看,人工智能是解決問題的重要因素,而MDO是建立在與對手交戰的分層對峙基礎上的。雖然人工智能本身沒有一個簡明和普遍接受的定義,但國防部人工智能戰略文件將其稱為 "機器執行通常需要人類智能的任務的能力--例如,識別模式、從經驗中學習、得出結論、進行預測或采取行動--無論是以數字方式還是作為自主物理系統背后的智能軟件"。這句話的意思是,當機器在沒有人類幫助的情況下獨立完成這些任務時,它就表現出了智能。過去十年中出現的人工智能解決方案的一個重要方面是,它們絕大多數都符合模式識別模式;在大多數情況下,它們根據經過訓練的人工神經網絡(ANN)對相同輸入數據的輸出結果,將輸入數據分配到數據類別中。具體來說,深度學習神經網絡(DNN)由多層人工神經元和連接權重組成,最初在已知類別的大量數據上進行訓練以確定權重,然后用于對應用中的實際輸入數據進行分類。因此,機器學習(ML),即自動機(這里指DNN)在訓練階段學習模式的過程,一直是一個主導主題。事實上,DNN在計算機視覺領域的成功是商業和政府部門加大對人工智能關注和投資的原因。訓練算法和軟件開發工具(如tensorflow)的進步、圖形處理器(GPU)等計算能力的可用性,以及通過社交媒體等途徑獲取大量數據,使得深度學習模型在許多應用中得到了快速探索。
在監督學習中,人類專家創建一組樣本來訓練ML算法,訓練數據與實際應用數據的接近程度對人工智能方法的性能起著重要作用。將ML模型應用于軍事問題的主要瓶頸是缺乏足夠數量的代表性數據來訓練這些模型。有人提出使用合成數據作為一種變通辦法。合成數據集具有某些優勢:
然而,最關鍵的問題是在合成數據或混合合成和真實數據上訓練ML模型是否能使這些模型在真實數據上表現良好。美國陸軍作戰能力發展司令部陸軍研究實驗室的研究人員和合作者使用合成生成的人類視頻進行機器人手勢識別所獲得的初步結果表明,在合成數據和真實數據混合的基礎上進行訓練可以提高ML手勢識別器的性能。然而,并沒有普遍或分類的結果表明,當全部或部分使用合成數據進行訓練時,真實世界的ML性能會得到一致的提高。因此,有必要進行系統調查,以確定使用合成數據訓練ML方法的可信度。我們有理由假設,合成數據在提高ML性能方面的有效性將受到實際應用領域、合成數據與真實數據的保真度、訓練機制以及ML方法本身等因素的影響。合成數據與真實數據的保真度反過來又取決于數據合成方法,并提出了通過適當指標評估保真度的問題。以圖像為例,合成數據訓練的ML方法的性能與人類視覺感知的真實場景的保真度是否成正比并不清楚。有可能數據的一些關鍵特征對于ML的性能比那些影響人類感知的特征更為重要。組織這次陸軍科學規劃和戰略會議(ASPSM)的一個主要目的是讓合成數據生成、人工智能和機器學習(AI & ML)以及人類感知方面的頂尖學術界和國防部專家討論這些問題。會議的技術重點主要是圖像和視頻數據,反映了組織者在計算機視覺和場景感知方面的任務領域。
根據上一節提出的問題,會議圍繞三個主題展開:
1.人類的學習和概括: 人類可以從最小的抽象和描述概括到復雜的對象。例如,在許多情況下,觀察一個物體的卡通圖像或線描,就足以讓人類在真實場景中識別出實際的三維物體,盡管后者比卡通圖像或線描具有更復雜的屬性。 這遠遠超出了當前人工智能和ML系統的能力。如果能夠開發出這種能力,將大大減輕數據合成機器的負擔,確保真實數據的所有屬性都嚴格保真。這個例子也說明了一個事實,即用于訓練ML模型的合成數據生成研究與提高ML模型本身的能力密切相關。因此,這項研究的重點是探索人類和動物的學習,以啟發ML和數據合成的新方法。
2.數據合成方法和驗證: 大多數應用ML方法的領域都有針對其領域的數據合成技術和工具。游戲平臺提供了一個流行的視頻合成商業范例。問題是如何評估特定領域中不同合成方法的性能。顯然,我們必須確定執行此類評估的指標或標準。通常情況下,合成工具的作者也會就工具的性能或功效發表聲明。驗證將是評估此類聲明的過程。本研究的目的是探討指導合成和驗證過程的原則。合成技術的例子包括基于計算機圖形的渲染器(如電影中使用的)、基于物理的模擬(如紅外圖像)和生成模型(目前傾向于基于神經網絡)。
3.領域適應挑戰: ML中的領域適應是指使用一個領域(稱為源領域)的數據訓練ML模型,然后將ML應用于不同但相關領域(稱為目標領域)的數據。例如,使用主要為民用車輛的源圖像數據集訓練識別車輛的ML算法,然后使用訓練好的算法識別主要為軍用車輛的目標數據集中的車輛。在使用合成數據進行訓練時,它們通常構成源域,而實際應用數據則是目標域。本次會議的重點是確定和討論有效領域適應中的關鍵問題和挑戰。
ASPSM的審議分四次會議進行。第一天的兩場會議討論了前兩個主題。第二天的第一場會議討論第三個主題,第二場會議在三個主題下進行分組討論。ASPSM兩天的日程安排分別如圖1和圖2所示。從圖中可以看出,每個主題會議首先由該領域的學術專家進行40分鐘的主講,然后由大學專家進行兩個20分鐘的講座。隨后由來自學術界和國防部的專家組成的小組進行討論。最后一個環節是分組討論,與會者可以討論與主題相關的各個方面。
麻省理工學院電子工程與計算機科學系的Antonio Torralba教授在第一分會場發表了關于人類學習與泛化的主題演講。他的演講題目是 "從視覺、觸覺和聽覺中學習",深入探討了深度學習方法如何在不使用大量標注訓練數據的情況下發現有意義的場景表征。舉例說明了他們的DNN如何在視覺場景和環境中的聲音之間建立聯系。讀者可參閱Aytar等人關于這一主題的代表性文章。
同樣來自麻省理工學院的James DiCarlo博士的下一個演講題目是 "視覺智能逆向工程"。他將 "逆向工程 "定義為根據對行為的觀察和對輸入的反應推斷大腦的內部過程,將 "正向工程 "定義為創建ANN模型,以便在相同輸入的情況下產生相應的行為。他的研究小組的一個目標是建立神經認知任務的性能基準,人類或其他靈長類動物以及ML模型可以同時達到這些基準。他的演講展示了大腦處理模型如何適應ANN實現的初步結果,并提出了ANN通過結合這些適應密切模擬人類行為,進而準確描述大腦功能的理由。
第一場會議的第三場講座由加州大學伯克利分校的Jitendra Malik教授主講,題為 "圖靈的嬰兒"。這個題目也許是指最早的電子存儲程序計算機之一,綽號 "寶貝",其創造者之一受到了阿蘭-圖靈的啟發。馬利克教授首先引用了圖靈的觀點:與其創建一個模擬成人思維的程序,不如從模擬兒童思維開始。從本質上講,這意味著創造一種人工智能,通過與環境互動以及向其他人工智能和人類學習來學習和成長。這被稱為具身機器智能。馬利克教授認為,監督學習本質上是處理靜態數據集,因此顯示了在精心策劃的時間點上運行的非實體智能。具體而言,他認為監督訓練方法不適合創建能夠提供人類水平的世界理解,特別是人類行為理解的人工智能。Malik教授介紹了 "Habitat",這是一個由他和他的合作者開發的平臺,用于嵌入式人工智能的研究。在隨后的小組討論中,與會人員討論了演講者所涉及的主題,以及與機器人學習和當前兒童智力發展模型相關的主題。
第二部分“數據合成:方法和驗證”以一個題為“學習生成還是生成學習?”,作者是斯坦福大學的Leonidas gu教授。在研究用于訓練ML的合成數據生成的動機中,他指出可以減輕大量人工注釋訓練數據的負擔。他的前提是,無論合成數據是用于訓練ML還是供人類使用,其生成效率和真實性都非常重要。不過,他表示其他質量指標還沒有得到很好的定義,需要進一步研究。他舉例說明了在混合合成數據和真實數據上訓練ML時,ML的物體識別性能有所提高,但他也承認很難得出可推廣的結論。
卡內基梅隆大學的Jessica Hodgins博士發表了第二場會議的第二個演講,題為 "生成和使用合成數據進行訓練"。演講展示了她的研究小組生成的精細合成場景。利用從真實場景到合成場景的風格轉移過程,她的研究小組創造了一些實例,說明在混合了大量風格適應的合成數據和一些真實數據的基礎上進行訓練的ML方法的性能優于僅在真實數據集或僅在合成數據集上進行訓練的方法。性能提高的原因在于風格轉移克服了合成數據集與真實數據集之間的 "分布差距"。
第二場會議的最后一場講座由加州大學伯克利分校的Trevor Darrell教授主講。他的演講題為 "生成、增強和調整復雜場景",分為三個部分。第一部分詳細介紹了演講者及其核心研究人員開發的一種名為 "語義瓶頸場景生成 "的技術,用于根據地面實況標簽合成場景。該技術可進一步與通過生成過程生成此類地面標簽的模型相結合。Azadi等人對該技術進行了詳細描述。 第二部分涉及增強和自我監督學習。發言人提出,當前的對比學習方法在合成增強數據時建立了不變量,而這些不變量可能是有益的,也可能是無益的。例如,建立旋轉不變性可能有利于識別場景中的花朵,但可能會阻礙對特定方向物體的有效識別。演講者介紹了他的研究小組考慮具有特定不變性的多種學習路徑的方法,并展示了與現有技術相比性能有所提高的結果。 第三部分介紹了一種名為 "Tent"(測試熵)的技術。其前提是DNN應用過程中遇到的數據分布可能與訓練數據不同,從而導致性能下降。因此,需要對DNN參數進行實時或測試時調整,以防止性能下降。Tent技術通過調整權重使DNN輸出的測量熵最小化來實現這一目標。演講者隨后用常用數據集展示了該技術相對于先前方法的改進性能。隨后的小組討論涉及合成方面的挑戰,尤其是紅外圖像方面的挑戰。
第二天的第三場會議以 "領域轉移的挑戰 "開始。約翰霍普金斯大學布隆伯格特聘教授Rama Chellappa博士發表了題為 "解決美國防部實際問題的綜合數據期望與最大化"的演講。演講首先回顧了過去二十年來國防部處理合成圖像的多個項目的歷史。他提出了一個重要論斷,即如果在合成過程中考慮到真實數據的物理特性,那么真實數據和合成數據之間的領域轉換就會減少。Chellappa教授還就領域自適應表示法提供了快速教程,涵蓋了正規數學方法以及較新的生成對抗網絡(GANs)。演講者及其核心研究人員開發的基于GAN的方法可以修改合成數據的分布,使之與目標分布相匹配。講座舉例說明了這種方法優于之前的非GAN方法。
佐治亞理工學院的Judy Hoffman教授發表了題為 "從多個數據源進行泛化的挑戰 "的演講。她考慮的問題是在模擬中學習模型,然后將模型應用于現實世界。她指出了四個挑戰: 生成、列舉、泛化和適應。發言人介紹了應對這些挑戰的幾種不同方法。具體來說,用于泛化的特定領域掩碼(DMG)方法通過平衡特定領域和領域不變特征表征來生成一個能夠提供有效領域泛化的單一模型,從而解決多源領域學習問題。
第三場會議的第三位也是最后一位演講者是波士頓大學的Kate Saenko教授,他的演講題目是 "圖像分類和分割的Sim2Real領域轉移的最新進展和挑戰"。Saenko教授延續了前兩場講座的主題,介紹了視覺領域適應的歷史,并探討了領域和數據集偏差問題。在糾正數據集偏差的不同方法中,講座詳細討論了領域適應。特別重要的是,Saenko教授及其合作者開發的技術能夠顯示合成到真實的適應性,就像從游戲引擎到真實數據一樣。隨后的小組討論提出了幾個有趣的問題,包括訓練域和測試域的不同,不是感興趣的對象不同,而是對象所處的環境不同,例如訓練時軍用車輛在沙漠環境中,而測試時則在熱帶植被背景中。
三個主題的分組討論同時進行。在 "人類學習與泛化 "分組討論中,首先討論了 "人類如何學習?"、"ML模型如何模仿人類過程?"以及 "合成數據如何實現這些過程?"等問題。從童年到青春期和成年期,學習和成長之間的關系成為關鍵點。其他被認為有助于人類學習的因素包括人類心理、情感、同時參與多維活動、記憶以及解除學習的能力。
關于 "數據綜合: 方法與驗證 "分論壇確定了數據合成的幾個問題,特別是圖像和視頻。主要問題涉及結合物理學的有用性、視覺外觀保真度與成本之間的權衡、保真度的衡量標準、保真度本身的重要性以及當前技術(包括GANs技術)的局限性。據觀察,合成圖像和視頻生成至少已有幾十年的歷史,但大多數產品要么是為視覺效果而設計,要么是為再現物理測量而設計(例如,紅外模擬中的輻射剖面)。它們并不適合用于ML培訓。提出的另一個問題是,合成的二維圖像必須與物體和環境的底層三維幾何圖形保持一致。還有人提出,能夠在特定的感興趣的環境中生成大量合成數據,可以作為第一道工序測試新的人工智能和ML方法,而不管這些方法是否能夠在真實數據中很好地工作。
專題3 "領域轉移挑戰 "的分組討論確定了MDO所需的關鍵人工智能能力,即從孤立學習到機器與人類之間的聯合或協作學習。會議還討論了在多種數據模式下同時訓練ML的聯合學習。人們認識到,這些領域的工作才剛剛開始。分組討論的牽頭人強調,需要向士兵明確說明基于人工智能的系統在特定情況下將會做什么。這引發了對系統魯棒性的討論。分組組長向ASPSM聽眾提供了討論摘要。
根據本次ASPSM的討論,我們確定了以下值得陸軍進一步進行科技投資的領域:
1.支持多模式互動學習的合成技術和數據集。與當前流行的捕捉 "時間瞬間 "的靜態數據集(如農村環境中的車輛圖像)相比,有必要開發更能代表支持持續學習的體現性體驗的模擬器,就像我們在人類身上看到的那樣,并實現對世界更豐富的表征。混合方法(如增強現實)也可將人類監督的優勢與合成環境的靈活性結合起來。
2.學習和合成因果關系和層次關系的算法和架構。最近的一些方法,如基于圖的卷積神經網絡,已經在學習空間和時間的層次關系(如物體-部件和因果關系)方面顯示出前景。鑒于在現實世界中收集和注釋此類數據的復雜性,合成數據的生成可能特別有用。識別層次關系是一般國防部和戰場情報分析的關鍵要素。
3.支持持續、增量、多模態學習的算法和架構。深度強化學習方法被成功地用于訓練虛擬或機器人代理的相關行動策略,如捕食者與獵物之間的相互作用。基于模仿的方法承認學習的社會性,通常讓代理與(通常是人類)教師合作學習新策略。這些類型的交互式持續學習可進一步與多模態學習(即融合來自多個傳感器的數據)相結合,以實現更豐富的世界表征,使其更穩健、更具通用性。同樣,在這一領域難以獲得大量經過整理的數據,這也為探索合成引擎提供了動力。
4.學習物理或具備相關物理領域知識的算法和架構。在許多領域(例如紅外光下的物體感知),從圖像感知和合成圖像需要了解世界的基本物理特性,例如光與材料之間的相互作用。然而,當前的深度學習模型缺乏這種物理知識。開發賦予ML物理領域知識的技術對這些系統的性能至關重要。
5.具有豐富中間表征的領域適應技術。為了縮小真實數據和合成數據之間的領域差距,必須進一步推動當前建立領域不變中間表征的趨勢,特別是使用語義詞典和生成式對抗網絡。能夠理解數據底層結構(如光照、旋轉、顏色)的表征更有可能成功抽象出合成數據中不重要的細節。
6.深入了解ML模型內部表征的方法,以及合成表征與真實表征的比較。網絡剖析技術 "打開 "了深度學習模型的隱藏層,允許解釋網絡中的每個階段正在學習哪些特定概念或其更細的方面。這些技術揭示了具有真實輸入和合成輸入的DNN的內部表征,有助于識別所學內容的關鍵差異,從而找到克服這些差異的解決方案。
為期兩天的虛擬ASPSM吸引了眾多美國防部科學家和工程師、頂尖學術專家以及科技項目管理人員的熱情參與。多學科的討論強化了這樣一種觀點,即開發用于訓練ML方法的生成合成數據的改進方法與理解和改進ML方法本身是分不開的。一個特別重要的需求是了解ML方法,尤其是當前的學習架構,是如何創建場景的內部表示的。另外兩個重要領域是:1)理解人類學習與ML世界中可能存在的學習之間的異同;2)多模態數據--從合成和ML的角度。我們預計近期國防部和學術研究人員將在本報告確定的領域加強合作。
傳感器信息推薦系統是一個確定并向終端用戶傳播高價值信息的軟件系統。該系統的主要組成部分是推薦服務器、戰術攻擊套件(TAK)服務器、安卓團隊感知套件(ATAK)和ATAK插件。作為一個實戰化的系統,每個組件都能在自己分散的實例上獨立運行。然而,在開發過程中,在同一平臺上運行系統的每個部分,以快速測試數據流是很有幫助的。在一個獨立的環境中運行所有的組件,向觀眾展示信息價值(VOI)系統,也是很有幫助的。本報告描述了在一個獨立的環境中部署這些組件的步驟,以便進行測試和開發。
系統結構如圖1所示。推薦服務器接收來自部署的傳感器的數據,并通過TAK服務器將來自傳感器的推薦信息對象發送到ATAK。
圖1 傳感器信息推薦系統工作流程中的TAK服務器
將前景目標從背景中分離出來是許多視頻處理管道的第一步。雖然現有的背景分離方法能夠充分解決許多技術難題,如光照變化、動態背景(如飄動的樹葉、揮舞的旗幟等)、相機抖動等),但它們在處理移動傳感器方面有局限性,而且計算復雜性也很高。這是未來智能系統的一個主要限制,因為最近流行的移動傳感器和小型平臺需要在尺寸、重量和功率(SWaP)限制下進行板載處理。
這項小企業創新研究(SBIR)工作進行了一些創新,以處理這些挑戰和解決最先進的限制: 這些創新包括:i)開發創新的數學模型和先進的算法,在此基礎上有效地處理小型平臺上的高效背景減除的挑戰;以及ii)開發移動傳感器和圖像形成的觀察幾何的數學模型,并利用三維世界中剛體運動的低等級約束來有效檢測獨立移動的目標。第二階段的工作開發了計算機視覺和機器學習算法,利用背景外觀和運動的低等級約束來區分前景區域和背景。背景外觀的低秩約束是基于理論和經驗結果,這些結果表明,在不同的變換(如光照變化)下,對應于特定目標的矢量圖像大約位于一個低維子空間上。此外,對運動的低秩約束利用了自由移動的傳感器的觀察幾何學來區分前景和背景運動。通過將傳感器運動與外觀模型相結合,所開發的方法能夠處理靜態和移動的相機。背景分離算法也被移植到移動設備上,以提供實時性能,并在標準和內部數據集上進行了評估。在該項目中開發的技術為低成本移動設備上穩健有效的自動計算機視覺提供了一個自然的框架和基礎。
擬議工作的首要目標是開發技術,在靜態和自由移動的視頻傳感器中使用移動處理器實現實時背景/前景分離。
圖1:提議的背景分離技術將使移動平臺上的視頻傳感器得到利用,并有廣泛的應用,包括:空中視頻的利用、增強現實和游戲、高分辨率視頻的邊緣處理、可穿戴傳感器和自主車輛。
視頻傳感器已經成為生活中所有領域中無處不在的信息來源(圖1)。從國防到商業到消費領域,它們正被越來越多地用于實現廣泛的應用。例如,固定和傾斜變焦(PTZ)相機通常被用來提供視覺監控、關鍵基礎設施安全、商業智能和建筑自動化。同樣,安裝在無人機平臺上的攝像機很容易成為情報、偵察和監視(ISR)數據和態勢感知的最關鍵來源之一。此外,世界各地的消費者正在從手持設備(如智能手機)和可穿戴設備(如谷歌眼鏡、GoPro等)產生大量的視頻數據。
這些傳感器產生的大量數據推動了對能夠從豐富的視頻數據中提取有用信息的自動化技術的需求。例如,自動視覺監控系統和空中視頻開發工具被廣泛用于檢測和跟蹤感興趣的目標,并從視頻中識別活動。然而,大多數現有的視覺分析系統都假定有大型的處理基礎設施(強大的PC、服務器、GPU等),因此不能輕易應用于許多新的移動傳感設備,或具有嚴格的尺寸、重量和功率(SWaP)限制的小型平臺。因此,有必要開發高效的計算機視覺技術,使其能夠使用易于與傳感設備集成的低功耗、低成本的移動計算平臺對視頻進行實時利用。
圖2:最先進的背景建模方法所使用的馬賽克(上)和基于體素(下)的表示方法在計算上成本非常高,對移動平臺來說不可行。
許多視頻處理管道的第一步是將前景目標與背景分離。這是通過背景分離算法完成的,該算法試圖通過自適應地學習和模擬背景的特征來識別視頻流中最相關的部分,并找到不符合學習模型的像素。作為自動視覺監控系統最關鍵的組成部分之一,背景分離問題已經在計算機視覺文獻中得到了廣泛的研究。人們提出了許多方法來解決其技術難題,如光照變化、動態背景(如飄動的樹葉、揮舞的旗幟、噴泉等)、攝像機抖動、陰影和移動攝像機等。雖然現有的方法相當善于處理其中的許多挑戰,但它們也有很高的計算復雜性(以像素數計),不適合移動平臺。另一方面,如今產生的很大一部分視頻數據是由移動傳感器捕獲的,例如,手持式智能手機、可穿戴設備(GoPro、谷歌眼鏡等)以及安裝在小型無人機上的傳感器。然而,大多數現有的背景分離工作都集中在視頻監控中使用的靜態和PTZ相機的視頻上。即使對于一些使用先進的在線優化和子空間估計技術[GK15, HBS12]進行快速背景分離的最新算法也是如此。因此,這些算法不能直接應用于來自移動傳感器的視頻。
那些試圖解決移動傳感器問題的方法也借鑒了靜態攝像機算法的基本方法。這些方法首先創建新的表征(圖2),以消除平臺運動的影響,例如,背景馬賽克(通過拼接后續幀的圖像生成)或明確的三維模型(使用結構-運動和立體技術創建)。然后,從靜態攝像機領域借來的背景分離技術被應用于這些新的表示。除了原始分離技術的復雜性之外,這種方法還為處理管道引入了更多計算上的復雜元素。例如,生成馬賽克所需的圖像拼接算法涉及非常昂貴的圖像扭曲(轉換)組件。同樣,如果不使用GPU進行繁重的并行處理,從運動中獲得結構和立體感的技術以及由此產生的三維體素代表就無法實時創建。
為了應對上述挑戰,Novateur Research Solutions和賓夕法尼亞大學的通用機器人、自動化、傳感和感知(GRASP)實驗室(以下簡稱Novateur團隊)在SBIR工作期間進行了多項數學創新。這些創新包括開發創新的數學模型以及先進的計算機視覺和機器學習技術,能夠有效地從各種場景的移動和靜止傳感器中分離背景和前景。
特別是,在第二階段的工作中,該團隊開發了代數模型,利用背景外觀的低等級約束以及運動來區分前景區域和背景。背景外觀的低秩約束是基于理論和經驗結果,這些結果表明,在不同的變換(如光照變化)下,對應于給定物體的矢量圖像大約位于一個低維子空間上。此外,對運動的低秩約束利用了自由移動的傳感器的觀察幾何,以區分前景和背景運動。然后,該團隊開發了基于代數優化(矩陣分解)和機器學習(神經網絡)的新型算法,利用這些約束從移動平臺上進行背景減除。
第一階段開發的背景分離技術是
因此,它們能夠使用各種低成本、低功耗和輕量級的處理單元在靜態和移動傳感器的高分辨率圖像中進行有效的背景分離。
在第二階段的研究和開發工作中,完成的主要目標包括
在移動傳感器視頻中高效在線提取多個移動目標的新型代數框架--在第一階段的工作中,Novateur團隊將發現和分割獨立移動物體的問題作為一個低等級的近似問題來解決。更具體地說,我們開發的技術涉及檢測和跟蹤各幀之間的特征,然后將這些跟蹤結果匯總到不完整的矩陣中,其中缺失的條目反映了這樣一個事實:隨著攝像機在空間中的移動,特征會隨著時間的推移而被遮擋。然后我們表明,我們可以利用這樣的假設,即大部分場景是剛性移動的,以及仿射模型的結構,該模型規定這些軌跡中的大部分必須位于高維空間的三維流形上。我們方法的下一個關鍵想法是利用在線不完全矩陣分解技術,快速有效地從測量中提取這個三維子空間結構。一旦這樣做了,獨立移動的障礙物就可以通過識別低等級模型的離群值來恢復,然后根據圖像中的接近程度將這些特征分組。第二階段的工作在第一階段模型的基礎上進一步發展,納入了子空間跟蹤[HBS12]和動態模式分解[GK15, KFB15],并利用背景模型的低秩屬性來實時提取前景像素。此外,第二階段的工作還開發了新的機器學習模型,利用低維約束將靜態的三維場景幾何與獨立移動的物體分開。
利用背景分離技術作為注意力集中機制,改進移動計算平臺上的移動目標檢測--第二階段工作開發了一種新型計算機視覺算法,能夠在移動平臺上檢測移動目標,如無人機。該算法結合了光流、深度神經網絡以及低等級約束,并為進一步處理任務提供了注意力集中機制。
測試和評估--Novateur團隊還利用標準基準數據集以及由真實世界場景組成的內部數據集,展示了所提出的背景分離技術的能力。該團隊還對提議的技術進行了定量和定性評估,其中包括對真實世界數據的性能特征和權衡分析。
實施端到端軟件,實現視頻中移動目標的穩健檢測--第二階段實施了一個基于ROS架構的端到端軟件,利用移動計算平臺對靜態和移動傳感器的視頻中的目標進行穩健檢測。
根據陸軍多域作戰(MDO)條令,從戰術平臺生成及時、準確和可利用的地理空間產品是應對威脅的關鍵能力。美國陸軍工程兵部隊、工程師研究與發展中心、地理空間研究實驗室(ERDC-GRL)正在進行6.2研究,以促進從戰術傳感器創建三維(3D)產品,包括全動態視頻、取景相機和集成在小型無人機系統(sUAS)上的傳感器。本報告描述了ERDCGRL的處理管道,包括定制代碼、開源軟件和商業現成的(COTS)工具,對戰術圖像進行地理空間校正,以獲得權威的基礎來源。根據美國國家地理空間情報局提供的地基數據,處理了來自不同傳感器和地點的四個數據集。結果顯示,戰術無人機數據與參考地基的核心登記從0.34米到0.75米不等,超過了提交給陸軍未來司令部(AFC)和陸軍采購、后勤和技術助理安全局(ASA(ALT))的簡報中描述的1米的精度目標。討論總結了結果,描述了解決處理差距的步驟,并考慮了未來優化管道的工作,以便為特定的終端用戶設備和戰術應用生成地理空間數據。
圖3. ERDC-GRL的自動GCP處理管道。輸入數據為JPEG格式的FMV/Drone圖像、參考/地基圖像和參考/地基高程。藍色方框代表地理空間數據,而綠色方框是處理和分析步驟。
在決策或推理網絡中進行適當的推理,需要指揮官(融合中心)對每個下屬的輸入賦予相對權重。最近的工作解決了在復雜網絡中估計智能體行為的問題,其中社會網絡是一個突出的例子。這些工作在各種指揮和控制領域具有相當大的實際意義。然而,這些工作可能受限于理想化假設:指揮官(融合中心)擁有所有下屬歷史全部信息,并且可以假設這些歷史信息之間具有條件統計獨立性。在擬議的項目中,我們打算探索更普遍的情況:依賴性傳感器、(可能的)依賴性的未知結構、缺失的數據和下屬身份被掩蓋/摻雜/完全缺失。對于這樣的動態融合推理問題,我們建議在一些方向上擴展成果:探索數據源之間的依賴性(物理接近或 "群體思維"),在推理任務和量化不一定匹配的情況下,采用有用的通信策略,甚至在每個測量源的身份未知的情況下,采用無標簽的方式--這是數據關聯問題的一種形式。
我們還認識到,對動態情況的推斷是關鍵目標所在。考慮到一個涉及測量和物理 "目標 "的傳統框架,這是一個熟悉的跟蹤問題。但是,來自目標跟蹤和多傳感器數據關聯的技術能否應用于提取非物理狀態(物理狀態如雷達觀察到的飛機)?一個例子可能是恐怖主義威脅或作戰計劃--這些都是通過情報報告和遙測等測量手段從多個來源觀察到的,甚至可能被認為包含了新聞或金融交易等民用來源。這些都不是標準數據,這里所關注的動態系統也不是通常的運動學系統。盡管如此,我們注意到與傳統的目標追蹤有很多共同點(因此也有機會應用成熟的和新興的工具):可能有多個 "目標",有雜波,有可以通過統計學建模的行為。對于這種動態系統的融合推理,我們的目標是提取不尋常的動態模式,這些模式正在演變,值得密切關注。我們特別建議通過將雜波建模為類似活動的豐富集合,并將現代多傳感器數據關聯技術應用于這項任務,來提取特征(身份)信息。
研究的重點是在具有融合觀測的動態系統中進行可靠推理。
1.決策人身份不明。在作戰情況下,融合中心(指揮官)很可能從下屬那里收到無序的傳感器報告:他們的身份可能是混合的,甚至完全沒有。這種情況在 "大數據 "應用中可能是一個問題,在這種情況下,數據血統可能會丟失或由于存儲的原因被丟棄。前一種情況對任務1提出了一個有趣的轉折:身份信息有很強的先驗性,但必須推斷出身份錯誤的位置;建議使用EM算法。然而,這可能會使所有的身份信息都丟。在這種情況下,提出了類型的方法來完成對局部(無標簽)信念水平和正在進行的最佳決策的聯合推斷。
2.動態系統融合推理的操作點。在以前的支持下,我們已經探索了動態事件的提取:我們已經開發了一個合理的隱馬爾科夫模型,學會了提取(身份)特征,有一個多伯努利過濾器啟發的提取方法 - 甚至提供了一些理論分析。作為擬議工作的一部分,將以兩種方式進行擴展。首先,打算將測量結果作為一個融合的數據流,這些數據來自必須被估計的未知可信度的來源。第二,每個這樣的信息源必須被假定為雜亂無章的 "環境 "事件(如一個家庭去度假的財務和旅行足跡),這些事件雖然是良性的,可能也不復雜,但卻是動態的,在某種意義上與所尋求的威脅類似。這些必須被建模(從數據中)和抑制(由多目標追蹤器)。
3.數據融合中的身份不確定性。當數據要從多個來源融合時,當這些數據指的是多個真相對象時,一個關鍵的問題是要確定一個傳感器的哪些數據與另一個傳感器的哪些數據相匹配:"數據關聯 "問題。實際上,這種融合的手段--甚至關聯過程的好方法--都是相當知名的。缺少的是對所做關聯的質量的理解。我們試圖提供這一點,并且我們打算探索傳感器偏差和定位的影響。
4.具有極端通信約束的傳感器網絡。考慮由位置未知、位置受漂移和擴散影響的傳感器網絡進行推理--一個泊松場。此外,假設在這樣的網絡中,傳感器雖然知道自己的身份和其他相關的數據,但為了保護帶寬,選擇不向融合中心傳輸這些數據。可以做什么?又會失去什么?我們研究這些問題,以及評估身份與觀察的作用(在信息論意義上)。也就是說,假設對兩個帶寬相等的網絡進行比較;一個有n個傳感器,只傳輸觀察;另一個有n/2個傳感器,同時傳輸數據和身份。哪一個更合適,什么時候更合適?
5.追蹤COVID-19的流行病狀況。誠然,流行病學并不在擬議研究的直接范圍內,但考慮到所代表的技能以及在目前的健康緊急情況下對這些技能的迫切需要,投機取巧似乎是合理的。通過美國和意大利研究人員組成的聯合小組,我們已經證明,我們可以從當局提供的每日--可能是不確定的--公開信息中可靠地估計和預測感染的演變,例如,每日感染者和康復者的數量。當應用于意大利倫巴第地區和美國的真實數據時,所提出的方法能夠估計感染和恢復參數,并能很準確地跟蹤和預測流行病學曲線。我們目前正在將我們的方法擴展到數據分割、變化檢測(如感染人數的增加/減少)和區域聚類。
認知方法在幾乎所有方面可提高現有雷達的性能,這導致了近年來研究的激增,空軍雷達建模和仿真(M&S)工具的一個關鍵差距是缺乏針對分布式全適應雷達(FAR)系統的全面、動態分布式雷達情景生成能力。截至2015年初,所有的研究都是在理論上推進概念,并通過模擬檢驗其性能,或者最多使用預先錄制的數據。沒有關于實驗驗證概念的報告,主要是因為還沒有開發出測試它們的必要硬件。然而,為了確定應用認知處理方法的真正性能潛力,這一步驟是至關重要的。為了解決這個問題,俄亥俄州立大學(OSU)電子科學實驗室(ESL)的認知傳感實驗室(CSL)與Metron公司、空軍研究實驗室(AFRL)和空軍科學研究辦公室(AFOSR)一起,已經開始了一項研究計劃,從分析和實驗上開發和檢驗認知雷達處理概念。
CSL設計并建造了認知雷達工程工作區(CREW),這是世界上第一個專門用來測試完全自適應和認知算法的雷達測試平臺,Metron和OSU開發了一個認知FAR系統的理論框架,在單一傳感器和目標的目標探測和跟蹤范圍內確定了關鍵的系統組件并進行了數學建模。我們一直在開發建模、模擬、分析和實驗能力,以證明FAR系統比傳統的前饋雷達(FFR)系統取得的性能改進。我們從OSU的軟件定義雷達(SDR)系統的模擬場景和預先記錄的數據開始。我們現在有能力利用CREW演示認知雷達跟蹤系統的實時操作。
這個項目的目標是為分布式FAR雷達開發一個基于MATLAB的M&S架構,從而能夠在模擬的、以前收集的和實時的流式數據上進行算法開發和測試。在第一階段,我們開發了一個基線FAR M&S架構,該架構采用面向對象編程(OOP)方法在MATLAB中編碼。它包括一個控制感知-行動(PA)周期運行的FAR引擎和確定下一組傳感參數的軟件對象;從傳感器獲取數據;處理數據以跟蹤目標;存儲和顯示傳感和跟蹤過程的結果。我們開發的模塊實現了模擬和預先錄制的SDR數據實例,以及實時和模擬的CREW數據實例。
第一階段開發的FAR M&S架構允許在模擬和實驗CREW數據源之間,以及在驅動傳感的FAR算法之間進行透明切換。輕松交換傳感和處理對象的能力將允許快速開發和測試認知雷達算法,通過構建M&S功能來避免重復工作和 "單點 "解決方案。它將使工業界、學術界和空軍的研究人員之間的合作成為可能,因為不同研究人員開發的算法可以使用一致的模擬、收集的數據和實驗室條件進行測試和比較。
認知型雷達,根據IEEE標準雷達定義686[1],是 "在某種意義上顯示智能的雷達系統,根據不斷變化的環境和目標場景調整其操作和處理"。特別是,嵌入認知型雷達的主動和被動傳感器使其能夠感知/學習動態變化的環境,如目標、雜波、射頻干擾和地形圖。為了達到探測、跟蹤和分類等任務的優化性能,認知雷達中的控制器實時適應雷達結構并調整資源分配策略[2, 3, 4]。對于廣泛的應用,已經提出了不同的適應技術和方法,例如,自適應重訪時間調度、波形選擇、天線波束模式和頻譜共享,以推進認知雷達背景下的數學基礎、評估和評價[5, 6, 7, 8, 9, 10]。
雖然認知方法和技術在提高雷達性能方面取得了很大進展,但認知雷達設計和實施的一個關鍵挑戰是它與最終用戶的互動,即如何將人納入決策和控制的圈子。在國家安全和自然災害預報等關鍵情況下,為了提高決策質量和增強態勢感知(SA),將人類的認知優勢和專業知識納入其中是必不可少的。例如,在電子戰(EW)系統中,在設計適當的反措施之前,需要探測到對手的雷達。在這種情況下,戰役的進程和成功取決于對一個小細節的觀察或遺漏,僅靠傳感器的自動決策可能是不夠的,有必要將人納入決策、指揮和控制的循環中。
在許多應用中,人類也充當了傳感器的角色,例如,偵察員監測一個感興趣的現象(PoI)以收集情報。在下一代認知雷達系統中,最好能建立一個框架來捕捉基于人類的信息來源所建議的屬性,這樣,來自物理傳感器和人類的信息都可以被用于推理。然而,與傳統的物理傳感器/機器4的客觀測量不同,人類在表達他們的意見或決定時是主觀的。人類決策的建模和分析需要考慮幾個因素,包括人類的認知偏差、處理不確定性和噪音的機制以及人類的不可預測性,這與僅由機器代理組成的決策過程不同。
已經有研究工作利用信號處理和信息融合的理論來分析和納入決策中的人類特定因素。在[11]中,作者采用了先驗概率的量化來模擬人類在貝葉斯框架下進行分類感知而不是連續觀察的事實,以進行協作決策。在[12,13]中,作者研究了當人類代理人被假定使用隨機閾值進行基于閾值的二元決策時的群體決策性能。考慮到人類受到起點信念的影響,[14]中研究了數據的選擇、排序和呈現對人類決策性能的影響。在人類協作決策范式中,已經開發了不同的方案和融合規則來改善人類人群工作者的不可靠和不確定性[15, 16]。此外,在[17,18]中,作者將前景理論(PT)用于描述人類的認知偏見,如風險規避,并研究了現實環境中的人類決策行為。在[19, 20]中也探討了基于人類和機器的信息源在不同場景下的信息融合。在[19]中,作者表明,人類的認知力量可以利用多媒體數據來更好地解釋數據。一個用戶細化階段與聯合實驗室主任(JDL)融合模型一起被利用,以在決策中納入人類的行為因素和判斷[20]。
未來的戰場將需要人類和機器專業知識的無縫整合,他們同時在同一個環境模型中工作,以理解和解決問題。根據[21],人類在隨機應變和使用靈活程序、行使判斷和歸納推理的能力方面超過了機器。另一方面,機器在快速反應、存儲大量信息、執行常規任務和演繹推理(包括計算能力)方面勝過人類。未來雷達系統中的高級認知尋求建立一種增強的人機共生關系,并將人類的優點與機器的優點融合在一起[22]。在本章中,我們概述了這些挑戰,并重點討論了三個具體問題:i)人類決策與來自物理傳感器的決策的整合,ii)使用行為經濟學概念PT來模擬人類在二元決策中的認知偏差,以及iii)在相關觀測下半自主的二元決策的人機協作。
本章的其余部分組織如下。在第11.1節中,我們介紹了一項工作,說明如何將人類傳感器的存在納入統計信號處理框架中。我們還推導出當人類擁有機器無法獲得的輔助/側面信息時,這種人機一體化系統的漸進性能。我們采用行為經濟學的概念前景理論來模擬人類的認知偏差,并在第11.2節中研究人類在二元假設檢驗框架下的決策行為。第11.3節討論了一種新的人機協作范式來解決二元假設檢驗問題,其中人的知識和機器的觀察的依賴性是用Copula理論來描述的。最后,我們在第11.4節中總結了與這個問題領域相關的當前挑戰和一些研究方向,然后在第11.5節中總結。
在學習型網絡物理系統(LE-CPS)中使用的機器學習模型,如自動駕駛汽車,需要能夠在可能的新環境中獨立決策,這可能與他們的訓練環境不同。衡量這種泛化能力和預測機器學習模型在新場景中的行為是非常困難的。在許多領域,如計算機視覺[1]、語音識別[2]和文本分析[3]的標準數據集上,學習型組件(LEC),特別是深度神經網絡(DNN)的成功并不代表它們在開放世界中的表現,在那里輸入可能不屬于DNN被訓練的訓練分布。因此,這抑制了它們在安全關鍵系統中的部署,如自動駕駛汽車[4]、飛機防撞[5]、戰場上的自主網絡物理系統(CPS)網絡系統[6]和醫療診斷[7]。這種脆性和由此產生的對基于DNN的人工智能(AI)系統的不信任,由于對DNN預測的高度信任而變得更加嚴重,甚至在預測通常不正確的情況下,對超出分布范圍(OOD)的輸入也是如此。文獻[8, 9]中廣泛報道了這種對分布外(OOD)輸入的不正確預測的高信心,并歸因于模型在負對數似然空間中的過度擬合。要在高安全性的應用中負責任地部署 DNN 模型,就必須檢測那些 DNN 不能被信任的輸入和場景,因此,必須放棄做出決定。那么問題來了:我們能不能把這些機器學習模型放在一個監測架構中,在那里它們的故障可以被檢測出來,并被掩蓋或容忍?
我們認為,我們已經確定了這樣一個用于高安全性學習的CPS的候選架構:在這個架構中,我們建立一個預測性的上下文模型,而不是直接使用深度學習模型的輸出,我們首先驗證并將其與上下文模型融合,以檢測輸入是否會給模型帶來驚喜。這似乎是一個語義學的練習--即使是通常的機器學習模型通常也會 "融合 "來自不同傳感器的解釋,這些解釋構成了模型的輸入,并隨著時間的推移進行整理--但我們認為,我們提出的監測架構相當于重點的轉移,并帶來了新的技術,正如我們將在本報告中說明的。我們建議,一個更好的方法是根據背景模型來評估輸入:模型是我們所學到的和所信任的一切的積累,根據它來評估新的輸入比只預測孤立的輸入更有意義。這是我們推薦的方法的基礎,但我們把它定位在一個被稱為預測處理(PP)的感知模型中[10],并輔以推理的雙重過程理論[11]。在這份報告中,我們還提供了這個運行時監控架構的候選實現,使用基于歸一化流的特征密度建模來實現第一層監控,以及基于圖馬爾科夫神經網絡的神經符號上下文建模來實現第二層。
我們用一個自主汽車的簡單例子來解釋我們方法背后的基本原理,并展示了上下文模型如何在監測LEC中發揮作用。考慮一下汽車視覺系統中有關檢測交通線的部分。一個基本的方法是尋找道路上畫的或多或少的直線,自下而上的方法是在處理每一幀圖像時執行這一過程。但這是低效的--當前圖像幀中的車道很可能與前幾幀中的車道相似,我們肯定應該利用這一點作為搜索的種子,而且它是脆弱的--車道標記的缺失或擦傷可能導致車道未被檢測到,而它們本來可以從以前的圖像中推斷出來。一個更好的方法是建立一個道路及其車道的模型,通過預測車道的位置,用它來作為搜索當前圖像中車道的種子。該模型及其對車道的預測將存在一些不確定性,因此發送給視覺系統的將是最好的猜測,或者可能是幾個此類估計的概率分布。視覺系統將使用它作為搜索當前圖像中車道的種子,并將預測和當前觀察之間的差異或 "誤差 "發送回來。誤差信號被用來完善模型,旨在最小化未來的預測誤差,從而使其更接近現實。
這是一個 "綜合分析 "的例子,意味著我們提出假設(即候選世界模型),并偏向于那些預測與輸入數據相匹配的模型。在實際應用中,我們需要考慮有關 "預測 "的層次:我們是用世界模型來合成我們預測傳感器將檢測到的原始數據(如像素),還是針對其局部處理的某個更高層次(如物體)?
這種自上而下的方法的重要屬性是,它專注于世界模型(或模型:一個常見的安排有一個模型的層次)的構建和前利用,與更常見的自下而上的機器學習模型形成對比。我們將展開論證,自上而下的方法對于自主系統中感知的解釋和保證是有效的,但有趣的是,也許可以放心的是,人們普遍認為這是人類(和其他)大腦中感知的工作方式,這是由Helmholtz在19世紀60年代首次提出的[12]。PP[13],也被稱為預測編碼[14]和預測誤差最小化[15],認為大腦建立了其環境的模型,并使用這些模型來預測其感覺輸入,因此,它的大部分活動可以被視為(近似于)迭代貝葉斯更新以最小化預測誤差。PP有先驗的 "預測 "從模型流向感覺器官,貝葉斯的 "修正 "又流回來,使后驗模型跟蹤現實。("自由能量"[16]是一個更全面的理論,包括行動:大腦 "預測 "手,比如說,在某個地方,為了盡量減少預測誤差,手實際上移動到那里。) 這與大腦從上層到下層的神經通路多于反之的事實是一致的:模型和預測是向下流動的,只有修正是向上流動的。
有趣的是,大腦似乎以這種方式工作,但有獨立的理由認為,PP是組織自主系統感知系統的好方法,而不是一個主要是自下而上的系統,其中傳感器的測量和輸入被解釋和融合以產生一個世界模型,很少有從模型反饋到傳感器和正在收集的輸入。2018年3月18日在亞利桑那州發生的Uber自動駕駛汽車與行人之間的致命事故說明了這種自下而上的方法的一些不足之處[17]。
純粹的自下而上的系統甚至不能回憶起之前的傳感器讀數,這就排除了從位置計算速度的可能性。因此,感知系統通常保持一個簡單的模型,允許這樣做:林的視覺處理管道的物體跟蹤器[18]就是一個例子,Uber汽車也采用了這樣的系統。Uber汽車使用了三個傳感器系統來建立其物體追蹤器模型:攝像頭、雷達和激光雷達。對于這些傳感器系統中的每一個,其自身的物體檢測器都會指出每個檢測到的物體的位置,并試圖將其分類為,例如,車輛、行人、自行車或其他。物體追蹤器使用一個 "優先級方案來融合這些輸入,該方案促進某些追蹤方法而不是其他方法,并且還取決于觀察的最近時間"[17,第8頁]。在亞利桑那車禍的案例中,這導致了對受害者的識別 "閃爍不定",因為傳感器系統自己的分類器改變了它們的識別,而且物體追蹤器先是喜歡一個傳感器系統,然后是另一個,如下所示[17,表1]。
這種 "閃爍 "識別的深層危害是:"如果感知模型改變了檢測到的物體的分類,在生成新的軌跡時就不再考慮該物體的跟蹤歷史"[17,第8頁]。因此,物體追蹤器從未為受害者建立軌跡,車輛與她相撞,盡管她已經以某種形式被探測了幾秒鐘。
這里有兩個相關的問題:一個是物體追蹤器保持著一個相當不完善的世界和決策背景的模型,另一個是它對輸入的決策方法沒有注意到背景。預測性處理中的感知所依據的目標是建立一個準確反映世界的背景模型;因此,它所編碼的信息要比單個輸入多得多。我們想要的是一種測量情境模型和新輸入之間的分歧的方法;小的分歧應該表明世界的常規演變,并可以作為模型的更新納入;大的分歧需要更多的關注:它是否表明一個新的發展,或者它可能是對原始傳感器數據解釋的缺陷?在后面兩種情況中的任何一種,我們都不能相信機器學習模型的預測結果。
預測處理方法的實施可以采用貝葉斯方法[19]。場景模型表示環境中的各種物體,以及它們的屬性,如類型、軌跡、推斷的意圖等,并對其中的一些或全部進行概率分布函數(pdf s)。觀察更新這些先驗,以提供精確的后驗估計。這種貝葉斯推理通常會產生難以處理的積分,因此預測處理采用了被稱為變異貝葉斯的方法,將問題轉化為后驗模型的迭代優化,以最小化預測誤差。卡爾曼濾波器也可以被看作是執行遞歸貝葉斯估計的一種方式。因此,像神經科學、控制理論、信號處理和傳感器融合這樣不同的領域都可能采用類似的方法,但名稱不同,由不同的歷史派生。思考PP的一種方式是,它將卡爾曼濾波的思想從經典的狀態表征(即一組連續變量,如控制理論)擴展到更復雜的世界模型,其中我們也有物體 "類型 "和 "意圖 "等表征。預測處理的一個有吸引力的屬性是,它為我們提供了一種系統的方法來利用多個輸入和傳感器,并融合和交叉檢查它們的信息。假設我們有一個由相機數據建立的情境模型,并且我們增加了一個接近傳感器。預測處理可以使用從相機中獲得的模型來計算接近傳感器預計會 "看到 "什么,這可以被看作是對模型準確性的可驗證的測試。如果預測被驗證了,那么我們就有了對我們上下文模型某些方面的獨立確認。我們說 "獨立 "是因為基于不同現象的傳感器(如照相機、雷達、超聲波)具有完全不同的解釋功能,并在不同的數據集上進行訓練,這似乎是可信的,它們會有獨立的故障。在一個完全集成的預測處理監視器中,情境模型將結合來自所有來源的信息。情境模型將保守地更新以反映這種不確定性,監測器將因此降低其對機器學習模型的信心,直到差異得到解決。
請注意,上下文模型可以是相當簡單粗暴的:我們不需要場景的照片,只需要知道我們附近的重要物體的足夠細節,以指導安全行動,所以相機和接近傳感器 "看到 "的相鄰車輛的輪廓之間的差異,例如,可能沒有什么意義,因為我們需要知道的是他們的存在,位置,類型和推斷的意圖。事實上,正如我們將在后面討論的那樣,我們可以在不同的細節層次上對上下文進行建模,自上而下的生成模型的目標是生成不同層次的感知輸入的抽象,而不是準確的傳感器值。在報告中討論的我們的實現中,我們在兩個層次上對上下文進行建模--第一個層次使用深度神經網絡的特征,第二個層次對場景中物體之間更高層次的空間和時間關系進行建模。除了傳感器,感知的上層也將獲得關于世界的知識,可能還有人工智能對世界及其模型的推理能力。例如,它可能知道視線和被遮擋的視野,從而確定在我們附近的車輛可能無法看到我們,因為一輛卡車擋住了它的去路,這可以作為有關車輛的可能運動("意圖")的增加的不確定性納入世界模型中。同樣,推理系統可能能夠推斷出反事實,比如 "我們將無法看到可能在那輛卡車后面的任何車輛",這些可以作為 "幽靈 "車輛納入世界模型,直到它們的真實性被證實或被否定。我們對監控架構第2層的神經符號建模的選擇對于整合這種背景和學習的知識以及對這些知識進行推理至關重要。
在這方面,另一個關于人腦組織的理論很有意思;這就是 "雙過程 "模型[20, 21],由卡尼曼推廣的獨立 "快慢 "思維系統[22]。它的效用最近已經通過一個非常有限的實現被證明用于計算機器學習模型的信心[23, 24]。系統1是無意識的、快速的、專門用于常規任務的;系統2是有意識的、緩慢的、容易疲勞的、能夠斟酌和推理的,這就是我們所說的 "思考"。就像預測處理一樣,我們提倡雙過程模型并不僅僅是因為它似乎符合大腦的工作方式,而是因為它似乎是獨立的,是一個好架構。在這里,我們可以想象一個特征密度正常化的流生成模型形成一個高度自動化的 "系統1",而更多的深思熟慮的神經符號模型構成一個 "系統2",當系統1遇到大的預測錯誤時,該系統會主動參與。系統1維持一個單一的生成性世界模型,而系統2或者對其進行潤色,或者維持自己的更豐富的世界模型,具有對符號概念進行反事實的 "what-if "推理能力。人們認為,人類保持著一個模型的層次結構[20, 21, 22],這似乎也是自主系統的一個好方法。我們的想法是,在每一對相鄰的模型(在層次結構中)之間都有一個預測處理的循環,因此,較低的層次就像上層的傳感器,其優先級和更新頻率由預測誤差的大小決定。
人類的預測處理通常被認為是將 "驚訝 "降到最低的一種方式,或者說是保持 "情況意識"。加強這一點的一個方法是在構建世界模型時增加系統2對假設推理的使用,以便將沒有看到但 "可能存在 "的東西明確地表示為 "幽靈 "或表示為檢測到的物體屬性的不確定性增加。一個相關的想法是利用人工智能進行推斷,例如,檢測到前面有許多剎車燈,就可以推斷出某種問題,這將被表示為世界模型中增加的不確定性。這樣一來,本來可能是意外情況的驚奇出現,反而會發展為不確定性的逐漸變化,或將幽靈解決為真實的物體。圖馬爾科夫神經網絡提供了一個有效的機制,既可以對這些關系和更豐富的背景進行建模,又可以通過反事實查詢和背景知情的預測進行審議。因此,雙重過程理論激發了我們的運行時監控器的兩層預測編碼結構。雖然這些理論旨在解釋人類的認知,但我們將這些作為運行時監控器來計算底層模型的驚喜,因此,當模型由于新奇的或超出分布的或脫離上下文的輸入而不能被信任時,就會被發現。
圖 1:基于預測處理和雙過程理論的自主量化保障架構
圖1展示了所提出的深度學習模型運行時監控的整體架構。如圖所示,該架構有兩個層次(由雙重過程理論激發)。在第一層,我們使用生成模型,學習輸入的聯合分布、預測的類輸出和模型提供的解釋。在第二層,我們使用圖馬爾可夫神經網絡來學習物體檢測任務的物體之間的空間和時間關系(更一般地說,輸入的組成部分)。在這兩層中,我們在本報告中的重點是運行時監測,而不是開發一個認知系統本身(而使用所提出的方法建立一個強大的、有彈性的、可解釋的系統將是自然的下一步)。因此,由這兩層檢測到的驚喜被監控者用來識別底層LEC何時不能被信任。這也可以作為LE-CPS的一個定量保證指標。
第3節介紹了預測性處理和雙進程架構(低級別的自動化和高級別的審議),并認為這可以支持一種可信的方法來保證自主系統的穩健行為。它也被廣泛認為反映了人類大腦的組織。我們提出了使用不同的神經架構和神經符號模型的組成來可擴展地完成這些的機制。結果在第4節報告。第5節提供了一些與工業建議的比較,并提出了結論和額外研究的建議。
態勢感知是作戰人員的必需能力。一種常見的監視方法是利用傳感器。電子光學/紅外(EOIR)傳感器同時使用可見光和紅外傳感器,使其能夠在光照和黑暗(日/夜)情況下使用。這些系統經常被用來探測無人駕駛飛機系統(UAS)。識別天空中的這些物體需要監測該系統的人員開展大量工作。本報告的目的是研究在紅外數據上使用卷積神經網絡來識別天空中的無人機系統圖像的可行性。本項目使用的數據是由作戰能力發展司令部軍備中心的精確瞄準和集成小組提供的。
該報告考慮了來自紅外傳感器的圖像數據。這些圖像被送入一個前饋卷積神經網絡,該網絡將圖像分類為有無無人機系統。卷積模型被證明是處理這些數據的第一次嘗試。本報告提供了一個未來的方向,以便在未來進行擴展。建議包括微調這個模型,以及在這個數據集上使用其他機器學習方法,如目標檢測和 YOLO算法。
為了支持未來的多域作戰分析,美國DEVCOM分析中心(DAC)正在探索如何在陸軍的作戰模擬中體現天基情報、監視和偵察(ISR)資產的貢獻。DAC正在使用基于能力的戰術分析庫和模擬框架(FRACTALS)作為方法開發的試驗基礎。用于預測衛星軌道路徑簡化一般擾動的4種算法已經被納入FRACTALS。本報告的重點是來自商業衛星群的圖像產品,其分辨率為1米或更低。報告介紹了預測分辨率與傳感器特性、傾斜范圍(包括地球曲率)和觀察角度的關系的方法。還討論了在不同分辨率下可以感知的例子。
在2021年建模與仿真(M&S)論壇期間,空間情報、監視和偵察(ISR)建模被確定為當前/近期的建模差距。美國陸軍作戰能力發展司令部(DEVCOM)分析中心(DAC)提交了一份陸軍M&S企業能力差距白皮書(Harclerode, 2021),描述了幫助填補這一差距的行動方案。陸軍建模和仿真辦公室已經資助DAC開發方法,以代表商業、國家和軍事空間和低地球軌道資產的性能及其對聯合作戰的影響,并在基于能力的戰術分析庫和模擬框架(FRACTALS)內進行測試實施。
FRACTALS是DAC開發的一個仿真框架,它提供了通用的結構 "構件",用于模擬、仿真和評估ISR系統在戰術級任務和工作中的性能。FRACTALS作為DAC開發的各種ISR性能方法的測試平臺,將文件或數據被納入部隊的模擬中。FRACTALS還作為DAC的一個分析工具,在戰術環境中對ISR系統進行性能分析比較。
這項工作需要在一定程度上體現衛星飛行器(高度、軌跡和運動學)、傳感器有效載荷(光電[EO]、紅外、合成孔徑雷達和信號情報)、網絡、控制系統、地面站(時間線、通信、處理、利用和傳播)、終端用戶以及連接它們的過程和行為。本報告描述了DAC為支持這一工作所做的一些基礎工作,重點是可見光波段相機圖像。