亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

長期目標

在決策或推理網絡中進行適當的推理,需要指揮官(融合中心)對每個下屬的輸入賦予相對權重。最近的工作解決了在復雜網絡中估計智能體行為的問題,其中社會網絡是一個突出的例子。這些工作在各種指揮和控制領域具有相當大的實際意義。然而,這些工作可能受限于理想化假設:指揮官(融合中心)擁有所有下屬歷史全部信息,并且可以假設這些歷史信息之間具有條件統計獨立性。在擬議的項目中,我們打算探索更普遍的情況:依賴性傳感器、(可能的)依賴性的未知結構、缺失的數據和下屬身份被掩蓋/摻雜/完全缺失。對于這樣的動態融合推理問題,我們建議在一些方向上擴展成果:探索數據源之間的依賴性(物理接近或 "群體思維"),在推理任務和量化不一定匹配的情況下,采用有用的通信策略,甚至在每個測量源的身份未知的情況下,采用無標簽的方式--這是數據關聯問題的一種形式。

我們還認識到,對動態情況的推斷是關鍵目標所在。考慮到一個涉及測量和物理 "目標 "的傳統框架,這是一個熟悉的跟蹤問題。但是,來自目標跟蹤和多傳感器數據關聯的技術能否應用于提取非物理狀態(物理狀態如雷達觀察到的飛機)?一個例子可能是恐怖主義威脅或作戰計劃--這些都是通過情報報告和遙測等測量手段從多個來源觀察到的,甚至可能被認為包含了新聞或金融交易等民用來源。這些都不是標準數據,這里所關注的動態系統也不是通常的運動學系統。盡管如此,我們注意到與傳統的目標追蹤有很多共同點(因此也有機會應用成熟的和新興的工具):可能有多個 "目標",有雜波,有可以通過統計學建模的行為。對于這種動態系統的融合推理,我們的目標是提取不尋常的動態模式,這些模式正在演變,值得密切關注。我們特別建議通過將雜波建模為類似活動的豐富集合,并將現代多傳感器數據關聯技術應用于這項任務,來提取特征(身份)信息。

目標

研究的重點是在具有融合觀測的動態系統中進行可靠推理。

方法

1.決策人身份不明。在作戰情況下,融合中心(指揮官)很可能從下屬那里收到無序的傳感器報告:他們的身份可能是混合的,甚至完全沒有。這種情況在 "大數據 "應用中可能是一個問題,在這種情況下,數據血統可能會丟失或由于存儲的原因被丟棄。前一種情況對任務1提出了一個有趣的轉折:身份信息有很強的先驗性,但必須推斷出身份錯誤的位置;建議使用EM算法。然而,這可能會使所有的身份信息都丟。在這種情況下,提出了類型的方法來完成對局部(無標簽)信念水平和正在進行的最佳決策的聯合推斷。

2.動態系統融合推理的操作點。在以前的支持下,我們已經探索了動態事件的提取:我們已經開發了一個合理的隱馬爾科夫模型,學會了提取(身份)特征,有一個多伯努利過濾器啟發的提取方法 - 甚至提供了一些理論分析。作為擬議工作的一部分,將以兩種方式進行擴展。首先,打算將測量結果作為一個融合的數據流,這些數據來自必須被估計的未知可信度的來源。第二,每個這樣的信息源必須被假定為雜亂無章的 "環境 "事件(如一個家庭去度假的財務和旅行足跡),這些事件雖然是良性的,可能也不復雜,但卻是動態的,在某種意義上與所尋求的威脅類似。這些必須被建模(從數據中)和抑制(由多目標追蹤器)。

3.數據融合中的身份不確定性。當數據要從多個來源融合時,當這些數據指的是多個真相對象時,一個關鍵的問題是要確定一個傳感器的哪些數據與另一個傳感器的哪些數據相匹配:"數據關聯 "問題。實際上,這種融合的手段--甚至關聯過程的好方法--都是相當知名的。缺少的是對所做關聯的質量的理解。我們試圖提供這一點,并且我們打算探索傳感器偏差和定位的影響。

4.具有極端通信約束的傳感器網絡。考慮由位置未知、位置受漂移和擴散影響的傳感器網絡進行推理--一個泊松場。此外,假設在這樣的網絡中,傳感器雖然知道自己的身份和其他相關的數據,但為了保護帶寬,選擇不向融合中心傳輸這些數據。可以做什么?又會失去什么?我們研究這些問題,以及評估身份與觀察的作用(在信息論意義上)。也就是說,假設對兩個帶寬相等的網絡進行比較;一個有n個傳感器,只傳輸觀察;另一個有n/2個傳感器,同時傳輸數據和身份。哪一個更合適,什么時候更合適?

5.追蹤COVID-19的流行病狀況。誠然,流行病學并不在擬議研究的直接范圍內,但考慮到所代表的技能以及在目前的健康緊急情況下對這些技能的迫切需要,投機取巧似乎是合理的。通過美國和意大利研究人員組成的聯合小組,我們已經證明,我們可以從當局提供的每日--可能是不確定的--公開信息中可靠地估計和預測感染的演變,例如,每日感染者和康復者的數量。當應用于意大利倫巴第地區和美國的真實數據時,所提出的方法能夠估計感染和恢復參數,并能很準確地跟蹤和預測流行病學曲線。我們目前正在將我們的方法擴展到數據分割、變化檢測(如感染人數的增加/減少)和區域聚類。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

在目前的烏克蘭沖突中,有人聲稱,俄羅斯的信息戰開展得很差,而且基本上沒有效果。然而,正如Dan Milmo和Pjotr Sauer所觀察到的[2],只有當忽視了在歐洲和英語圈之外進行的影響運動時,情況才會如此。在一個全球通信的世界里,需要采用全球視角,并超越任何沖突地區的直接范圍。同樣,"非限制性戰爭 "的概念要求采用一種 "戰爭"模式,這種模式遠遠超出了行使動能和軍事力量的傳統觀念。本文將提出一個分析和模擬沖突的框架,它將更好地使所有參與者/利益相關者(軍事和民事)為 "無限制的戰爭 "做好準備和做出反應,并為這種沖突提供一個初步系統。多域戰爭不僅要考慮陸上/海上/空中/空間/網絡和電磁這五個領域,還要考慮這些領域內民事和軍事領域的交集,以及超越傳統責任范圍的思考要求。真正的認知優勢只能通過超越傳統的劃分來實現;本文所提出的模式為實現這一目標提供了第一步。

1 未來沖突定義

下面試圖設計一個關于未來沖突形式(從現在開始用簡稱 "戰爭2.0")的可能性質的工作假設,借鑒和尋求協同在廣泛的原始文本(特別是[3]-[10])中看到的觀點。在試圖確定近期(更不用說遠期)的戰爭可能是什么時,首先必須接受的是,任何預測充其量都是片面的,從這兩個詞的意義上來說都是如此(不完整和有偏見)。雖然可以根據歷史經驗、對當前能力的了解以及技術和地緣政治趨勢進行假設,但所做的大部分工作將不可避免地充其量是經過教育的猜測。盡管如此,對當前威脅形勢的考慮表明,在規劃未來的沖突時,應該牢記兩個指導原則,這兩個原則都是由馬歇爾-麥克盧漢創造的。第一條是本文的序言[1],第二條來自《地球村的戰爭與和平》: [11]"每一項新技術都需要一場新戰爭"。所掌握的技術工具將不可避免地塑造所有級別的戰爭,從作戰到學說。在他對他所稱的 "科學的戰爭方式 "的研究中,Bousquet[12]描繪了技術、科學理論和沖突形式之間的聯系:

他認為,我們已經進入了 "混沌"("混沌 "和 "復雜 "的混合體)的時代,其特點是非線性和非等級化的自我治理系統,以及幾乎完全沒有傳統的指揮和控制結構。約翰-羅伯(John Robb)[13]對他所說的 "開源戰爭 "在實踐中是如何運作的進行了出色的研究,而亞當-羅伯茨(Adam Roberts)[14]提出了一個迷人的投機小說,他描述了一個私人軍事承包商作為一個真正自我維持的、無政府的(真正意義上的)戰斗網絡運作。所有這些未來愿景的核心是信息,它既是武器,又是獲得和保持優勢的關鍵。說信息技術和人工智能的發展和擴散是形成所有未來潛在沖突的基本要素并不過分;對戰斗、指揮和控制以及規劃的影響是巨大的[15]。從潛在的自主武器系統到人機合作[16]和人工智能驅動的分析[17],這些技術將不可避免地產生 "新戰爭"。

多領域整合和作戰的概念已經成為現代國防的核心[18],[19],至關重要的是要注意到,在多領域作戰空間中的全頻譜優勢需要意識到5個關鍵領域(陸地、海洋、空中、太空和網絡/電磁;英國在其第五領域的概念中把電子戰和信息戰聯系起來)不是離散的領域,而是不可分割的相互聯系和相互依賴。不僅如此,網絡/信息領域是貫穿所有其他領域的脊柱;沒有信息網絡,C4ISTAR就會崩潰。

許多關于MDI的思考被證明是有缺陷的,因為它把自己限制在軍事領域;從軍事力量(動能和非動能)的角度來規劃多域行動,而沒有記住麥克盧漢的箴言:未來的戰爭 "不分軍事和平民參與"。[1]戰爭是一個純粹的軍事問題的想法從來都是真實的,正如下面要討論的,它是未來沖突的一個關鍵模式的核心。英國的MDI模式確實將5個領域的結構置于與盟友和本國政府行為者/利益相關者的更廣泛的關系網絡中,但這仍然沒有把握住所面臨的全部復雜性(或混沌性)。

那么,這就是挑戰;一個由信息技術和人工智能促成的混沌沖突的世界,在這個世界上,權力在信息領域的投射可以在不開一槍的情況下損害對手,而歸因可能幾乎是不可能的。代理部隊和私營軍事承包商的使用進一步增加了復雜性。在戰術上,非線性、混合、開源戰爭的興起給常規軍事力量和政府帶來了巨大的挑戰,正如西方對俄羅斯行動的反應[21],以及最近在烏克蘭恢復常規戰術的效果大打折扣。我們受到了目前狀況的嚴重挑戰;試圖研究如何減輕未來的未知威脅似乎幾乎是不可能的。正如羅莎-布魯克斯所說: 現在是時候接受 "戰爭 "與 "和平 "不是二元對立,而是一個連續體的外部界限。事實上,加上網絡、個性化武器以及各種非致命形式的脅迫和控制,一個二維的連續體可能是不夠的:我們可能需要從三維,甚至更多的角度來構思戰爭[22]。

2 未來沖突建模

如何開發一個模型,使我們能夠對 "戰爭2.0 "的階段空間進行概念化、分析和建模?下面將勾勒出一個初步的框架,它可以從城市到國家再到國際,具有可擴展性和靈活性,并允許我們考慮多領域和跨領域的行動和結果,目的是,正如尼克-卡特將軍所說,"超越聯合彩票"[24]。不僅如此,它還尋求可移植性;鑒于戰爭領域和軍事及民用領域之間的邊界的疏松性(如果不是實際不存在的話),我們的模型必須能夠被所有 "無限制戰爭 "的潛在目標所訪問和使用。

下面的模型改編自一個用于構建理解和設計影響行動的概念框架的模型[25]:這是一個擴大調查和應用范圍的嘗試。如果我們接受未來的沖突不會尊重 "戰爭/和平 "的界限,那么我們就需要能夠開發一個同樣的抽象概念。這個模型的基礎是由PMESII和ASCOPE分析技術中使用的類別的交叉形成的矩陣,形成一個6x6的矩陣,將目標區域定義為ASCOPE提供的維度中的變量(PMESII)(如下表2)。

這個矩陣已經被北約軍民合作卓越中心使用,并為下一層次的信息提供了可靠的基礎,即通過為五個戰爭領域(陸地、海上、空中、太空、網絡/電磁)各增加一層,將二維矩陣轉為三維形式。這樣就形成了一個由6x6x5=180個單元組成的表格,使我們能夠高度精確地定義攻擊的起源、目標和擴散(圖1)。不僅如此,它還提供了一個地點和行為者的分類法,這在純粹的軍事背景之外是有意義的。它還允許從攻擊者、防御者或中立方的角度記錄事件/攻擊。

圖1:多領域 "非限制性 "作戰空間的三維模型,ASCOPExPMESIIx5個作戰領域(陸地、海洋、空中、太空和網絡/電磁)。

這個基本模型很容易被裁剪和/或細化。在其最初的形式中,三維矩陣由一個6x6x4的框架組成,對應于PMESII+ASCOPE+DIME(外交、信息、軍事、經濟)。通過賦予每個組成部分三個 "旋轉"(類似于夸克)之一,以對應戰略、戰術和行動層面,進一步增加了細節層次。基本框架的每一層也可以作為一個新的三維5x5x5矩陣的基礎,Z軸代表應對攻擊的5種方式(或者實際上是信息攻擊本身可能采取的5種形式):破壞、拒絕、降低、毀滅或欺騙。

這個模型的一個重要特點是,它不再關注主角在戰斗空間的任何一個元素或領域的行動,而是采取了對多領域系統的整體感知。它使分析人員能夠繪制出跨越領域邊界的行動,描繪出某一特定行為可能產生的跨領域影響:這樣的模型使我們能夠更清楚地思考如何識別Systempunkts(網絡中那些一旦被攻擊就會導致連帶失敗的點[27])。同樣地,當我們走向一個完全集成的 "戰場物聯網",在各領域產生大量增加的和不間斷的數據流時,我們可以假設一個由人工智能支持的對系統狀態的監測,并突出顯示特定單元中的變化,這些變化表明可能的敵對行動;該模型的180個單元中的每一個都成為一個信息單位,其狀態的任何變化都作為 "一個差異,使一個差異"(貝特森的 "比特 "定義[28])。回到構建一個更好的控制性敘事以參與現代沖突的想法,這給我們提供的是一個特定景觀的映射工具,以及一個產生行動的機制,這些行動可以在它們通過領域時被追蹤。它既是設定,也是情節生成器。它不建議誰可能在這個景觀中居住,但它允許我們看到在目前出現的任何和所有可能的威脅行為者居住。最重要的是,它旨在關注事件和反響;雖然了解我們的對手是誰(或可能是誰)是至關重要的(身份、個人和文化,傾向于某些行動),但我們必須專注于他們做什么。

如果我們接受這個模型在允許我們繪制多領域無限制沖突方面是有效的,那么下一步要研究如何在更廣泛的背景下使用它;我們如何在一個動態的、體驗式的實驗和分析過程中使用這個模型?簡而言之,我們如何將其置于一個("嚴肅")游戲的中心?

正如前面討論的影響游戲項目[24],要想成功,必須盡可能地考慮攻擊面的居民--需要軍事、政府、學術界和私營部門的主題專家參與。打擊不受限制的戰爭需要一系列不受限制的投入。作者以前的經驗證實了他的信念,即這樣的演習是可能的;所需要的是一群準備超越其專業筒倉的墻壁并進行協作的人。正如維納[29]所說,"大腦中沒有馬奇諾防線";我們的對手超越了傳統的界限,我們也必須如此。因此,這是對所有看到這里提出的想法的優點并希望參與這樣一個項目的人的邀請。在他以前的工作中,作者是一個真正的多學科國際團隊的一部分,而像這里提議的活動將需要更廣泛的專業知識;北約為建立這樣一個項目提供了完美的環境。作者歡迎所有的興趣表達,并希望本文的結束將標志著一個創新和有價值的努力的開始。

付費5元查看完整內容

本報告介紹了在三個主要議題方面取得的成果:

  • 對小型無人機系統(SUAS)的分布式團隊進行實驗驗證,以協調執行復雜的行為。

  • 開發了一個現實的多架無人機模擬器,以應用強化學習技術來協調一組小型無人機系統以達到特定目的。

  • 設計并驗證了安裝在無人機上的帶有主動多輸入多輸出(MIMO)毫米波雷達傳感器的融合光學相機。

與驗證SUAS團隊有關的工作提出并實驗測試了我們的態勢感知、分布式SUAS團隊所使用的框架,該團隊能夠以自主方式實時運行,并在受限的通信條件下運行。我們的框架依賴于三層方法:(1)操作層,在這里做出快速的時間和狹窄的空間決定;(2)戰術層,在這里為智能體團隊做出時間和空間決定;以及(3)戰略層,在這里為智能體團隊做出緩慢的時間和廣泛的空間決定。這三層由一個臨時的、軟件定義的通信網絡協調,即使在通信受限的情況下,也能確保各層的智能體小組和團隊之間的信息傳遞稀少而及時。實驗結果顯示,一個由10個小型無人機系統組成的團隊負責在一個開放區域搜索和監測一個人。在操作層,我們的用例介紹了一個智能體自主地進行搜索、探測、定位、分類、識別、跟蹤和跟蹤該人,同時避免惡意碰撞。在戰術層,我們的實驗用例介紹了一組多個智能體的合作互動,使其能夠在更廣泛的空間和時間區域內監測目標人物。在戰略層,我們的用例涉及復雜行為的檢測--即被跟蹤的人進入汽車并逃跑,或者被跟蹤的人離開汽車并逃跑--這需要戰略反應以成功完成任務。

目標搜索和檢測包括各種決策問題,如覆蓋、監視、搜索、觀察和追逐-逃避以及其他問題。我們開發了一種多智能體深度強化學習(MADRL)方法來協調一組飛行器(無人機),以定位未知區域內的一組靜態目標。為此,我們設計了一個現實的無人機模擬器,它復制了真實實驗的動態和擾動,包括從實驗數據中提取的統計推斷,用于其建模。我們的強化學習方法,利用這個模擬器進行訓練,能夠為無人機找到接近最優的政策。與其他最先進的MADRL方法相比,我們的方法在學習和執行過程中都是完全分布式的,可以處理高維和連續的觀察空間,并且不需要調整額外的超參數。

為了給在受限通信條件下運行的SUAS開發一個分布式的分類和協調框架,我們的第一個目標是在無人駕駛飛行器(UAV)上建立一個多傳感器系統,以獲得高探測性能。眾所周知,安裝在無人機上的光學和熱傳感器已被成功用于對難以進入的區域進行成像。然而,這些傳感器都不提供關于場景的范圍信息;因此,它們與高分辨率毫米波雷達的融合有可能改善成像系統的性能。我們提出了一個配備了無源光學攝像機和有源多輸入多輸出(MIMO)毫米波雷達傳感器的下視無人機系統的初步實驗結果。毫米波雷達的三維成像是通過收集通過運動線的數據來實現的,從而產生一個合成孔徑,并使用垂直于運動軌跡的結線MIMO陣列。我們的初步結果顯示,融合的光學和毫米波圖像提供了形狀和范圍信息,最終導致無人機系統的成像能力增強。

付費5元查看完整內容

認知型雷達,根據IEEE標準雷達定義686[1],是 "在某種意義上顯示智能的雷達系統,根據不斷變化的環境和目標場景調整其操作和處理"。特別是,嵌入認知型雷達的主動和被動傳感器使其能夠感知/學習動態變化的環境,如目標、雜波、射頻干擾和地形圖。為了達到探測、跟蹤和分類等任務的優化性能,認知雷達中的控制器實時適應雷達結構并調整資源分配策略[2, 3, 4]。對于廣泛的應用,已經提出了不同的適應技術和方法,例如,自適應重訪時間調度、波形選擇、天線波束模式和頻譜共享,以推進認知雷達背景下的數學基礎、評估和評價[5, 6, 7, 8, 9, 10]。

雖然認知方法和技術在提高雷達性能方面取得了很大進展,但認知雷達設計和實施的一個關鍵挑戰是它與最終用戶的互動,即如何將人納入決策和控制的圈子。在國家安全和自然災害預報等關鍵情況下,為了提高決策質量和增強態勢感知(SA),將人類的認知優勢和專業知識納入其中是必不可少的。例如,在電子戰(EW)系統中,在設計適當的反措施之前,需要探測到對手的雷達。在這種情況下,戰役的進程和成功取決于對一個小細節的觀察或遺漏,僅靠傳感器的自動決策可能是不夠的,有必要將人納入決策、指揮和控制的循環中。

在許多應用中,人類也充當了傳感器的角色,例如,偵察員監測一個感興趣的現象(PoI)以收集情報。在下一代認知雷達系統中,最好能建立一個框架來捕捉基于人類的信息來源所建議的屬性,這樣,來自物理傳感器和人類的信息都可以被用于推理。然而,與傳統的物理傳感器/機器4的客觀測量不同,人類在表達他們的意見或決定時是主觀的。人類決策的建模和分析需要考慮幾個因素,包括人類的認知偏差、處理不確定性和噪音的機制以及人類的不可預測性,這與僅由機器代理組成的決策過程不同。

已經有研究工作利用信號處理和信息融合的理論來分析和納入決策中的人類特定因素。在[11]中,作者采用了先驗概率的量化來模擬人類在貝葉斯框架下進行分類感知而不是連續觀察的事實,以進行協作決策。在[12,13]中,作者研究了當人類代理人被假定使用隨機閾值進行基于閾值的二元決策時的群體決策性能。考慮到人類受到起點信念的影響,[14]中研究了數據的選擇、排序和呈現對人類決策性能的影響。在人類協作決策范式中,已經開發了不同的方案和融合規則來改善人類人群工作者的不可靠和不確定性[15, 16]。此外,在[17,18]中,作者將前景理論(PT)用于描述人類的認知偏見,如風險規避,并研究了現實環境中的人類決策行為。在[19, 20]中也探討了基于人類和機器的信息源在不同場景下的信息融合。在[19]中,作者表明,人類的認知力量可以利用多媒體數據來更好地解釋數據。一個用戶細化階段與聯合實驗室主任(JDL)融合模型一起被利用,以在決策中納入人類的行為因素和判斷[20]。

未來的戰場將需要人類和機器專業知識的無縫整合,他們同時在同一個環境模型中工作,以理解和解決問題。根據[21],人類在隨機應變和使用靈活程序、行使判斷和歸納推理的能力方面超過了機器。另一方面,機器在快速反應、存儲大量信息、執行常規任務和演繹推理(包括計算能力)方面勝過人類。未來雷達系統中的高級認知尋求建立一種增強的人機共生關系,并將人類的優點與機器的優點融合在一起[22]。在本章中,我們概述了這些挑戰,并重點討論了三個具體問題:i)人類決策與來自物理傳感器的決策的整合,ii)使用行為經濟學概念PT來模擬人類在二元決策中的認知偏差,以及iii)在相關觀測下半自主的二元決策的人機協作。

本章的其余部分組織如下。在第11.1節中,我們介紹了一項工作,說明如何將人類傳感器的存在納入統計信號處理框架中。我們還推導出當人類擁有機器無法獲得的輔助/側面信息時,這種人機一體化系統的漸進性能。我們采用行為經濟學的概念前景理論來模擬人類的認知偏差,并在第11.2節中研究人類在二元假設檢驗框架下的決策行為。第11.3節討論了一種新的人機協作范式來解決二元假設檢驗問題,其中人的知識和機器的觀察的依賴性是用Copula理論來描述的。最后,我們在第11.4節中總結了與這個問題領域相關的當前挑戰和一些研究方向,然后在第11.5節中總結。

付費5元查看完整內容

這個項目的目標是開發在具有挑戰性的多目標環境中自主分布式傳感器管理和融合所需的基礎方法。這涉及到開發能夠自動跟蹤多個目標的算法,根據從具有數據關聯不確定性和高誤報率的多個平臺收到的信息進行分類并分配資源。在研究者最近在多目標跟蹤和分布式傳感器融合方面的發展基礎上,該工作方案開發了能夠在大規模多傳感器多目標跟蹤應用中基于信息理論標準實現自主傳感器分配的方法。這是通過重新評估信息理論中的關鍵工具來實現的,這些工具適用于基于點過程理論的多目標監視的挑戰,該理論旨在適應單個目標的狀態和目標數量的不確定性。所開發的信息理論方法被應用于多傳感器問題,使人們能夠決定如何分配傳感器資源,以及完善對場景的認識。所開發的工具將有助于減少監測單一傳感器饋電的勞動密集型負擔,并能做出適應性決定,以優化多模式網絡的運行,并增強對監測區域的整體認識。對多目標跟蹤情景的信息理論表述的關注,將使人們能夠驗證傳感器饋電是否能夠可靠地融合,以避免數據損壞的可能性。該項目在智能傳感方面提供了關鍵的先進技術,以實現動態環境中的連續和適應性監視。這些將是可擴展的,可用于從多個分布式傳感器對許多目標進行大規模跟蹤。

該項目的總體目標是研究和開發基于信息理論原則的分布式多傳感器多目標系統的自主傳感器控制的新策略:

  • 為大規模系統的多目標跟蹤開發可擴展的解決方案。

  • 開發基于信息論原理的多傳感器融合的分布式解決方案。

  • 確定多傳感器多目標跟蹤系統可以交換多少信息。

該項目為多傳感器多目標跟蹤開發了基本的解決方案:

  • 對許多目標進行大規模跟蹤。問題的規模越來越大,因此解決方案需要可擴展,跟蹤許多目標需要減輕組合復雜性的算法。多目標跟蹤的低復雜度解決方案將被開發出來,并在復雜環境中進行測試。開發了一種用于穩健地跟蹤大量目標的方法,該方法在目標數量和測量數量上是可擴展的,這使得數百萬目標可以被跟蹤。

  • 確定多傳感器多目標跟蹤系統的信息含量。在具有高密度信息的傳感器網絡中,帶寬可能是多傳感器多目標跟蹤的一個制約因素。這個項目得出了確定用于多目標跟蹤的傳感器網絡的信息含量的結果。預計這將有助于評估傳感網絡的效率和有效性,并與發送數據的數量和頻率相平衡。

  • 來自多個傳感器的數據的分布式整合。操作員需要根據來自多個跟蹤系統的信息做出決定,以提高整體的態勢感知。為多傳感器集成開發了一種分布式多傳感器多目標跟蹤的新方法,該方法可減輕來自不準確或誤導性數據源的損壞。

  • 對多目標監視應用中的威脅進行評估。對許多物體的大規模跟蹤能夠識別直接威脅。然而,有些威脅可能比其他威脅更有針對性。開發了一種新的對抗性風險的表述,為操作人員提供態勢感知,以幫助確定傳感資產的優先次序。

  • 目標跟蹤估計器的性能界限。費舍爾信息的倒數,即克拉默-拉奧約束,為參數的估計器提供了一個約束,是統計分析的基礎。它為一個參數提供了一個可實現的最小方差或協方差。根據量子場理論的數學概念,為點過程推導出克拉默-拉奧約束,將這一概念推廣到具有空間變量的變量。

付費5元查看完整內容

執行總結

研究要求

鑒于網絡工作在美陸軍中的重要性日益增加,以及網絡工作所需能力與其他作戰人員工作相比的獨特性,建立一個有效的選拔和分類系統來識別和分配那些有很大潛力在這些工作中取得成功的新兵變得越來越重要。在這個項目中,我們開發了一個創新的評估,稱為通用網絡能力(C^3)測試,以衡量七個被認為與美陸軍多個網絡工作的成功相關的結構:主動學習、解決復雜問題、批判性思維、演繹推理、歸納推理、選擇性注意和排除故障。

程序

為了識別那些目前不具備網絡知識和技能的、在這些工作中具有很大成功潛力的新兵,C^3測試的一個關鍵規定是創建一個不需要網絡或信息技術(IT)知識的評估。因為像復雜問題解決這樣的構架不可能是完全無背景的,應試者需要解決的問題和他們可以利用的信息來解決這些問題。此外,為了測量主動學習,應試者需要一個學習的機會。為了滿足這些需求,我們為C^3測試創建了一個虛構的情境,在這個情境中,應試者開始了一份新的工作,并得到了關于這份工作的信息。在開始他們的新工作時,應試者通過 "學習階段"和 "應用階段 "進行。這種兩階段的結構使應試者能夠在評估的第一階段學習相關信息,然后在評估的第二階段應用這些信息來解決問題。

在C^3測試中,應試者扮演一個虛構的未來運輸公司的新雇員,該公司使用真空管進行運輸。在評估中,應試者必須首先通過一系列的培訓模塊來學習與工作相關的知識,這些模塊描述了公司、真空管旅行的發展以及與他們的虛構工作相關的具體部件和設備。然后,應試者開始新的工作,并將這些知識應用于測試的應用階段出現的問題。在這個整體評估的背景下,每一個C^3構架都是根據構架的定義和對現有措施的審查來操作的。初步數據是從67名完成C^3測試的受試者中收集的,這些受試者完成了少量的相關測量,一份人口統計問卷和一份反饋問卷。

研究發現

C^3測試的初步心理測量證據是很有希望的。大多數測量方法都有足夠的方差,分數的分布也近乎正常。雖然有些分布稍有偏斜,表明對參與者來說,這些測量有些太容易或太難,但這些特征的原因很容易確定,可以在后續版本的測試中加以修正。有幾個測量項目的分布顯示出中心傾向的偏差,并將從增加方差的程序中受益。

許多C^3構架和子維度之間的相關關系顯示出預期的模式。盡管在最初的研究中不可能為所有的測量方法收集構架有效性數據,但C^3構架和子維度之間的相關性提供了一些構架有效性的確認。大多數相互關系是顯著的,但幅度很小到中等。相關性小到中等的事實表明,沒有兩個工具在測量相同的構架。由于每個C^3測試都被設計用來測量一個不同的構架,這提供了辨證有效性的初步證據。應該進行更多的研究,以更仔細地檢查這些測量與其他類似測量的分歧。C^3構面和一般智力測驗之間的相關性也是小到中等的,這表明與一般智力有分歧。未來的研究應該考察C^3測試的標準相關有效性,以及C^3構面在多大程度上可以預測超出一般智力的標準。

盡管受測者報告說發現測試很復雜,完成起來很有挑戰性,但對于一個主要側重于評估認知技能的測試來說,這在某種程度上是必要的。測試者的反饋和每個構架的具體結果都被詳細地介紹和討論。

研究結果的利用和傳播:

本研究的結果可用于改進C^3測試,并為評估評估的標準相關有效性的研究做準備。一旦得到驗證,C^3測試可以用來識別新兵和新戰士的能力,這些能力是在網絡相關工作中取得成功的關鍵,即使他們沒有預先存在的網絡知識和技能。此外,如果陸軍的其他工作需要類似于C^3測試的能力,該測試也可以用來識別陸軍其他工作的候選人。

付費5元查看完整內容

在學習型網絡物理系統(LE-CPS)中使用的機器學習模型,如自動駕駛汽車,需要能夠在可能的新環境中獨立決策,這可能與他們的訓練環境不同。衡量這種泛化能力和預測機器學習模型在新場景中的行為是非常困難的。在許多領域,如計算機視覺[1]、語音識別[2]和文本分析[3]的標準數據集上,學習型組件(LEC),特別是深度神經網絡(DNN)的成功并不代表它們在開放世界中的表現,在那里輸入可能不屬于DNN被訓練的訓練分布。因此,這抑制了它們在安全關鍵系統中的部署,如自動駕駛汽車[4]、飛機防撞[5]、戰場上的自主網絡物理系統(CPS)網絡系統[6]和醫療診斷[7]。這種脆性和由此產生的對基于DNN的人工智能(AI)系統的不信任,由于對DNN預測的高度信任而變得更加嚴重,甚至在預測通常不正確的情況下,對超出分布范圍(OOD)的輸入也是如此。文獻[8, 9]中廣泛報道了這種對分布外(OOD)輸入的不正確預測的高信心,并歸因于模型在負對數似然空間中的過度擬合。要在高安全性的應用中負責任地部署 DNN 模型,就必須檢測那些 DNN 不能被信任的輸入和場景,因此,必須放棄做出決定。那么問題來了:我們能不能把這些機器學習模型放在一個監測架構中,在那里它們的故障可以被檢測出來,并被掩蓋或容忍?

我們認為,我們已經確定了這樣一個用于高安全性學習的CPS的候選架構:在這個架構中,我們建立一個預測性的上下文模型,而不是直接使用深度學習模型的輸出,我們首先驗證并將其與上下文模型融合,以檢測輸入是否會給模型帶來驚喜。這似乎是一個語義學的練習--即使是通常的機器學習模型通常也會 "融合 "來自不同傳感器的解釋,這些解釋構成了模型的輸入,并隨著時間的推移進行整理--但我們認為,我們提出的監測架構相當于重點的轉移,并帶來了新的技術,正如我們將在本報告中說明的。我們建議,一個更好的方法是根據背景模型來評估輸入:模型是我們所學到的和所信任的一切的積累,根據它來評估新的輸入比只預測孤立的輸入更有意義。這是我們推薦的方法的基礎,但我們把它定位在一個被稱為預測處理(PP)的感知模型中[10],并輔以推理的雙重過程理論[11]。在這份報告中,我們還提供了這個運行時監控架構的候選實現,使用基于歸一化流的特征密度建模來實現第一層監控,以及基于圖馬爾科夫神經網絡的神經符號上下文建模來實現第二層。

我們用一個自主汽車的簡單例子來解釋我們方法背后的基本原理,并展示了上下文模型如何在監測LEC中發揮作用。考慮一下汽車視覺系統中有關檢測交通線的部分。一個基本的方法是尋找道路上畫的或多或少的直線,自下而上的方法是在處理每一幀圖像時執行這一過程。但這是低效的--當前圖像幀中的車道很可能與前幾幀中的車道相似,我們肯定應該利用這一點作為搜索的種子,而且它是脆弱的--車道標記的缺失或擦傷可能導致車道未被檢測到,而它們本來可以從以前的圖像中推斷出來。一個更好的方法是建立一個道路及其車道的模型,通過預測車道的位置,用它來作為搜索當前圖像中車道的種子。該模型及其對車道的預測將存在一些不確定性,因此發送給視覺系統的將是最好的猜測,或者可能是幾個此類估計的概率分布。視覺系統將使用它作為搜索當前圖像中車道的種子,并將預測和當前觀察之間的差異或 "誤差 "發送回來。誤差信號被用來完善模型,旨在最小化未來的預測誤差,從而使其更接近現實。

這是一個 "綜合分析 "的例子,意味著我們提出假設(即候選世界模型),并偏向于那些預測與輸入數據相匹配的模型。在實際應用中,我們需要考慮有關 "預測 "的層次:我們是用世界模型來合成我們預測傳感器將檢測到的原始數據(如像素),還是針對其局部處理的某個更高層次(如物體)?

這種自上而下的方法的重要屬性是,它專注于世界模型(或模型:一個常見的安排有一個模型的層次)的構建和前利用,與更常見的自下而上的機器學習模型形成對比。我們將展開論證,自上而下的方法對于自主系統中感知的解釋和保證是有效的,但有趣的是,也許可以放心的是,人們普遍認為這是人類(和其他)大腦中感知的工作方式,這是由Helmholtz在19世紀60年代首次提出的[12]。PP[13],也被稱為預測編碼[14]和預測誤差最小化[15],認為大腦建立了其環境的模型,并使用這些模型來預測其感覺輸入,因此,它的大部分活動可以被視為(近似于)迭代貝葉斯更新以最小化預測誤差。PP有先驗的 "預測 "從模型流向感覺器官,貝葉斯的 "修正 "又流回來,使后驗模型跟蹤現實。("自由能量"[16]是一個更全面的理論,包括行動:大腦 "預測 "手,比如說,在某個地方,為了盡量減少預測誤差,手實際上移動到那里。) 這與大腦從上層到下層的神經通路多于反之的事實是一致的:模型和預測是向下流動的,只有修正是向上流動的。

有趣的是,大腦似乎以這種方式工作,但有獨立的理由認為,PP是組織自主系統感知系統的好方法,而不是一個主要是自下而上的系統,其中傳感器的測量和輸入被解釋和融合以產生一個世界模型,很少有從模型反饋到傳感器和正在收集的輸入。2018年3月18日在亞利桑那州發生的Uber自動駕駛汽車與行人之間的致命事故說明了這種自下而上的方法的一些不足之處[17]。

純粹的自下而上的系統甚至不能回憶起之前的傳感器讀數,這就排除了從位置計算速度的可能性。因此,感知系統通常保持一個簡單的模型,允許這樣做:林的視覺處理管道的物體跟蹤器[18]就是一個例子,Uber汽車也采用了這樣的系統。Uber汽車使用了三個傳感器系統來建立其物體追蹤器模型:攝像頭、雷達和激光雷達。對于這些傳感器系統中的每一個,其自身的物體檢測器都會指出每個檢測到的物體的位置,并試圖將其分類為,例如,車輛、行人、自行車或其他。物體追蹤器使用一個 "優先級方案來融合這些輸入,該方案促進某些追蹤方法而不是其他方法,并且還取決于觀察的最近時間"[17,第8頁]。在亞利桑那車禍的案例中,這導致了對受害者的識別 "閃爍不定",因為傳感器系統自己的分類器改變了它們的識別,而且物體追蹤器先是喜歡一個傳感器系統,然后是另一個,如下所示[17,表1]。

  • 撞擊前5.6秒,受害者被列為車輛,由雷達識別
  • 撞擊前5.2秒,受害者被歸類為其他,通過激光雷達
  • 撞擊前4.2秒,根據激光雷達,受害者被歸類為車輛
  • 在撞擊前3.8秒和2.7秒之間,通過激光雷達,在車輛和其他之間交替進行分類
  • 撞擊前2.6秒,根據激光雷達,受害者被歸類為自行車
  • 撞擊前1.5秒,根據激光雷達,受害者被歸類為不知名。
  • 撞擊前1.2秒,根據激光雷達,受害者被歸類為自行車。

這種 "閃爍 "識別的深層危害是:"如果感知模型改變了檢測到的物體的分類,在生成新的軌跡時就不再考慮該物體的跟蹤歷史"[17,第8頁]。因此,物體追蹤器從未為受害者建立軌跡,車輛與她相撞,盡管她已經以某種形式被探測了幾秒鐘。

這里有兩個相關的問題:一個是物體追蹤器保持著一個相當不完善的世界和決策背景的模型,另一個是它對輸入的決策方法沒有注意到背景。預測性處理中的感知所依據的目標是建立一個準確反映世界的背景模型;因此,它所編碼的信息要比單個輸入多得多。我們想要的是一種測量情境模型和新輸入之間的分歧的方法;小的分歧應該表明世界的常規演變,并可以作為模型的更新納入;大的分歧需要更多的關注:它是否表明一個新的發展,或者它可能是對原始傳感器數據解釋的缺陷?在后面兩種情況中的任何一種,我們都不能相信機器學習模型的預測結果。

預測處理方法的實施可以采用貝葉斯方法[19]。場景模型表示環境中的各種物體,以及它們的屬性,如類型、軌跡、推斷的意圖等,并對其中的一些或全部進行概率分布函數(pdf s)。觀察更新這些先驗,以提供精確的后驗估計。這種貝葉斯推理通常會產生難以處理的積分,因此預測處理采用了被稱為變異貝葉斯的方法,將問題轉化為后驗模型的迭代優化,以最小化預測誤差。卡爾曼濾波器也可以被看作是執行遞歸貝葉斯估計的一種方式。因此,像神經科學、控制理論、信號處理和傳感器融合這樣不同的領域都可能采用類似的方法,但名稱不同,由不同的歷史派生。思考PP的一種方式是,它將卡爾曼濾波的思想從經典的狀態表征(即一組連續變量,如控制理論)擴展到更復雜的世界模型,其中我們也有物體 "類型 "和 "意圖 "等表征。預測處理的一個有吸引力的屬性是,它為我們提供了一種系統的方法來利用多個輸入和傳感器,并融合和交叉檢查它們的信息。假設我們有一個由相機數據建立的情境模型,并且我們增加了一個接近傳感器。預測處理可以使用從相機中獲得的模型來計算接近傳感器預計會 "看到 "什么,這可以被看作是對模型準確性的可驗證的測試。如果預測被驗證了,那么我們就有了對我們上下文模型某些方面的獨立確認。我們說 "獨立 "是因為基于不同現象的傳感器(如照相機、雷達、超聲波)具有完全不同的解釋功能,并在不同的數據集上進行訓練,這似乎是可信的,它們會有獨立的故障。在一個完全集成的預測處理監視器中,情境模型將結合來自所有來源的信息。情境模型將保守地更新以反映這種不確定性,監測器將因此降低其對機器學習模型的信心,直到差異得到解決。

請注意,上下文模型可以是相當簡單粗暴的:我們不需要場景的照片,只需要知道我們附近的重要物體的足夠細節,以指導安全行動,所以相機和接近傳感器 "看到 "的相鄰車輛的輪廓之間的差異,例如,可能沒有什么意義,因為我們需要知道的是他們的存在,位置,類型和推斷的意圖。事實上,正如我們將在后面討論的那樣,我們可以在不同的細節層次上對上下文進行建模,自上而下的生成模型的目標是生成不同層次的感知輸入的抽象,而不是準確的傳感器值。在報告中討論的我們的實現中,我們在兩個層次上對上下文進行建模--第一個層次使用深度神經網絡的特征,第二個層次對場景中物體之間更高層次的空間和時間關系進行建模。除了傳感器,感知的上層也將獲得關于世界的知識,可能還有人工智能對世界及其模型的推理能力。例如,它可能知道視線和被遮擋的視野,從而確定在我們附近的車輛可能無法看到我們,因為一輛卡車擋住了它的去路,這可以作為有關車輛的可能運動("意圖")的增加的不確定性納入世界模型中。同樣,推理系統可能能夠推斷出反事實,比如 "我們將無法看到可能在那輛卡車后面的任何車輛",這些可以作為 "幽靈 "車輛納入世界模型,直到它們的真實性被證實或被否定。我們對監控架構第2層的神經符號建模的選擇對于整合這種背景和學習的知識以及對這些知識進行推理至關重要。

在這方面,另一個關于人腦組織的理論很有意思;這就是 "雙過程 "模型[20, 21],由卡尼曼推廣的獨立 "快慢 "思維系統[22]。它的效用最近已經通過一個非常有限的實現被證明用于計算機器學習模型的信心[23, 24]。系統1是無意識的、快速的、專門用于常規任務的;系統2是有意識的、緩慢的、容易疲勞的、能夠斟酌和推理的,這就是我們所說的 "思考"。就像預測處理一樣,我們提倡雙過程模型并不僅僅是因為它似乎符合大腦的工作方式,而是因為它似乎是獨立的,是一個好架構。在這里,我們可以想象一個特征密度正常化的流生成模型形成一個高度自動化的 "系統1",而更多的深思熟慮的神經符號模型構成一個 "系統2",當系統1遇到大的預測錯誤時,該系統會主動參與。系統1維持一個單一的生成性世界模型,而系統2或者對其進行潤色,或者維持自己的更豐富的世界模型,具有對符號概念進行反事實的 "what-if "推理能力。人們認為,人類保持著一個模型的層次結構[20, 21, 22],這似乎也是自主系統的一個好方法。我們的想法是,在每一對相鄰的模型(在層次結構中)之間都有一個預測處理的循環,因此,較低的層次就像上層的傳感器,其優先級和更新頻率由預測誤差的大小決定。

人類的預測處理通常被認為是將 "驚訝 "降到最低的一種方式,或者說是保持 "情況意識"。加強這一點的一個方法是在構建世界模型時增加系統2對假設推理的使用,以便將沒有看到但 "可能存在 "的東西明確地表示為 "幽靈 "或表示為檢測到的物體屬性的不確定性增加。一個相關的想法是利用人工智能進行推斷,例如,檢測到前面有許多剎車燈,就可以推斷出某種問題,這將被表示為世界模型中增加的不確定性。這樣一來,本來可能是意外情況的驚奇出現,反而會發展為不確定性的逐漸變化,或將幽靈解決為真實的物體。圖馬爾科夫神經網絡提供了一個有效的機制,既可以對這些關系和更豐富的背景進行建模,又可以通過反事實查詢和背景知情的預測進行審議。因此,雙重過程理論激發了我們的運行時監控器的兩層預測編碼結構。雖然這些理論旨在解釋人類的認知,但我們將這些作為運行時監控器來計算底層模型的驚喜,因此,當模型由于新奇的或超出分布的或脫離上下文的輸入而不能被信任時,就會被發現。

圖 1:基于預測處理和雙過程理論的自主量化保障架構

圖1展示了所提出的深度學習模型運行時監控的整體架構。如圖所示,該架構有兩個層次(由雙重過程理論激發)。在第一層,我們使用生成模型,學習輸入的聯合分布、預測的類輸出和模型提供的解釋。在第二層,我們使用圖馬爾可夫神經網絡來學習物體檢測任務的物體之間的空間和時間關系(更一般地說,輸入的組成部分)。在這兩層中,我們在本報告中的重點是運行時監測,而不是開發一個認知系統本身(而使用所提出的方法建立一個強大的、有彈性的、可解釋的系統將是自然的下一步)。因此,由這兩層檢測到的驚喜被監控者用來識別底層LEC何時不能被信任。這也可以作為LE-CPS的一個定量保證指標。

提綱

第3節介紹了預測性處理和雙進程架構(低級別的自動化和高級別的審議),并認為這可以支持一種可信的方法來保證自主系統的穩健行為。它也被廣泛認為反映了人類大腦的組織。我們提出了使用不同的神經架構和神經符號模型的組成來可擴展地完成這些的機制。結果在第4節報告。第5節提供了一些與工業建議的比較,并提出了結論和額外研究的建議。

付費5元查看完整內容

美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎研究的需求。本報告的目標是定義一個經典的、與陸軍相關的配置,適合于基礎研究,以允許與適當的主題專家的關鍵數量的集中合作。從這種開放的幾何構型研究中獲得的數據和知識可能會受到更多的限制性分配

美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。

要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎性研究的需求。缺乏對高超音速飛行器周圍發生的復雜物理和化學的預測性知識,抑制了及時的、優化的多部件設計。對邊界層過渡和沖擊-邊界層相互作用等具體現象了解不多。不能正確地對現象進行建模,會產生一些不確定的特征,如表面壓力分布和熱通量,這對飛行器技術,包括穩定性、控制和熱負荷管理,都有負面影響。

幸運的是,有一個先例,即通過定義政府基準飛行器來促進全社會的科學討論,這些飛行器包含功能相關的工件,但對具體的發展計劃不敏感(見陸軍-海軍基本芬納導彈、空軍改良基本芬納導彈、陸軍-海軍旋轉火箭、國家航空航天飛機和NASA研究)。本報告的目標是定義一個典型的、與軍隊相關的配置,適合于基礎研究,以便與足夠數量的適當的主題專家進行重點合作。從這個開放的幾何構型的研究中獲得的數據和知識可能會受到更多的限制性分配。

付費5元查看完整內容

1. 簡介

機器學習(ML),從廣義上講,是一類自動優化參數以處理給定輸入并產生所需輸出的計算機算法。ML的一個經典例子是線性回歸,據此找到一條最適合(通過)一組點的線。最近的一個例子是分類任務,如用 "貓 "這樣的單字來標記一張百萬像素的圖像。

對于許多應用,ML完成了人類可以做得同樣好的任務。然而,ML在兩種情況下大放異彩:1)任務的數量巨大,例如數百萬;2)問題的維度超出了人類思維的理解。一個簡單的例子是同時實時監控成千上萬的安全攝像頭,尋找可疑的行為。也許一個ML方法可以發現異常事件,并只與人類觀察者分享這些視頻片段。更好的是,異常圖像可以被暫時貼上諸如 "1號入口處的蒙面入侵者 "之類的標簽,以幫助保安人員只關注相關的信息。

除了減少人類的負擔外,ML還可以將人類可能無法識別的復雜的相互聯系拼湊起來。例如,一個ML算法可以發現,在一百萬個銀行賬戶中,有五個賬戶的交易似乎是同步的,盡管它們沒有相互發送或接收資金,也沒有向共同的第三方發送或接收資金。

鑒于手持和固定設備的計算資源不斷增加,我們有必要想象一下,ML可以在哪些方面改變戰爭的打法。當然,ML已經對美國陸軍的科學研究產生了影響,但我們也可以很容易地想象到自主車輛和改進的監視等作戰應用。

本文件的主要目標是激勵美國陸軍和美國防部的人員思考ML可能帶來的結果,以及為實現這些結果,哪些研究投資可能是有成效的

5. 使用機器學習的ARL研究

在ARL的許多研究項目中,機器學習目前正在被使用,或者可以被使用。我們列出了一些使用ML或可能從ML中受益的研究項目。我們列出的與ML相關的ARL研究工作絕非完整。

6. 軍隊作戰應用

雖然從技術上講,機器學習自19世紀初高斯發明線性回歸以來就一直存在,但我們相信,ML的最新進展將以我們目前無法想象的方式影響軍隊。在本節中,我們概述了我們認為將得到加強的軍隊行動的許多領域,以及可能采用的ML方法的種類。

6.1 軍事情報

軍事情報包括信息收集和分析,因為它涉及到指揮官做出最佳決策所需的信息。由于收集的數據量越來越大,處理必須自動化。需要考慮的主要問題是數據的數量、速度、真實性和多樣性。大量的數據(又稱大數據)需要在許多計算節點上對數據進行智能分配。速度要求快速計算和網絡連接到數據流。真實性是對信息來源和異常檢測的信任問題。多樣性相當于使用許多不同的ML算法的不同訓練模型的應用。我們在本小節中概述了不同類型的數據和分析要求。

6.1.1 自然語言處理

讓計算機從從各種媒體來源收集到的大型文本數據庫中提煉出重要的概念和文本部分,有很大的好處。最近報道的另一個ML突破是不同語言之間的精確文本翻譯。 軍隊的一個獨特挑戰是翻譯不常見的語言,因此專業翻譯人員較少。在人工通用智能(AGI)領域,一些團體聲稱,自然語言處理將是類似人類認知的基礎。

6.1.2 數據挖掘

鑒于人類、傳感器和代理產生的數據的激增,一個很大的問題是,除了證明其收集的直接用途之外,這些數據還包含什么剩余價值。數據挖掘可以是統計學和機器學習的努力,以發現數據中的模式,否則人類操作者就會錯過。

6.1.3 異常檢測

傳統上,異常檢測是通過首先識別已知數據的群組和描述數據的分布來進行的。然后,當新的輸入被處理時,它們被識別為屬于或不屬于原始分布。如果它們在已知分布之外,就被認為是異常的。以下許多類型的異常檢測系統可能對軍隊有用。

  • 網絡入侵檢測:超出常規的網絡流量。McPAD和PAYL是目前使用的軟件中的2個這樣的例子,它們使用了異常檢測。

  • 生活模式異常:人們的視覺和生物統計學上的行為方式與常人不同,表明他們可能正在進行一些對抗性行動。

  • 基于條件的維護:在當前生命周期中,材料/系統在其年齡段不典型的信號。

  • 士兵異常:有理由相信士兵的生物識別技術不正常。

  • 異物檢測:在已知物資數據庫中無法識別的物體的視覺效果。

6.2 自主性

6.2.1 自動目標識別

自動目標識別(ATR)是一個非常成熟的領域,已經使用機器學習幾十年了。

1)目前深度學習的進展將在多大程度上增強ATR?

2)更復雜的算法是否需要更復雜/更耗電的機載計算?

  1. ML是否能對目標的各種欺騙性的混淆行為具有魯棒性?

  2. 強化學習在多大程度上可以用來進行實時軌跡調整?

6.2.2 機器人學

機器學習在機器人學中的應用也是一個巨大的領域。ML應用領域包括傳感、導航、運動和決策。目前,傳感將從計算機視覺的所有進展中受益。導航,除了使用標準的GPS之外,還可以從自我運動中受益,也就是基于自身感知的運動估計。運動可以被學習,而不是規劃,這不僅會導致更快的開發時間,而且還能在新的環境或受損的模式下重新適應(例如,失去四條腿中的一條)。最后,隨著機器人的數量超過人類操作員的數量,機器人將有必要自行決定如何執行其規定的任務。它將不得不做出這樣的決定:"由于電池電量不足,我是否要回到大本營?"或者 "我是否繼續前進一點,然后自我毀滅?"

6.2.3 自愈性

除了機器人技術,人們最終希望任何系統在損壞或不能滿負荷工作時能夠自我糾正。這需要在某種程度上的智能,以自主診斷缺陷和問題,并利用其可用的資源糾正這些問題。

6.2.4 倫理

在通過機器學習來學習自主權的情況下,問題將是:"自主系統將如何應對X情況?" 這里的問題是,對于一個擁有潛在致命武力的系統,我們怎么能確定它只會正確合法地使用武力?我們推測,在機器學習的算法擁有使用致命武力的實際能力之前,必須對其進行廣泛的測試,即使它與人類的環形決策相聯系。

6.3 通過玩游戲來訓練智能代理

近年來,大量的研究都在研究使用機器學習來自主地玩各種視頻游戲。在某些情況下,報告的算法現在已經超過了人類玩游戲的水平。在其他情況下,仍然存在著處理長期記憶的挑戰。對于美國空軍來說,智能代理已經成功地在以戰斗為中心的飛行模擬器上進行了訓練,這些模擬器密切模仿現實生活。陸軍的問題包括以下內容。

  • 智能代理能否附加到機器人平臺上?

  • 智能在多大程度上可以通用于處理現實生活與視頻游戲中遇到的各種情況?

  • 當我們可能不理解一個訓練有素的代理的邏輯時,我們能相信它的行動嗎?

  • 代理在多大程度上能夠與人類合作?

6.4 網絡安全

在過去的十年里,機器學習在網絡安全方面發揮了不可或缺的作用。具體來說,ML可以用于異常檢測,檢測已知威脅的特定模式,并辨別網絡行為是否可能由惡意代理產生。隨著該領域的不斷加強,問題是ML是否能使安全比對手領先一步,因為對手可能利用ML來混淆檢測。

6.5 預測和結構健康監測

一個長期的設想是,軍隊使用的每一個機械系統都有一些關于系統當前和預測健康的內部感應。相關問題如下。

  • 我們能從有限的傳感器中辨別出一個系統或系統組件的當前健康狀況嗎?

  • 機載ML能否預測一個系統或系統部件在暴露于特定環境或彈道侮辱之后的健康狀況?

6.6 健康/生物信息學

6.6.1 序列挖掘

隨著基因組序列的數量繼續呈指數級增長,比較在現場獲得的序列所需的計算工作可能變得無法管理。機器學習可以通過對序列進行不同層次的分類來減少必要的比較。

6.6.2 醫學診斷

93 近年來,機器學習已經在檢測各種組織中的惡性腫瘤方面取得了長足的進步。94 它同樣可以被用來描述創傷或創傷后應激障礙(PTSD)95,并制定治療計劃。

6.7 分析

陸軍的一個重要組成部分集中在對行動、系統、研究和測試的分析上。傳統上,分析人員使用大量的工具,包括機器學習,以多維回歸、聚類和降維的形式。隨著深度學習的出現,一套新的工具應該是可能的,可以更有效地處理需要更復雜模型的大型數據集。例如,應該有可能從測試期間拍攝的視頻流中提取特征和物理屬性,這可能超過目前的標準做法。

6.8 機器學習的其他用途

  • 自適應用戶界面(AUI)和情感計算。ML可以用來確定用戶的心理和/或情緒狀態,并提供適合這種狀態的界面。此外,可變的AUI可以服務于用戶的變化。例如,一些用戶可能喜歡音頻反饋而不是視覺反饋。

  • 推薦系統。最流行的推薦系統之一是根據以前看過的電影的評分來選擇用戶想看的下一部電影(例如,所謂的 "Netflix問題")。對于軍隊來說,可以根據以前的使用情況和庫存核算的反饋來推薦后勤補給的情況。

  • 搜索引擎/信息檢索。傳統上,搜索引擎返回文件的 "點擊率"。新的范式是以簡明的形式回答用戶的問題,而不是簡單的模式匹配。

  • 情感分析。社交媒體上的流量和對環境進行訓練的各種傳感器不僅可以檢測關鍵的關鍵詞或特定物體的存在,還可以推斷出可能的攻擊的可能性。

  • 有針對性的宣傳。傳統上,宣傳是通過散發傳單來完成的,如今,宣傳可以通過社交媒體來傳播。ML的角度是如何以最有說服力的信息向正確的人口群體進行宣傳。此外,重要的是快速檢測和顛覆來自對手針對我們自己的人員/人民的宣傳。

7. 機器學習的研究差距

本研究的目標之一是確定當前研究中的差距,這些差距可能會限制ML在軍隊研究和行動中的全部潛力。本節借用了ARL運動科學家Brian Henz博士和Tien Pham博士(未發表)的戰略規劃工作。

7.1 如何將軍隊的數據/問題納入當前的方法中

傳統上,在一個特定領域采用ML的一半戰斗是弄清楚如何適應現有的工具和算法。對于陸軍所面臨的許多問題來說,這一點更為突出,與其他學術、商業或政府用途相比,這些問題可能是獨一無二的。任何數據分析員面臨的第一個問題是使數據適應他們想要使用的統計或ML模型。并非所有的數據都使用連續變量或者是一個時間序列。離散/標簽數據的管理可能非常棘手,因為標簽可能不容易被轉換成數學上的東西。在自然語言處理中的一個例子是,單詞經常被轉換為高維的單熱向量。另一個例子可能是如何將大量的維修報告轉換為對某一特定車輛在一段時間內的表現的預測。

此外,陸軍的要求超出了典型的商業部門的使用范圍,不僅需要檢測物體和人,還需要檢測他們的意圖和姿態。這將需要開發新的模型。另一個大的要求是可解釋性,正如DARPA最近的一個項目所概述的那樣:是什么因素導致ML算法做出一個特定的決定?在一個真實的事件中,如果一個ML算法在沒有人類驗證的情況下宣布一個重要目標的存在,我們能相信這一決定嗎?

7.2 高性能計算

隨著對計算要求高的ML任務的設想,開發人員正在使用多線程、并行和異構架構(GPU、多核)來加快計算速度。ML的分布式實現遠不如GPU版本常見,因為分布式計算中的節點間通信存在固有的網絡瓶頸,而且在單精度浮點性能方面,GPU相對于CPU有很大優勢。除了目前對GPU的強烈依賴,生物啟發式神經計算旨在尋找非馮-諾伊曼架構來更有效地執行ML,并可能更快。這方面的一個例子是IBM的神經形態芯片。97 未來的研究應該關注如何分配ML處理,使節點之間的網絡通信最小化。另外,像聚類這樣的無監督學習算法在多大程度上可以被映射到神經網絡中?

其他需要考慮的事情。

  • 目前的ML軟件(特定的神經網絡)在一個小型的GPU集群中表現最好。

  • 大多數基于非神經網絡的ML算法的并行性不高,或者根本就沒有并行。

  • 另一個軍隊的具體挑戰是分析基本上沒有標記的數據集(例如,用無監督學習)。手動標注集群將是一種半監督學習的形式。

7.3 獨特的尺寸、重量、功率、時間和網絡限制因素

隨著進入偏遠地區或任何遠離基地的地區,軍隊必須限制系統的尺寸、重量和功率。此外,在 "激烈的戰斗 "中,時間是關鍵。例如,人們不能在遭到槍擊時等待作戰模擬的完成。最后,在其他商業發射器占主導地位的地區,或者在限制無線電通信以提高隱蔽性的情況下,網絡帶寬可能會受到很大限制。

在這種倍受限制的環境中,機器學習將需要有效地進行,而且往往是以一種孤立的方式進行。截然相反的條件是使用大型數據庫訓練大型神經網絡,這往往是最先進的機器學習功力的情況。商業部門正在開發自動駕駛汽車,據推測將使用低功耗的計算設備(如現場可編程門陣列、移動GPU)進行自主駕駛、道路/障礙物檢測和導航。然而,陸軍將有更多的要求,包括自主傳感器和執行器、態勢感知/理解、與人類的通信/合作,以及廣泛的戰場設備。這將需要多幾個因素的計算能力和特定算法的硬件,以實現最佳的小型化和低功耗。

7.4 用雜亂的或欺騙性的數據訓練/評估模型

在混亂的環境中,操作環境預計會有比通常密度更高的靜態和動態物體。此外,人們完全期待主動欺騙以避免被發現。我們也希望能夠開發出足夠強大的算法,至少能夠意識到欺騙,并相應地調低其確定性估計。

7.5 用小的和稀疏的數據訓練一個模型

基于CNN的目標分類的突破可以部分歸功于每個物體類別的成千上萬個例子的可用性。在軍隊場景中,某些人和物體的數據可能是有限的。人們最終將需要one-hot99或multishot分類器,其中幾個有代表性的數據條目就足以學習一個新的類別。到目前為止,最好的選擇是 "知識轉移",通過調整以前訓練的模型的所有參數的子集來學習新的類別。我們的想法是,由于需要優化的參數較少,修改這些參數所需的數據也較少。

7.6 專門針對軍隊相關目標的訓練模型

即使對于我們可以產生大量圖像的目標類別(例如,友好物體),我們也需要訓練自己的模型,以便從每個類別的潛在的數千張圖像中識別軍隊相關類別。軍隊還使用商業車輛中通常不存在的其他傳感模式(例如,熱能和雷達)。因此,需要為這些非典型的傳感設備訓練模型。從根本上說,非典型傳感設備可能需要新的神經網絡拓撲結構以達到最佳的準確性和緊湊性。

7.7 將物理學納入推理中

一個值得研究的有趣領域是將模型和模擬與機器學習相結合。有很多方法可以做到這一點。例如,ML可以用來推導出模擬的起始參數。此外,ML還可以用來處理模擬的輸出。一個耐人尋味的新領域是開發基于物理學或類似物理學的模擬,使用類似ML的模型/方程。一個這樣的應用是預測 "如果?"的情景。例如,"如果我跑過這棵樹呢?接下來會發生什么?"

7.8 軟人工智能

機器學習在傳統上被認為是人工智能的硬性(即數學)表現形式。有可能最終,所有的人工智能任務都會被簡化為數學。然而,就目前而言,一些智能任務似乎更多的是基于推理或情感。對于之前描述的方法中的任務,ML并不能充分解決以下軟性人工智能的特點。

7.8.1 類似人類的推理

人類并不總是完全按邏輯推理,但他們也有能力將不完整的信息拼湊起來,做出 "最佳猜測 "的決定。幾十年來,對這種行為進行編碼一直是一個挑戰。

7.8.2 情感

情緒似乎是驅動人類達到某些目的的動機/目標功能。例如,快樂可能會導致不活動或追求生產性的創造力。另一方面,恐懼則可能會導致忍氣吞聲。計算機是否需要情感來更有效地運作,還是說它們最好擁有100%的客觀性?這既是一個哲學問題,也是一個未來的研究方向。不過現在,毫無疑問的是,在人與代理人的團隊合作中,計算機需要準確地解釋人類的情感,以實現最佳的團體結果。

7.8.3 社會交流

與人類的互動性是陸軍研究未來的首要關注點。一個類似的問題是,不同的計算機系統之間如何進行交流,而這些系統不一定是由同一個實驗室設計的。研究的一個領域是用計算機來教那些在這方面有困難的人進行社會交流。 再一次,對于人與代理的合作,代理將需要能夠參與社會互動,并在人類的陪伴下遵守社會規范。

7.8.4 創造性

創造力通常被認為是隨機合并的想法,與新的元素相結合,由一個鑒別功能決定新創造的項目的功能和/或美學。在某些方面,創造力已經被某些計算機實驗室所證明。例如,為了設計的目的,計算機可以被賦予某些方面的創造力。

7.8.5 通用智能

人工智能的最終目標是將許多狹義的智能算法合并成一個統一的智能,就像人類的頭腦一樣。75鑒于許多狹義的人工智能任務已經比人類的某些任務要好,即使是早期的所謂人工通用智能(AGI)也可能具有一些超人的能力。AGI的一個主要目標是將目前由人類執行的某些任務自動化。

7.8.6 人工超級智能

如果不提及許多哲學家的猜測,機器學習將最終能夠改進自己的編程,導致能力的指數級提高,也許會遠遠超過人類智能,那么機器學習的研究就不完整了。這些設想既是烏托邦式的104,也是烏托邦式的105。希望超級智能能夠解決世界上的許多問題。

8.結論

在這項工作中,我們回顧了機器學習的不同類別,并描述了一些更常用的方法。然后,我們指出了一小部分關于ML在ARL中的應用的例子。最后,我們預測了ML在未來可以應用于軍隊的各個領域,并概述了為實現這一結果需要解決的一些挑戰。我們希望這份文件能夠激勵未來的研究人員和決策者繼續投資于研究和開發,以充分利用ML來幫助推動美國陸軍的發展。

付費5元查看完整內容

全球信息網絡架構(GINA)是一個語義建模框架,旨在促進特設傳感器資產和指揮與控制系統的整合,因為它們可以通過被稱為矢量關系數據建模的實施方式提供給戰斗空間中的操作人員。為了評估GINA的互操作性和推理能力,開發了一個概念驗證評估,并在真實世界的傳感器數據上進行測試。

正如美國陸軍的多域作戰(MDO)概念所指出的,美國的對手試圖通過在政治、軍事和經濟領域的分層對峙來實現他們的戰略目標,而不是通過沖突來對抗美國軍隊和聯盟伙伴。此外,MDO概念指出,對手可能采用多層跨域對峙--跨越陸地、海洋、空中、太空和網絡空間,在時間、空間和功能上威脅美國和聯盟部隊。反擊這些戰略的中心思想是快速和持續地整合所有領域的戰爭(即融合),跨越時間、空間和能力,以戰勝敵人。

為了實現MDO的執行,聯合軍種、政府機構和多國伙伴之間的互操作性是一個關鍵要求。戰術行動已經越來越依賴于信息網絡的傳感、通信、協調、情報和指揮與控制(C2)。因此,美國陸軍不斷尋求提高其整合網絡系統的能力,并在不同的作戰節奏水平上實現同步效果。從歷史上看,由于沒有足夠的能力來支持現有的和新興的技術和進程,這種整合在以無處不在的物聯網(IoT)和軍事C2系統為特征的不斷發展的網絡化戰斗空間中帶來了技術挑戰。這種限制因不同系統的孤島而進一步加劇,限制了戰術、技術和程序的跨系統使用,以及支持硬件和軟件組件。這些限制使作戰人員面臨不一致和缺失的關鍵任務數據,促使作戰功能在孤立中運作。例如,行動和情報之間的數據交換是有限的,范圍也受到限制,增加了指揮官決策過程中的風險和延誤。

為了實現陸軍網絡現代化,陸軍未來司令部網絡跨職能小組(N-CFT)正在調查通過創新、整體和適應性的信息技術解決方案來實現網絡互操作性的顛覆性方法,以滿足既定的C2互操作性挑戰。根據NCFT的指示,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的研究人員評估了一項名為全球信息網絡架構(GINA)的技術,作為多源傳感器數據融合的系統解決方案,以支持決策。 根據其軟件規格,GINA的目的是減少在互操作和集成方面存在的技術挑戰,并支持及時的共同情報/作戰圖景和決策的情報分析。

目前,語義互操作是一個活躍的研究領域;近十年來,已經開發了一些軍事技術解決方案。語義互操作提供了促進快速整合來自臨時傳感器資產和異質C2系統的信息的手段,因為它們為戰斗空間中的操作人員所了解。這項初步評估表明,GINA能夠整合不同的傳感器系統,并對數據進行同質化和協調,以便在本次評估的實驗場景下提供解釋、分析和推理。在這一評估的基礎上,在與MDO的規模和復雜性相匹配的實地演習或實驗中進行進一步的評估可能是有意義的。具體來說,進一步評估的能力是:1)來自多個部門的傳感器和通信設備之間及時的互操作性;2)連接來自不同結構和標準的盟國、合作伙伴或商業數據流系統;3)豐富、數據分析、推理或增強其他決策支持C2系統;以及4)與其他技術解決方案的比較。

這項評估的綜合分析已經在DEVCOM ARL技術報告ARL-TR-9100中記錄和公布。

付費5元查看完整內容
北京阿比特科技有限公司