亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

執行總結

研究要求

鑒于網絡工作在美陸軍中的重要性日益增加,以及網絡工作所需能力與其他作戰人員工作相比的獨特性,建立一個有效的選拔和分類系統來識別和分配那些有很大潛力在這些工作中取得成功的新兵變得越來越重要。在這個項目中,我們開發了一個創新的評估,稱為通用網絡能力(C^3)測試,以衡量七個被認為與美陸軍多個網絡工作的成功相關的結構:主動學習、解決復雜問題、批判性思維、演繹推理、歸納推理、選擇性注意和排除故障。

程序

為了識別那些目前不具備網絡知識和技能的、在這些工作中具有很大成功潛力的新兵,C^3測試的一個關鍵規定是創建一個不需要網絡或信息技術(IT)知識的評估。因為像復雜問題解決這樣的構架不可能是完全無背景的,應試者需要解決的問題和他們可以利用的信息來解決這些問題。此外,為了測量主動學習,應試者需要一個學習的機會。為了滿足這些需求,我們為C^3測試創建了一個虛構的情境,在這個情境中,應試者開始了一份新的工作,并得到了關于這份工作的信息。在開始他們的新工作時,應試者通過 "學習階段"和 "應用階段 "進行。這種兩階段的結構使應試者能夠在評估的第一階段學習相關信息,然后在評估的第二階段應用這些信息來解決問題。

在C^3測試中,應試者扮演一個虛構的未來運輸公司的新雇員,該公司使用真空管進行運輸。在評估中,應試者必須首先通過一系列的培訓模塊來學習與工作相關的知識,這些模塊描述了公司、真空管旅行的發展以及與他們的虛構工作相關的具體部件和設備。然后,應試者開始新的工作,并將這些知識應用于測試的應用階段出現的問題。在這個整體評估的背景下,每一個C^3構架都是根據構架的定義和對現有措施的審查來操作的。初步數據是從67名完成C^3測試的受試者中收集的,這些受試者完成了少量的相關測量,一份人口統計問卷和一份反饋問卷。

研究發現

C^3測試的初步心理測量證據是很有希望的。大多數測量方法都有足夠的方差,分數的分布也近乎正常。雖然有些分布稍有偏斜,表明對參與者來說,這些測量有些太容易或太難,但這些特征的原因很容易確定,可以在后續版本的測試中加以修正。有幾個測量項目的分布顯示出中心傾向的偏差,并將從增加方差的程序中受益。

許多C^3構架和子維度之間的相關關系顯示出預期的模式。盡管在最初的研究中不可能為所有的測量方法收集構架有效性數據,但C^3構架和子維度之間的相關性提供了一些構架有效性的確認。大多數相互關系是顯著的,但幅度很小到中等。相關性小到中等的事實表明,沒有兩個工具在測量相同的構架。由于每個C^3測試都被設計用來測量一個不同的構架,這提供了辨證有效性的初步證據。應該進行更多的研究,以更仔細地檢查這些測量與其他類似測量的分歧。C^3構面和一般智力測驗之間的相關性也是小到中等的,這表明與一般智力有分歧。未來的研究應該考察C^3測試的標準相關有效性,以及C^3構面在多大程度上可以預測超出一般智力的標準。

盡管受測者報告說發現測試很復雜,完成起來很有挑戰性,但對于一個主要側重于評估認知技能的測試來說,這在某種程度上是必要的。測試者的反饋和每個構架的具體結果都被詳細地介紹和討論。

研究結果的利用和傳播:

本研究的結果可用于改進C^3測試,并為評估評估的標準相關有效性的研究做準備。一旦得到驗證,C^3測試可以用來識別新兵和新戰士的能力,這些能力是在網絡相關工作中取得成功的關鍵,即使他們沒有預先存在的網絡知識和技能。此外,如果陸軍的其他工作需要類似于C^3測試的能力,該測試也可以用來識別陸軍其他工作的候選人。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

(2020年2月5日,美海軍陸戰隊網絡空間司令部的海軍陸戰隊員在馬里蘭州米德堡拉斯韋爾大廳的網絡作戰中心觀察計算機運行情況。海軍陸戰隊開展進攻性和防御性網絡作戰以支持美國網絡司令部,并操作、保護和保衛海軍陸戰隊事務網絡)

沖突的勝負取決于軍事抵消,也就是國防單位可以用不對稱的方式來打擊對手的優勢。隨著大國競爭、對手技術的超常發揮以及不斷擴大的戰場,傳統的抵消手段往往被人工智能(AI)所增強。然而,國防部(DOD)將人工智能投入使用的能力剛剛起步。五角大樓采用的最初的人工智能計劃側重于將商業能力轉移到國防部門,因此強調技術性能,不強調以任務為導向的功能。因此,最初的試點項目未能進入現實世界的作戰環境(OE)。

人工智能的實用化

實用化取決于這樣一種認識,即人工智能不是一種最終狀態,而是實現軍事優勢的一種方式。為此,人工智能相關方法的技術執行必須與作戰環境相結合。這種考慮與傳統思維不同,因為人工智能解決方案的開發通常是為了實現某種統計閾值(例如,召回率、精確度),而不是軍事目標(例如,增加對峙距離)。

這一動態被 "算法戰"一詞所混淆,目前該詞混淆了技術和軍事特征。算法戰旨在減少處于危險境地的作戰人員的數量,在時間緊迫的行動中提高決策速度,并在人類無法操作的時候和地方進行操作。然而,這些目標都不涉及數學或計算機科學;它們完全建立在軍事最終狀態之上。問題是,在五角大樓走上人工智能的道路之前,科學、技術、工程和數學學科與軍事目的之間的橋梁從未建立。

所需的橋梁是一個指導和評估人工智能實用化的框架,一邊是算法性能,另一邊是任務效用。這樣的組合確保了數學方程可以證明或從數字上驗證一個人工智能系統,而定性的基準則保證了實際應用。其結果是算法戰不僅基于統計數據,而且基于更廣泛的作戰相關性架構。這種相關性體現在五個要求上:

  • 最低限度的生存能力。
  • 適應未知和不可知情況的能力。
  • 將洞察力置于信息之上。
  • 應用所需的自主性水平,以及
  • 戰場準備就緒。
  • 這些要求首次為評估軍事人工智能項目和定義成功奠定了基礎。

將技術方法和國防條令結合起來

為軍事人工智能項目制定有效性措施(MOE)需要將研究和技術方法(例如,基礎理論)與美國防部的條令相結合。如果沒有這種映射,算法戰就會淪為算法開發過程,而不是作戰部署。例如,一個旨在檢測視頻中目標的計算機視覺算法(如地理空間情報分析)被簡化為該模型發現的車輛數量或其發現這些車輛的準確性。那么,成功是指該算法在85%的時間內正確找到車輛。

但在軍事行動中,85%的時間檢測到車輛有什么用?這就是維護理論的完整性所帶來的背景。以上面的例子為例,評估同一算法時不是看它正確探測車輛的頻率,而是看它對任務的影響:由于該模型的存在,分析人員識別感興趣的車輛的速度提高了95%。這樣的方法將算法的設計與任務的部署聯系起來。雖然這似乎是常識,而且這種關系甚至可能在項目文件中被模糊地表示出來,但在國防部的任何地方都沒有一個表示的標準。

評估標準仍然需要保持解決方案的獨立性(即,無論情報類型、使用的算法、部署的作戰環境或任務要求如何,這些標準都適用)。因此,在這項研究中,人工智能原則被編入可量化的屬性和指標中,與系統和程序無關。評估標準也以 "去 "與 "不去 "的方式進行表述,以創建一個符合邏輯的、自上而下的層次結構,與相關的聯合出版物同義。其結果是規范、監測和評估國防部人工智能系統的基線。

國防人工智能運作的框架

如前所述,可實操化的人工智能是由任務效用的五個方面定義的人工智能:最低限度的可行性、適應未知和不可知情況的能力、洞察力優先于信息、應用所需的自主性水平以及戰場準備情況。這些MOE中的每一個都是算法戰的基礎。對這些信息的分析產生了一個全面的框架,其中包括每個MOE的指標和效果。整個框架是以條令定義和程序為基礎的。

(2017 年 11 月 1 日在華盛頓特區舉行的 NVIDIA GPU 技術大會期間,顯示屏展示了用于執法的車輛和人員識別系統。該大會展示了人工智能、深度學習、虛擬現實和自主機器。)

衡量有效性

衡量有效性的軍事程序依賴于一個自上而下的架構。這意味著,只有當一項措施的每一個指標也存在時,該措施才會存在。同樣,一個指標只有在該指標的所有影響也存在時才會存在。這是一個二元的、全有或全無的過程,可以像常規軍事活動一樣隨時適用于人工智能。

在傳統的高價值目標(HVT)生命模式分析中,一個MOE定義了軍事行動的一個預期結果(例如,高價值目標移出責任區[AOR])。該MOE的所有定義指標必須得到滿足,因此不能任意或有選擇地稱之為成功。例如,情報應該表明:(a) 在新的責任區發現了HVT,(b) 在新的責任區發現了已知的HVT同伙,以及(c) HVT在新的責任區獲得了基本的生活支持系統(例如,住房,交通)。隨后的效果遵循同樣的過程:支持指標 "a "的效果可能包括識別已知的物理特征和探測通信信號。

因此,盡管常規和人工智能MOE在戰術執行上有所不同,但決策驗證的基本系統是相同的。只有在對人工智能領域有基本了解的情況下,才能驗證人工智能MOE,這與情報部門制定的MOE不能由作戰部門驗證的情況是一樣的。

描述有效性--技術浪尖

算法戰是通過人工智能手段進行的戰爭。人工智能手段是指那些不僅是智能的(收集和應用洞察力),而且是人工的(以人類無法做到的方式對智能采取行動)。在沒有人類干預的情況下,系統必須學習如何為自己表示數據。這方面的另一個術語被稱為機器學習。有不同類型的機器學習,但當涉及到戰場時,無監督的機器學習將成為黃金標準,因為它的靈活性和從未知和非結構化信息中獲取輸出的能力。在這個黃金標準中,一種被稱為深度學習的特定方法是獨一無二的,它能夠更精確地表示復雜的問題。鑒于戰場的動態性質,更精確地表示復雜問題的能力是最重要的。

因此,算法戰只能通過以下方式實現:(a) 工作系統(最低限度可行)能夠(b)從未知和不可知的場景(無監督)中自行學習,同時(c)將復雜的戰場環境轉化為有用的洞察力(啟用深度學習)(d)幾乎沒有無指導(自主)和(e)在實時任務環境中(戰場準備)。這些MOE和圖中的架構是人工智能實操化的第一步;它們為如何凝聚技術和操作因素奠定了基礎,同時也使任何人工智能項目的 "成功 "標準化。

(圖 數字算法(人工智能)戰爭的有效性度量)

人工智能作戰必須發揮作用

最低限度的可行性檢驗了算法戰是否積極地改變了作戰環境。"積極改變作戰環境 "意味著存在著競爭優勢和性能改進,證明人工智能的部署是合理的。該理由來自行業指標(技術因素)、針對類似系統的排名以及對人類操作員的效用。

在翻譯的例子中,一個自然語言處理算法在以下情況下是最可行的:(1)行業指標證實它準確地將地面真相數據翻譯成正確的語言;(2)該算法在同一技術類別和OE中優于其他可用算法;(3)機器翻譯優于人類。

與最低生存能力相關的競爭優勢和性能改進因素是必要的,因為如果沒有這些因素,非算法衍生的戰爭將更加有效--因此,否定了對可操作人工智能的需求。

靈活和適應性強的系統

無監督算法是實戰任務的理想選擇,因為它們的靈活性和即使在未知情況下也能得出洞察力的能力。簡而言之,無監督系統可以在沒有預設信息的情況下運行,并在新信息出現時學習。

可以從敵人交戰的例子中得出一個常規的等價物。例如,部署的服務成員在交火結束之前并不知道交火會如何發展。然而,他們被期望在沒有警告的情況下對敵人的火力做出適當的反應,并對新的對手的運動和活動得出相關結論。

成功的算法戰項目將需要在戰術執行和長期學習能力方面表現出與軍人相同的適應性。

減少任務的復雜性

回顧一下,深度學習可以降低復雜性。在實際任務中降低復雜性是關于如何表示和理解信息。正如人類一樣,有效的算法戰是以模式檢測、推理和問題解決為前提的。

模式檢測本質上是獲得知識,然后可以概括地預測未來的未知情況。假設一個部署在機場的非航空部門的軍人看到一架直升機從頭頂飛過。這個人注意到該直升機獨特的物理特征,如整體尺寸或串聯旋翼。這些獨特的特征將直升機與其他變化區分開來,隨著時間的推移,服役人員可以利用學到的視覺線索在整個機群中選擇正確的直升機。人工智能以同樣的方式識別視覺模式;在隨后的觀察中反復學習直升機特征。然后,這些特征被概括為區分一架直升機和另一架直升機或一架直升機和非直升機。

推理改進了知識的獲得,以便發現環境中的微妙之處,并將這些微妙之處邏輯地聯系起來。例如,如果在某些天氣模式下從未見過直升機,推理將推斷出天氣(OE的次要元素)影響了飛行能力。有了人工智能,惡劣的天氣會增加二次確認,即沒有旋翼的飛行物不是直升機。

最后,順序問題的解決將一個大問題(即如何駕駛直升機)分解成更小的問題(即飛行路徑是什么,有多少燃料,需要多少飛行員,等等)。因此,如果不降低復雜性,算法戰將缺乏將信息轉化為洞察力的能力。

在很少或沒有指導的情況下運作

由于算法戰假定利用了非人類的手段,人工智能必須獨立地制定和裁決行動方案。而人工智能必須根據自己的決策、反應能力和對形勢的認識來完成這一裁決。

決策是一個在環境中發展和解決選擇的問題。在一個慣例的環境中,一個指揮官面對相互沖突的情報、監視和偵察飛行路線,會制定一個資產優先級矩陣,然后根據這些要求進行沖突處理。這不僅僅是一個產生可行方案的問題,而且還要弄清楚這些方案中哪個對整個任務最有利。為了做到這一點,系統必須能夠融合決策標準(例如,資產的數量、收集要求、飛行時間等)。必須有傳感器來定義決策標準(例如,飛機燃油表或人類/口頭提示)。然后,必須對所有可用的選項進行修剪。最后,系統必須認識到當前狀態的變化,并對該變化產生的新信息做出反應(例如,航空資產的駐留時間結束,所以不再需要解消沖突)。

響應性是對決定性的補充。也就是說,系統能否在規定的時間內對它從未見過的情況作出適當的反應?要做到這一點,系統必須具備必要的態勢感知功能:攝入、處理、迭代和行動。所有的指標都能確保可操作的人工智能改善決策時間表,而不是抑制它們。

將人工智能推向現實世界

戰場準備度是衡量系統是否能在實際任務空間中運作的標準。由于任務限制是巨大的,人工智能不能在實驗室里開發,而不預先考慮它將如何在現實世界中運作。明確地說,實驗室人工智能的局限性并沒有被戰場所規避,而是被放大了。開放式架構受到軍事基礎設施的限制。不可知的管道被孤立的、傳統的系統所困。普及的高速網絡一旦部署到前方就會變得零星或斷斷續續。而商業部門普遍存在的未經審核的專家則被訪問受限的用戶社區取代,他們幾乎沒有人工智能的專業知識。

簡而言之,人工智能必須補充,而不是混淆正在進行的行動。從一開始就解決任務限制,然后必須包括與現有系統的整合和溝通。此外,這種整合應該進行測試或鑒定,以便在部署前證明效用,以及這種效用的左右限制。這就像軍事人員被授予可部署性的范圍一樣,或者反過來說,糟糕的體能測試會導致不可部署性的發生。

五個可操作的人工智能MOE共同代表了初始和完全操作能力(IOC/FOC)的標準閾值。使用MOE框架中的決策門做出的IOC/FOC決定將加速人工智能的采用并改善美國在算法戰爭領域的定位。

(圖 軍事人工智能發展的目標之一是在人類智能代理團隊中將戰場上的士兵與無人駕駛車輛直接聯網,這將加速情報收集、目標識別和火力任務執行。)

建議

如果沒有一個支持算法戰的人工智能操作框架,當前的美國防部計劃將會失敗。本文提出的框架是第一個在國防人工智能領域定義成功的框架,并將為政府監督提供必要的問責措施。

雖然本文的意圖是對算法戰爭的不可知的解決方案,但額外的研究是必要的。應指定資金用于將這一框架串聯到具體的系統、學科和項目。為了支持這一努力,獲取機密材料和對機密系統進行定量實驗將是至關重要的。定量實驗不僅可以驗證本文的前提,還可以開始創建一個網絡來比較和改進國防人工智能測試和評估。也就是說,在多種環境、系統和問題集中持續、一致地使用MOE架構將使人工智能項目在一個單一、共同的評估框架下保持一致。為此,本文介紹的MOE架構支持兩種功能:(1)通過迭代改進 "走-不走 "決策門的結果來實現更有效的系統;(2)通過比較各自的MOE來決定各種系統。

從戰略上講,圖中概述的架構應該被整合到國防部的采購、技術和后勤流程中。目前的范式不是為人工智能項目的指數增長和非傳統性質而建立的。圍繞普遍的評估標準校準當前和未來的國防部人工智能解決方案將實現標準化,同時加快耗時的采購流程。此外,負責企業人工智能活動的組織應在其工作中實現框架的標準化,以便更迅速地將應用研究和開發過渡到業務使用。

不過,組織的努力不應停留在政策上。目前,國防部沒有利用軍事人員進行人工智能活動的機制。具體來說,沒有與人工智能相關的軍事職業專業(MOS),也沒有官方系統來識別和分配熟練人員到人工智能項目。其結果是缺乏可用的混合人才;也就是說,既精通人工智能又精通任務的人員。建立一個數據科學或以人工智能為導向的MOS,類似于在網絡領域發生的情況,將使人工智能能力的運作更具可持續性。它還將以越來越多的合格軍事人員來充實小規模的合格人工智能專業人員庫。另外,傳統的MOS可以適應現代戰爭的特點。例如,在一個多情報融合普遍存在的世界中,特定學科的情報分析員可能并不重要。修改或增加人工智能技能標識或專業將遏制MOS相關性的下降。

在戰術上,五角大樓對人工智能的推動需要伴隨著一場自下而上的運動,這樣采用人工智能的組織就不會簡單地被賦予一種沒有背景的能力。相反,他們應該在他們帶來的抵償中擁有積極的發言權。基層的努力可能包括在IOC/FOC設計計劃之前在單位層面進行影響分析和壓力測試,以了解脆弱性和優先需求。

結論

人工智能的操作是一項以任務為中心的努力,必須在戰術上有意義,才能產生任何戰略影響。在為地面部隊帶來切實的投資回報之前,人們對算法戰爭的價值普遍猶豫不決;因此,對抗性的超限戰將成為一個越來越無法獲勝的現實。

國防部不能在沒有操作這些項目的框架下繼續執行人工智能項目。本文介紹的架構正是通過加速和規范政府通過高度創造性的、具有操作性的技術發展人工智能能力的努力來實現的。

付費5元查看完整內容

提綱

  • 戰術無人機營--一個場景
  • 背景和框架
    • 未來戰斗行動的開展
    • 人工智能
    • 政治和法律框架
  • 目標
    • G1:提高日常工作的效率
    • G2: 提高行動能力
    • G3: 解決潛在的能力差距
  • 驅動力
    • DF1: 潛在對手的人工智能能力
    • DF2:作戰行動的動態性不斷增強
    • DF3: 更少的合格人員
    • DF4: 資源短缺
    • DF5: 信息的數量和密度
    • DF6:信息技術和人工智能發展的動態性
  • 陸軍發展的行動領域(FoA)
    • FoA1:現有系統的進一步發展
    • FoA2:新的武器系統和武器裝備
    • FoA3:人員/物資的人工智能能力管理
    • FoA4:在培訓中使用人工智能
  • 組織結構的行動領域
    • 招聘人工智能專家
    • 軍隊、研究和工業之間的合作
    • 國際合作
    • 使用測試和實驗結構
    • AI數據基礎設施和組織
  • 總結
  • 附件:德國陸軍概念和能力發展中的實施措施

在軍事上有許多行動領域使用人工智能。除了對正在使用的系統進行持續的進一步開發和人工智能鑒定,特別是具有新特性的未來系統將能夠從人工智能的應用中受益。日常工作中的人員和物資管理,以及培訓,也提供了主要的潛在行動領域。

一個精心定義的政治和法律框架是必不可少的,特別是對于軍事力量的使用。因此,目前和將來使用自動化和自主系統必須符合FMoD的政治和法律要求。除了政治和法律方面,從軍事角度來看,使用致命性自主武器系統也是一種不可取的、非預期的選擇。

人工智能是一種高技術,需要大量的專業知識和開發努力。為了實現這一目標,德國陸軍正在尋求與歐洲工業和研究的密切合作。在德國陸軍發展的背景下已經建立的技術與能力(TmC)模式正被用作進一步活動的起點。

為了能夠充分應對未來所有與人工智能相關的挑戰,德國陸軍必須擁有合格的人工智能人才。在這方面,聯邦國防軍面臨著來自民用部門的強烈競爭。為了滿足短期內的需求,軍隊正在依靠現有的OR/M&S人員。

目前所有的數據表明,利用人工智能的方法和程序可以大幅提高陸軍的效率和效力。為了能夠適當地應對即將到來的挑戰,必須采取與組織程序和結構有關的措施。因此,"陸軍中的人工智能 "立場文件建議為陸軍設立人工智能工作臺,為陸軍設立人工智能開發中心,為陸軍設立人工智能數據中心。只有這樣才能全面覆蓋人工智能領域的創新、人工智能系統的培訓和數據的提供。

下文將在附件中詳細介紹使早期實現成為可能所需的所有措施。

德國陸軍概念和能力發展中的實施措施

2018/2019年,在德國陸軍概念和能力發展中心開展了關于人工智能(AI)主題的 "技術與能力 "形式。在一系列研討會的過程中,根據北約綜合作戰計劃指令(COPD),確定了人工智能在陸軍所有能力領域以及武器和服務中的應用,并按行動路線進行分類。下面詳細列出了五個應用領域,每個領域都有不同的行動路線。

根據內容和發展的成熟度,這些措施和行動方針的實施是通過CD&E和R&T活動進行的,或者在CPM的范圍內通過適當的舉措進行。與聯邦國防軍的能力概況相匹配是至關重要的。陸軍概念和能力發展中心負責實施。

  • 1 圖像分析

這個領域匯集了基于人工智能的目標識別和分類系統領域的所有活動。這些項目正在逐步建立起一種功能,以模塊化的方式擴展陸軍的各種保護和效果組件,包括從ISR到基于效果的自動系統。一個重點是將現有的民用方法用于軍事目的。

  • 2 戰術無人機

這一領域匯集了與不同幾何形狀的小型無人機系統有關的所有活動。這些活動包括從偵察到障礙物,再到進攻性武器系統。不管是什么活動,重點都是在防御和部署自己的TaUAS的能力。一個重要的挑戰是,特別是創造出足夠堅硬和強大的TaUAS,使其能夠使用被動傳感器系統,在非常有限的通信和沒有GPS的情況下,在白天和晚上半自主地行動。

  • 3 下一代戰斗管理系統(NGBMS)

這一領域匯集了所有側重于指揮和控制的活動。它既包括實現單一的功能,在適用的情況下,也可以在已經進行的活動中進行改裝,也包括將可能用于超戰爭情況的系統和方法概念化。沒有任何跡象表明有任何明顯的雙重用途。挑戰在于對指揮和控制過程的相關部分進行建模,以創建超戰可行的指揮和控制組件。理想情況下,指揮和控制過程的一部分可以按照博弈論的思路被描述為一個游戲,這樣人工智能就可以在決策支持或指揮和控制的自動手段的意義上使用。MUM-T是這方面的一個關鍵挑戰。

  • 4 材料和基礎設施

這一領域匯集了后勤、維護和IT管理領域的所有活動。該行動路線包含了各種可以相對快速實施的措施,并有助于更好地應對當前在支持方面的挑戰。許多力爭實現的功能正在民用部門以非常類似的形式使用或開發。

  • 5 分析方法

這個領域匯集了各種單獨的解決方案,其中人工智能和大數據可以為有關數據分析和優化的經典問題提供支持。數字化和人工智能提供了一個新的質量機會,因為某些問題(識別,......)可以實時和提前解決(也適用于車輛)或技術設備(如防火墻)。

付費5元查看完整內容

陸軍正在為未來的沖突做準備,作戰環境中充滿了使用人工智能的新技術,可以接觸到各種新的信息媒介,以及受到人口結構變化和勞動力需求挑戰的不斷變化的國內安全環境。如果國防部提高數字素養,那么 陸軍將更好地準備好在2035年的聯合行動環境中進行競爭。

基于互聯網的技術和社交媒體渠道迫使社會快速適應和改變。陸軍正在從這種變化中獲益,但仍然沒有為在自動化的未來主導沖突做好準備。除非早期入伍的士兵和軍官隊伍能夠獲得適合幫助明天戰斗的教育、項目和機構,否則它將無法趕上。為了做到這一點,組建網絡輔助部隊、國家數字后備軍團、美國數字服務學院以及中高級教育項目應促進數字掃盲的途徑,以增加而不是剝奪現有的現役、后備和國民警衛隊的委任場所。

作者利用DOTMLPF框架,根據對文獻的回顧、當前的戰略和科技界領袖的建議,提出了美國陸軍為有數字天賦的專業人員創建新的職業專業和職業途徑的論點。

付費5元查看完整內容

(圖:作家兼戰略家彼得辛格(左)于 2018 年 11 月 1 日在一個未命名的空軍設施與一名軍官和一名國防部文職人員討論新技術。人工智能和腦機接口等進步將改變陸軍作戰的方式。)

長期以來,決策一直是戰爭的核心。最近,戰爭的節奏、規模、不透明性、非線性和連通性的增加對當代決策過程提出了越來越多的挑戰。在未來,這種變化將同時增加及時和有效決策的重要性,同時進一步加劇許多指揮官的認知和決策挑戰。指揮官將尋找結構不良、高度復雜的問題的解決方案,這些問題延伸到空中、陸地、海上、信息、網絡和空間這六個領域。隨著新技術和新應用的實現,未來的事態對復雜性構成了潛在的增長,并將以指數級的速度增加。人類的學習,甚至是最老練的指揮官的直覺能力都無法跟上不斷變化的戰爭特征。要想把贏得戰斗的洞察力帶到未來,必須對人類的認知、決策過程進行改進,或對其進行增強。

決策能力和現有支持的割裂造成了分析性決策過程、指揮官的直覺和有效決策之間日益擴大的能力差距。當前和未來的環境表明,有必要開發更加靈活的決策支持工具,以阻止這種差距,并為指揮官重新獲得決策優勢。在一個不透明和復雜的環境中有效地預測未來幾場戰斗的能力將是成功的關鍵。同時,在一個能夠迅速使以前的計劃失效的動態環境中,理解并首先做出反應的能力對于奪取和保持主動權至關重要。

復雜性科學和混沌研究已經與類似的問題進行了斗爭,并為軍事指揮官的突發挑戰提供了相關的見解。計算機建模和人工智能(AI)方面的工作已經取得了巨大的進展。在許多游戲中,計算機已經超越了人類的決策能力。

從人工智能的主導地位中適應和發展,國際象棋中的人機團隊已經達到了決策的新巔峰,將提前數個回合評估未來動作的算法的卓越戰術與人類的戰略能力相結合。目前美國與人工智能和決策有關的國防努力似乎集中在大數據和數據分析上。然而,如果沒有一個改進的軍事決策框架,就不能利用預測性分析。否則,增加的數據和分析只會加劇理解日益復雜和動態的作戰環境的挑戰。

軍事決策過程(MDMP)雖然在分析上是合理的,但其結構并沒有跟上未來環境的步伐。沖突的速度將超過工作人員處理分析貢獻的能力。

用人工智能對MDMP進行修改和增強,將創造一個過程,以更快的速度產生對環境的理解,并以物理信息的框架為基礎。行動方案的制定將不會像現在這樣,從一個理想的最終狀態向后發展,在理論上運用方法和手段來創造一個想象的未來。由人工智能支持的MDMP將從當前狀態向前工作。它將通過友軍和敵軍決策樹的可能分支向前探索,走向各種環境和敵軍的行動路線,通過最小化風格的決策樹,將其作為適應性代理來實現。替代行動的未來將通過可行性的出現來建立,并通過優化作戰功能的貢獻來完成,固有的區別,然后由人機團隊的人類部分來判斷是否合適和可接受。重新設想的人-機MDMP將與未來的操作環境保持同步,通過以接近機器的速度操作來保持相關性,使人能夠在日益濃厚的戰爭迷霧中獲得卓越的視野。

指揮官雖然得到參謀部的支持,但最終還是利用自己的能力進行決策。當指揮官在進行問題解決以制定對其工作人員或下屬的指導時,他們基本上是在進行 "手段-目的分析,這是一個尋找手段或步驟的過程,以減少當前情況與預期目標之間的差異"。即使是直覺,即對一個事件或數據的突然有洞察力的解釋,也以類似的方法發揮作用。"盡管表面上突然閃現的洞察力似乎產生了問題的解決方案,但研究表明,人們在解決洞察力問題時使用的思維過程最好被描述為一種漸進的、手段-目的的分析。" 領導者認識到相似性,并將其與個人和所研究的歷史聯系起來,從而獲得洞察力。心理學家、經濟學家和諾貝爾獎獲得者丹尼爾-卡尼曼(Daniel Kahneman)用這樣的描述來解釋內部的、經常是半意識的過程:"產生印象、直覺和許多決定的心理工作在我們的頭腦中默默地進行"。數學物理學家、科學哲學家和諾貝爾獎獲得者羅杰-彭羅斯描述了一種無意識的思想發展和對這些思想的有意識判斷。

MDMP有一個類似的、不亞于人類的動態。參謀部通過行動方案(COA)的制定產生備選方案,并由指揮官決定。然而,在行動方案的制定過程中,正如在手段-目的推理中一樣,用于簡化計算的啟發式方法以及一些神經心理學上的缺陷,限制了選擇并注入主觀性。歸根結底,目前MDMP內部的COA開發過程仍然需要大量的頭腦風暴來解決。

與主觀開發選項形成對比的是基于衡量和計算的選項開發,而這一過程將由人工智能支持的程序執行。通過一些基于現有信息和過去沖突的數據的計算,可以對比出AI賦能的MDMP會提供的建議。

對2008年俄格戰爭期間的決策和計劃進行評估,在與歷史上的決策、行動和結果進行對比時,可以深入了解人工智能驅動的MDMP的好處。以下是人工智能驅動的MDMP背后的邏輯和過程

俗話說,如果情報是用來推動機動的,那么對戰場的情報準備的產出必須作為COA發展的起點,使友軍COA的創建能夠實現對對手的不對稱,并執行對對手行動最有利的行動。

從對敵方力量的評估中,可以根據具體的任務變量來確定所需的友軍力量。要做到這一點,需要一種衡量對手戰斗力的方法。有許多復雜程度不同的方法來確定一個代表戰斗力的數值。

人工智能程序可以使最繁瑣的系統變得可行,所以它不像參謀部那樣受到復雜性的限制,特別是在時間有限的時候。雖然這個例子使用了戰區分析模型(TAM),但TAM并不是重點。指揮官、參謀部或學說推薦的任何東西都可以使用。

在2008年俄格戰爭爆發前,俄羅斯部隊在北奧塞梯駐扎。這些部隊可以按地點轉化為戰斗力值。例如,在馬米森山口附近的俄羅斯部隊可以按其組成部件進行統計,如人員、T-72主戰坦克、2S3自行火炮和BM-21多管火箭炮系統。

圖 1. 俄羅斯軍隊戰斗力計算

圖1中顯示的戰斗力范圍可以告知所需的戰斗力,這些戰斗力來自于格魯吉亞部隊的位置,用藍色矩形標注,以便在各種可能的情況下擊敗這支俄羅斯部隊。圖1中描述的兩種情況是俄羅斯使用西面的馬米森山口或東面的羅基隧道(帶箭頭的紅線)。

與戰斗力計算一樣,從計算機建模中得出的計算結果可以用來預測基于部隊和手段的相應相關性的傷亡。在這里使用的算法中,戰斗力是根據地形和任務類型對每種能力或系統進行調整。一旦對戰斗力進行了調整,該模型描述了在部隊比例為1:1時的傷亡分布情況,有一條非線性曲線,在戰斗力比例大約為4.4:1時趨于平緩,顯示了一個粗略的收益遞減點。這種計算方法不能提供 "任務成功 "的百分比機會,但可以提供預期戰損和傷亡的迭代,顯示雙方的戰斗力如何隨著時間的推移而受到影響。必須對將導致失敗或撤退的戰斗力損失做出假設,但這是一個很好的例子,說明人類的洞察力可以被迫提供具體的情況。從這些計算中出現的洞察力的開端是,1:1的比例仍然是消耗性的,而2:1的比例有可能在兩次反復中增長到2.4:1然后是4.5:1。這就形成了一種機制,在時間上尋求有利的戰斗比例,可以決定性地改變平衡。這不是一個水晶球,而是現有的最佳估計,能夠由工作人員有條不紊地進行,或由程序以機器速度進行。由于戰爭是一種明顯的人類努力,因此可以將士氣或本例中未包括的其他因素納入到額外的修改因素中。這種對戰斗力隨時間推移的理解提供了一個關鍵的洞察力,并可以為部隊分配的決策提供參考。在這一點上,可以產生一個對應于特定地點的友軍的有利戰斗力要求。圖2強調了格魯吉亞部隊如果在俄羅斯入侵路線上的起伏地形中進行防守時的理想戰斗力。

隨著南奧塞梯局勢的升級,格魯吉亞總統米哈伊爾-薩卡什維利于2008年8月7日為軍隊確定了三個目標。他指示他們 "第一,阻止所有軍車從俄羅斯通過羅基隧道進入格魯吉亞;第二,鎮壓所有攻擊格魯吉亞維和人員和內政部崗位或格魯吉亞村莊的陣地;第三,在執行這些命令的同時保護平民的利益和安全"。正如格魯吉亞國家安全委員會秘書亞歷山大-洛馬亞后來所證實的,"我們行動的邏輯是解除茨欣瓦利郊區的射擊陣地,并試圖通過繞過茨欣瓦利,盡快向羅基隧道靠近"。這一指令和支撐格魯吉亞軍事反應的邏輯為本文中繼續發展人工智能的COA提供了一個有益的對比。

圖2. 兵力比的正反饋循環

前面分析的圖1中的俄羅斯部隊是后來試圖通過羅基隧道進入格魯吉亞的第一梯隊部隊。被描述為向格魯吉亞部隊和村莊開火的部隊在茨欣瓦利附近活動,由奧塞梯人組成,由俄羅斯和奧塞梯 "維和 "營協助,人數增加到830人,大約300名雇傭兵,以及更多的大炮。由于他們有相當多的步兵,不同的任務,以及從茨欣瓦利城市中心倉促防守的地形,通過以前使用的相同方法,他們的戰斗潛力被計算為60。

談到格魯吉亞部隊和繼續發展他們最有利的行動路線,格魯吉亞第二、第三、第四和第五步兵旅以及戈里的一個單獨的坦克營的戰斗力和位置,作為計算的起點。他們與俄軍的距離和旅行時間,或關鍵地形,都可以計算出來。將這些信息與之前概述的俄羅斯部隊和之前討論的兵力比例知識結合起來,就可以利用目標編程,從數學上優化從每個格魯吉亞地點到羅基隧道或茨欣瓦利的戰斗力,以滿足有利的兵力比例,同時最大限度地減少總的旅行距離,從而最大限度地減少時間和后勤要求。

圖3. 戰斗潛力優化Python計劃的結果和建議的第4旅的分步任務組織結果

圖3左上角的優化程序結果顯示,格魯吉亞的戰斗力分配足以達到2:1的兵力比,以對抗進攻的俄羅斯部隊。對于第4步兵旅,建議在各目標之間分配戰斗力,后續的優化程序是按作戰功能確定各目標的不同作戰系統的數量,如圖3右上方所示。其結果是以理論為基礎的理性選擇解決方案,并通過在后期MDMP的COA分析步驟中為裁決戰爭游戲而保留的計算類型形成。人工智能支持的MDMP所實現的是使用詳細的分析來告知行動方案的最初發展,防止未來對次優COA的路徑依賴。

這種輸出就像分析數據以創造信息。合并這些信息的組成部分可以創造出知識,指揮官或參謀部可以對其運用智慧。這種方法不是像直覺所注入的那樣擁有不可解釋的因素,而是可以解釋的,并且可以在指揮官的具體規劃指導下進行修改。在這種情況下,裝甲、步兵和炮兵在進攻和防守中的有效性,以及丘陵和城市地形,都被納入優化的考慮范圍,輸出結果將炮兵優先送到羅基隧道。這一建議,雖然源于算法,但遵守人類的軍事判斷,認識到在城市中使用火炮的相對困難,以及步兵的相對優勢。毫不奇怪,行動后的審查指出,格魯吉亞的炮兵在丘陵地帶對付前進中的俄羅斯縱隊是有效的。

同樣,在這種修改中,通常為COA分析的后期步驟保留的計算類型被應用于COA的最初發展。正如加里-卡斯帕羅夫所描述的與計算機合作的好處一樣,人類也可以將作戰藝術應用于已經納入科學的概念。

許多計算可以被整合到程序中,以減少認知負擔,讓工作人員進步到更高層次的人工分析,其中一個例子就是時間。對于建議的每條路線,可以進行計算,根據車輛數量和其他變量確定更準確的時間。

將上述初級人機開發的COA的輸出與格魯吉亞國家安全委員會對其一般行動方案的闡述相比較,突出了人工智能支持的MDMP可以提供的優勢。人工智能的建議將一支更強大的格魯吉亞部隊引向羅基隧道,同時向茨欣瓦利投入部隊。很可能更早和更多地將部隊投入到羅基隧道附近的防御中,會極大地擾亂已經被渠化的入侵俄羅斯部隊,并阻止他們將火箭系統移到茨欣瓦利的射程內,并通過隧道將彈道導彈炮組進一步嵌入格魯吉亞,這對俄羅斯人來說是決定性的。

到目前為止,修改后的方法已經建立了一種發展 "下一步行動 "的方法,其基礎是對友軍和敵軍戰斗力的理解,這種戰斗力如何受到任務類型和地形的影響,以及部隊在移動和機動接觸中的時間關系。地面部隊的這些例子必須自然延伸到所有領域的戰斗力和效果的應用。這種技術能夠同時分析各個領域,并為跨領域效果的整合提供一個機制。近距離空中支援的架次可以被整合到地面領域,以便在地面戰斗的關鍵地點和時間提供更好的戰斗力比率。此外,在進行空對空作戰計算時,可以將地面防空資產納入空對空計算的因素。圖4顯示了通過羅基隧道進攻的俄羅斯地面部隊和推薦的格魯吉亞地面部隊的戰斗力,另外還強調了如何將俄羅斯的蘇-25戰斗機或格魯吉亞的SA-11系統納入其中。這為在領域內和跨領域進行的作戰行動創建了一個多維框架,并提供了一種同步匯合的方法。當一個領域的條件發生變化時,對其他領域和行動的影響可以在開始大大超過工作人員計算的復雜程度上進行。

隨著核心COA的制定,每個作戰功能的最佳整合可以通過算法來確定。例如,有了通往目標的路線和距離,以及燃燒率和其他規劃因素,可以計算出支持概念的要素。

這個例子表明,有能力在多個領域整合所有作戰功能的規劃。有了充分的細節說明COA的完成和廣度,現在可以把解釋轉向深度。為了在作戰層面創建一個在時間和空間上都有深度的COA,它必須提前預測幾個交戰,以實現相對優勢的位置,并尋求實現轉化為成功的失敗機制。而之前的過程主要是將現有的軍事理論或學術研究進行算法連接的創造,它們很難實現超越即時決策的飛躍,并創造出作戰藝術。對于這一點,現有的人工智能提供了適用的例子。

國際象棋人工智能中使用的基本微分法對所有棋盤上的處置方式提前兩步進行打分,包括行動和反應,然后根據程序對分數進行比較,分數最差的那個選項被修剪掉。在排除了未來兩步棋中最差的選項后,剩下的最佳選項被選中。修剪和消除的過程可以防止出現這樣的情況:人們可以在最近的一步棋中拿下一個低價值的棋子,但在下一步棋中又會失去一個高價值的棋子。該算法基于每一步后續棋重復這一過程。在許多程序中,該算法會分析更多的未來棋步,以指數形式增加棋盤的處置,以評估和排列潛在的棋步。為了簡化計算機的計算,一個被稱為阿爾法-貝塔修剪的過程可以在明確它們不會是最佳選擇時刪除分支,并停止評估它們。根據已經證明的根據力量和手段的相關性來評估軍事編隊的能力,可以看到即使是簡單的國際象棋人工智能方法也可以成為發展作戰藝術的基礎。

圖4. 多域COFM框架

當使用決策樹和國際象棋人工智能的最小算法時,程序會對棋盤上的大多數或所有的替代性未來進行評估,并產生一個可比較的值。俄羅斯軍隊最初從西邊的馬米森山口進攻,而不是從東邊的羅基隧道進攻,就是一個選項的例子。這將產生一個不同的動作,格魯吉亞部隊需要對此作出反應。除了國際象棋人工智能中棋子的總價值外,還經常使用位置的修改器。對每一方的剩余棋子進行估值的方法在概念上類似于之前用于分析俄羅斯和格魯吉亞部隊的戰斗力的TAM計算方法。而不是單個棋子的價值,將考慮軍事編隊的戰斗力。這種機制設計起初似乎是以消耗為重點,保留友軍的戰斗力,消除對手的戰斗力,并根據價值來確定優先次序。從一開始看起來非常機械的東西中出現的顯著特征是在時間和空間上創造和連接有利的力量比例,實現不對稱性,以大量消耗對手并保存友軍的戰斗力。簡而言之,它創造了作戰藝術。

當以這種方式對格魯吉亞的多個行動方案進行比較時,就會出現與圖3中描述的不同的行動方案。由于通往羅基隧道的旅行時間的變化,以及對交戰的預測是如何沿著各自的決策樹展開的,因此確定了對通往羅基隧道的部隊的改變,如圖5所示。

當人工智能支持的COA開發過程繼續向前搜索時,在Troitskye的俄羅斯第503摩托步槍團(MRR)和在Khankala的第42摩托步槍師和第50自行火炮團被確定為需要考慮的俄羅斯作戰力量。以最小的方式,在最初決定在羅基隧道和茨欣瓦利之間分配部隊之前,沿著決策樹進一步考慮這一事件。一旦理解了時間上的力量以及二階和三階效應,就會發現一個非直覺性的決定,即與戈里的坦克營和第比利斯的第4旅一起向羅基隧道進攻,這是由于預測到俄羅斯第二梯隊部隊在未來的行動。

圖 5. 俄羅斯-格魯吉亞聯合決策樹和進化

如圖3所示,如果俄軍同時開始行動,格魯吉亞部隊的原始部署無法及時趕到羅基隧道進行防御。然而,當動用哥里的坦克營或第4步兵旅時,一支有利的部隊能夠在迪迪古普塔或爪哇附近進行防御,使俄軍在山丘上保持渠化,有足夠的戰斗力來預測俄軍的進攻會被擊敗。這種防御可以抵御俄軍第二梯隊的第503摩托化步兵師,但不能抵御緊隨其后的第42摩托化步兵師,圖5右上方描繪的是第503步兵師。正因為如此,格魯吉亞的防御部隊如果要完成他們的任務,就需要在503摩托化步兵師到來之前向隧道進行反擊,以在嚴重的渠化隧道處進行防御。有了這些從復雜中出現的聯系,格魯吉亞的領導層可以及時思考并產生贏得戰斗的洞察力。

建立可用COA的算法過程在很大程度上緩解了因時間不足而產生的差距,同時為MDMP引入了一定程度的學術嚴謹性,否則可能只是主觀評估,而這種評估中隱含著所有未知的危險。

在目前的作戰環境中,往往沒有時間來制定多個作戰行動方案,對所有制定的作戰行動方案進行戰爭演習,應用作戰行動方案評估標準,然后確定一個推薦的作戰行動方案。有了人工智能支持的MDMP,COA分析和比較就被烘托出來,并最大限度地利用現有的技術,所有這些都是在傳統的工作人員可以收集到的工具。

通過COA分析和COA比較步驟合并和修改COA開發步驟,以利用當前人工智能能力的速度、力量和洞察力,將提高預測多種替代性未來和選擇的能力,使指揮官不僅能夠在三維空間中思考,而且能夠在時間中思考。鑒于時間越來越稀少,了解時間,并擁有在多個領域與之合作并通過它的工具,可能是人工智能提供的最大優勢。

其他領域的人工智能工具已經展示了它們在提供快速、一致和準確計算的任務方面的能力。為了具有價值,人工智能不需要自主運作或復制有生命的人。人工智能只需要彌合當前規劃和決策工具的適用性與人類認知在復雜適應性系統中的有效性之間不斷擴大的差距。處理復雜性的適度改進,即使只是減少導致錯誤的認知負擔,也會確保比無助的指揮官有決策優勢。

在人工智能支持的MDMP的意義上更進一步,人工智能可以在第一次迭代后半自動地完成MDMP,幾乎連續地進行完整的MDMP過程,沒有疲勞感,納入每一個新發展。一個持續的人工智能運行的MDMP將提供關于部隊當前位置和行動的反饋。近乎實時的反饋將使我們能夠跟蹤下屬單位的當前行動、控制措施的遵守情況和進展。

其次,近乎連續的MDMP可以通過評估根據當前條件應該執行什么COA來預測分支,甚至預測隨著條件的變化,未來決定性交戰的設置。持續的人工智能支持的MDMP將與敵人而不是計劃作戰。一個人工智能支持的過程將有額外的好處,即為任何新出現的COA整合資源,同步和優化所有領域的效果,并使過渡到一個新的分支計劃更加可行。這種能力將在使部隊迅速適應在未來動蕩環境中的混亂邊緣茁壯成長方面取得不可思議的進展。

付費5元查看完整內容

內聚力是團隊的一個重要屬性,它可以影響個人隊友和團隊成果。然而,在包括自主系統作為隊友的團隊中,內聚力是一個未被充分探索的話題。我們研究了關于人類團隊內聚力的現有文獻,然后在此基礎上推進對人類-自主系統團隊的內聚力的理解,包括相似性和差異性。我們描述了團隊的內聚力,各種定義、因素、維度以及相關的好處和壞處。我們討論了當團隊包括一個自主性的隊友時,該元素可能會受到怎樣的影響,并進行了逐一描述。最后,我們確定了可能與內聚力有關的人類-自主性互動的具體因素,然后闡述了對推進有效的人類-自主性團隊的科學至關重要的未來研究問題。

付費5元查看完整內容

對美國國防部(DoD)采購的武器系統進行嚴格的作戰測試(OT)是確保這些復雜的系統不僅滿足其既定要求,而且在面對使用其自身高能力進攻和防御武器的堅定對手時,在現實的作戰條件下也能發揮作用的根本。如果沒有足夠的OT,作戰指揮官將無法最有效地利用他們的能力,而作戰人員將對他們帶到戰場上的武器缺乏信心,或者,更糟糕的是,由于他們沒有從根本上了解他們的武器的能力和限制,可能無意中將自己置于危險之中。美國防部的測試和訓練場提供了地理、基礎設施、技術、專業知識、流程和管理,使安全、可靠和全面的OT成為可能。然而,靶場,以及使該系統發揮作用的有才能和有決心的靶場工作人員,正處于巨大的壓力之下。除非迅速采取行動解決長期存在和新出現的挑戰,包括測試能力、現代化、數字基礎設施、侵占和資源,否則國防部的靶場將無法在未來支持及時或充分的OT。

國家靶場基礎設施面臨的挑戰正在增加和加速。物質資源和勞動力的有限測試能力,測試基礎設施的年齡,測試先進技術的能力,以及侵占影響了告知系統性能的能力,綜合系統性能,以及測試的整體速度。對美國測試基礎設施的投資以及測試和評估(T&E)方法和數據處理的改變是必要的,以便為以與作戰需求相關的速度向戰場提供致命的、可生存的、可靠的和可負擔的武器系統提供信息。本研究借鑒了來自作戰、采購和測試背景的高級軍官和官員的證詞,以及測試和培訓專家、領先的技術專家、相關商業企業的領導人,以及在國防部和國會預算過程中有深厚經驗的個人。研究委員會對具有代表性的試驗場進行了虛擬和實際的實地考察;收集了試驗場在現代化、維持、操作和資源挑戰方面的意見;并審查了先前的研究和來自作戰測試與評估主任辦公室(DOT&E)、軍種測試組織和測試資源管理中心(TRMC)的報告。本報告提出了一系列相互依存的建議,委員會認為這些建議將使國防部靶場企業進入現代化軌道,以滿足未來幾年OT的需求。該報告強調了以下三個基本主題:

1.未來的戰斗將要求在聯合全域作戰(JADO)的環境下建立連接的殺傷鏈。美國防部設計、規定、開發和測試系統,以確保它們在這種新的現實中投入使用時是非常有效的,這是至關重要的。美國防部的采購流程、組織結構、測試方法和為測試單一領域的單個武器系統而優化的靶場基礎設施將不足以測試未來的綜合武器系統,因為它們將在跨越所有作戰領域(包括陸地、海洋、空中、太空和網絡空間)的機速戰爭中運行。

2.數字技術正在極大地重塑測試的性質、實踐和基礎設施。今天和明天的武器系統從根本上說是由數據和軟件促成的,美國防部的試驗場也不例外。自主性、人工智能(AI)和機器學習在整個國防系統中的重要性迅速增加,為OT創造了新的挑戰。此外,數字孿生和高性能建模與仿真(M&S)的出現使新的測試方式成為可能,甚至新領域和操作限制的組合使虛擬測試成為某些應用的唯一實用方法。

3.現場速度是今天衡量業務相關性的標準,而這又是一個不斷變化的目標。在許多基于數字、軟件和通信技術的全球擴散的推動下,美國的對手正在迅速和持續地部署新一代的武器,旨在否定美國的作戰優勢。同時,新的武器系統正在采用從未投入使用的技術,這些技術也在以摩爾定律所允許的速度發展。可用的武器系統被迅速投入使用,但也需要持續的測試和評估。

為了應對與這些主題相關的挑戰,委員會制定了結論和建議,分為以下五大類:

1.開發 "未來的靶場",在聯合防務環境中測試完整的殺傷鏈。靶場企業必須適應新的作戰概念和新的測試方法,以進行真實的作戰測試,這包括為系統集成測試和不同領域的多個靶場的互操作性提供有利的基礎設施。[建議3-1] 2.

2.調整靶場能力要求程序,以實現持續的現代化和維持。在保持嚴格的作戰測試和評估的同時,實現快速進入戰場,需要快速實現新武器技術和新威脅的靶場現代化。同時,關鍵能力需要保持,甚至增加,以確保所需的測試能力和吞吐量,同時減輕物理和無線電頻率環境中的侵占所造成的問題。[建議3-2、3-3、3-4、3-5] 。

3.在整個武器系統開發和測試生命周期中,為無處不在的M&S啟動一個新的范圍操作系統。今天的許多美國防部項目不能僅在現場測試中得到有效的測試。高保真虛擬測試可以提高實際硬件測試的準備程度和成功的可能性,并且可能是進行某些類型測試的唯一環境。然而,廣泛和標準化地使用M&S進行作戰測試,將取決于一個新的M&S基礎設施,測試界的重大文化變化,以及在不斷變化的威脅和技術環境中驗證M&S的新方法。[建議4-1]

4.為未來的作戰測試和無縫靶場企業互操作性創建 "TestDevOps "數字基礎設施。重新定義TRMC和試驗場的企業支持的核心數字標準和能力,以利用國防部在軟件、數據、網絡、AI、網絡安全和M&S方面的規模。使基于模型的工程、不間斷的數字線路和持續集成/持續交付的軟件實踐成為試驗場敏捷性、快速測試演化和快速到場的基礎。超高帶寬的信息流必須變得無摩擦、按需和安全。[建議4-2、4-3]

5.重塑靶場企業的籌資模式,使之具有響應性、有效性和靈活性。今天和明天的資源需求反映了快速變化的技術和威脅的現實;持續的資本投資用于創建、升級和維護長壽命的靶場系統;以及對跨領域的系統測試和無縫整合的M&S的需求不斷增加。將DOT&E更早和持續地納入需求開發和采購過程,將更好地建立和證明靶場投資的及時性和充分性。[建議5-1, 5-2;結論5-1, 5-2] 。

圖 3.2 多域戰場中真實殺傷鏈測試場景的表示。 A表示潛在運輸的豎立發射器; B 表示敵方代表雷達; C 表示敵機。

圖 4.3 將測試與模擬相結合的新范例。

付費5元查看完整內容

在不確定的情況下評估和選擇最合適的國防能力組合,一直是軍隊面臨的一個挑戰。這一戰略決策過程面臨著許多挑戰性的困難。它涉及到長期承諾、具有不同目標的多個利益相關者,以及廣泛的相互依賴的替代方案。盡管有現有的實踐,我們仍然缺乏一種能夠在不確定情況下評估和選擇武器系統和軍事人員組合的綜合方法。本科學報告開發了一種新的經濟方法,為戰略組合選擇提供信息。該方法得出了每項國防能力的平均經濟價值和將其納入國防組合的概率。進行了一個組合風險分析,以顯示結果對主要的不確定性來源有多敏感。一個假想的例子被用來說明這個方法。建議的方法在經濟上是合理的,在組合選擇上也是實用的。它將使決策者和國防分析人員能夠評估、優先考慮和選擇最佳的能力組合。

軍事組合決策涉及(1)多個目標,(2)復雜的替代方案,以及(3)許多不確定的變量。盡管有現有的實踐,但仍缺少一種在不確定情況下評估和選擇武器系統和軍事人員組合的綜合方法。為了最大限度地提高國防組合的整體價值并改善部隊結構組成,加拿大國防部(DND)已經開始開發企業成本模型(ECM)。ECM將使用建議的方法來評估候選能力的價值,對其進行優先排序,并確定加拿大武裝部隊可能采用的關鍵能力。至少確定了ECM的三個潛在用戶:助理副部長(財政)(ADM[Fin])、助理副部長(物資)(ADM[Mat])和盟國。通過使用ECM,這些社區也將從這項工作中受益。

引言

1.1 背景

選擇項目清單或武器系統組合的過程是一個戰略決策過程。它使軍隊能夠發展使未來部隊在戰略上具有相關性、在行動上具有響應性、在戰術上具有決定性的能力。在這個過程中,最合適的未來部隊選項是由應該實現的目標倒推到需要的目標來設計的。然而,選擇最合適的國防組合面臨著幾個復雜和極具挑戰性的困難(DND,2014)[1]。困難的主要來源包括但不限于:(Kangaspunta等人,2012 [2];Tate和Thompson, 2017 [3];Harrison等人,2020 [4])。

多重目標--這些目標涉及多個利益相關者,他們有不同的偏好和相互沖突的目標。籌資決策不僅影響投資成本,還影響犧牲其他項目的機會成本。隨著關鍵利益相關者立場的不斷變化,通常不容易將這些與環境相關的目標減少到一個單一的維度,并找到一個共識的解決方案。目標和約束條件之間也存在著持續的二元性。決策者可能希望確定實現某一特定能力水平的最低成本,或者相反,在預算約束下確定可能的最高能力水平。

風險和不確定性--組合決策涉及長期承諾,其中許多變量是不確定的。這種不確定性的關鍵驅動因素是成本、進度和運營需求過程的結果。這些驅動因素之間的相互依賴使得風險分析更加困難。例如,一個項目執行中的任何變化都會對成本和進度的不確定性產生直接影響。任何成本的降低或進度的收緊都會增加結果的不確定性。此外,這樣的決定同時將生命、美元和時間置于風險之中,導致了對風險的復雜和不一致的態度。這種不確定性通常與其他幾個不確定性的來源結合在一起,如能力要求、預算和地緣政治局勢。

復雜的替代方案--選擇一個最佳的投資組合以達到預期效果或緩解特定的能力差距,在軍事部門不是一件容易的事。軍事投資組合決策涉及廣泛的相互依賴和重疊的備選方案。它們的影響往往是非線性的,并且取決于環境。它們的相互依賴程度一般很難描述。軍事選擇也是離散的和非二元的,這使得稀缺資源的優化更加困難。這些特點往往與既非線性也非加法的復雜成本函數結合在一起。

到目前為止,還缺少一種評估和選擇國防能力組合的綜合方法。為了在最有效地利用資源的情況下構建最合適的能力組合,首席財務官(CFO)責成加拿大國防研究與發展中心(DRDC)-運營研究與分析國防經濟團隊(DET)開發ECM(Morrisey, 2021)[5]。作為這項工作的一部分,我們進行了兩項研究以支持該項目。在第一個研究中,我們提供了一個評估和選擇能力組合的二元反應模型[6]。第二項研究通過能力組合風險分析[7]補充了最初的工作。這種新的隨機方法將蒙特卡洛模擬技術應用于二元反應模型。

1.2 目的

這項工作的目的是綜合參考文獻[6]和[7]中提出的前兩種能力組合評估和選擇方法。它有兩個相互關聯的主要目標:

  • 開發一個完整的方法,該方法在理論上是合理的,并與國防能力組合建設實際相關;以及

  • 說明該方法并演示其過程實現。

1.3 方法

建議的方法結合了或然估值法(CVM)的一個變種和投資組合風險分析來選擇能力組合。1963年,CVM在哈佛大學的一篇經濟學博士論文中得到實施。包括美國陸軍工程兵團在內的許多組織都使用了這種方法,并對所采用的方法的發展做出了貢獻(Hanemann, 1984 [8]; Cameron, 1988 [9]; Sokri, 2012 [10])。我們的方法包括四個主要步驟,如圖1中的流程圖所總結的。首先是選擇能夠比較能力的主題專家(SMEs),最后是對備選方案進行排名并進行組合風險分析。

圖 1:主要方法步驟的示意圖。

1.3.1 選擇主題專家

這種方法成功的關鍵在于選擇有經驗的主題專家。正如過去所做的那樣,他們應該來自整個國防組織,并在分析能力的性質方面擁有廣泛的專業經驗。他們應該能夠比較能力并回答調查問題。這些問題將取決于每套能力(飛機、艦艇等)的性質。它們的范圍可以從戰略防御目標(例如,保衛國家及其盟友)到能力的技術措施(例如,規模、生存能力、范圍、持久性、響應性和互操作性)。

1.3.2 評估備選方案

如附件A所示,每個主題專家要求從每個標準的角度對每個備選方案進行0-100分的評分。每個主題專家還被要求(1)以0-100的尺度對每個備選方案進行總體評價,(2)決定該備選方案是否應被納入防御組合。如果主題專家決定將其納入,該替代方案將被賦予1的數值,否則為0。

1.3.3 估計回歸模型

分析師將從每個標準的角度使用0-100分的比率作為解釋變量。對于因變量,分析者有兩種選擇:(1)他/她可以使用一個非線性回歸模型,其中因變量只能取兩個值(即每個主題專家的決定),(2)他/她可以使用每個備選方案在0-100等級上的總體評價來計算 "提供的幾率"(而不是預測的幾率)。在這種情況下,分析員將估計一個線性回歸,其中因變量是賠率的自然對數(即對數)。

1.3.3.1 對備選方案進行排名

可以使用三種預測措施(產出)之一,對備選方案從最好到最差進行排名。(1) 它們被納入防御組合的概率,(2) 它們的幾率,(3) 它們的量化經濟價值。賠率是列入概率的一個增加函數。它們將提供相同的結果。經濟價值應該與它們呈正相關關系。這些衡量標準是根據專家們的評價進行統計推斷的。

1.3.3.2 進行組合風險分析

為了評價結果的穩健性,可以進行能力組合風險分析。進行這種風險分析可采用三種互補技術:(1)通過評估每個預測因素的邊際效應,(2)通過估計每個結果的三點估計值(樂觀、最可能和悲觀),以及(3)通過使用計算機模擬得出每個備選方案的風險狀況。關于這個方法步驟的更多細節,請讀者參考附件A。

建議的方法為能力組合的評估和選擇提供了更多的機會:

  • 嚴謹性(基于合理的理論基礎)。
  • 可靠性(以正確的評估為基礎)。
  • 可復制性(明確的程序,而不是黑箱);以及
  • 一致性(方法步驟的一致性)。

由此產生的科學報告將為分析人員和決策者提供一個共同的基礎:

  • 以一致的方式匯總若干評價標準。
  • 用它們的價值來描述替代品。
  • 對它們進行排名;和/或
  • 將它們歸入預先確定的類別。

本報告分為七個部分。導言之后,第2節概述了能力組合分析領域的最新進展。第3節建立了所采用的二元模型,并指出其數學推導。它還說明了如何對一組候選能力進行估值和排序。第4節介紹并討論了一種新的能力組合風險分析方法。第5節提供了一個說明性的例子,使形式主義更容易被理解。第6節展示了建議的方法與一些傳統方法和投資規劃的聯系。最后一節提出了一些結論性意見。

付費5元查看完整內容

本報告是“飛行決策和態勢感知”項目的第一個成果。該項目的總體目標是提供系統評估新興技術的方法建議,這些技術可能會影響或促成決策,并提高美國陸軍未來垂直升降機(FVL)飛行員的態勢感知(SA)。

這第一份報告的目標是:(1)回顧描述決策和SA的主要理論方法,以及(2)確定在美陸軍航空兵環境中,新技術對決策和SA的影響,及替代理論對作戰評估方法的影響。

為了理解FVL航空環境下的決策,我們采用了以下決策的定義:決策包括形成和完善一個信念或行動方案所涉及的認知活動。

回顧了人的因素和自然決策(NDM)研究界最突出的與FVL航空有關的決策模型。對于每一個模型,我們都簡要地總結了對評估決策的方法和措施的影響,以及新技術對個人和團隊決策的影響。審查的模型包括 "雙系統 "模型(Kahneman,2011)、識別-判斷(RPD)模型(Klein,1989)和SA模型(Endsley,1995)。我們還回顧了OODA循環模型,這是一個在軍事上很有影響力的模型,由一名戰斗機飛行員開發(Boyd, 1987),以及從過程控制界產生的決策階梯模型(Rasmussen, 1976),以及最近從NDM界出現的決策宏觀認知模型系列。我們還描述了兩個高度專業化的數學模型,它們在分析和評估新技術對人類決策的影響方面被證明非常有用--信號檢測理論和LENS模型。

我們包括一個題為 "把它放在一起 "的部分,綜合了我們審查的一系列模型,以(1)確定各模型的核心概念,這些概念對描述FVL環境中的決策特點很重要;(2)總結來自不同決策模型傳統的方法和措施,它們與評估新技術對FVL環境中決策的影響有關;以及(3)提出一個與FVL有關的決策綜合框架。這個框架綜合了我們所審查的各種決策模型中常見的核心概念,這些概念對于FVL背景下的建模和支持決策非常重要。

各個模型所確定的核心概念包括:

  • 決策可以產生于直覺過程、審議過程或兩者的結合。

  • 專家的表現往往是基于更直觀的、以識別為基礎的過程。

  • 決策是一個動態的、循環的過程,與其他認知活動密不可分,而這些活動又反過來影響著決策(如感知、感性認識、計劃)。

  • 感知包括自上而下(即根據預期搜索信息)和自下而上的過程(即檢測環境中的突出信息,然后影響理解并進一步反饋預期)。

  • 人們積極嘗試了解當前的情況(即感覺),這種了解是決策的核心。

  • 人們隨著對當前形勢的理解的發展而制定、修改和調整計劃。

  • 有效的團隊合作需要對當前形勢和目標有共同的理解,有時稱為共同的SA或共同點。

這些核心概念為我們開發的綜合框架提供了基礎,以指導我們接下來的工作。

我們審查的決策模型為評估新技術對個人和團隊決策的影響提供了重要的觀點、方法和措施。最特別的是,我們審查的所有決策模型都強調了在現實條件下研究決策的重要性,這些條件反映了在感興趣的現實世界中出現的挑戰。許多模型對設計和進行評估決策的研究做出了方法上的貢獻。最重要的是,他們強調需要創造研究條件(例如,通過設計評價情景),以便觀察和測量決策的重要方面。許多模型還激發了用于評估決策的新措施。關于SA的文獻記載最多,使用最廣泛,但其他決策模型也導致了更多的新措施。這些都在報告中進行了總結,并將在項目的下一階段進行更充分的探討。

在本階段研究中開發的綜合框架強調了使有效決策得以實現的宏觀認知活動,以及它們是如何相互關聯的。它特別強調了感覺認知功能(對態勢的理解),這種功能產生的期望反過來又會驅動感知、注意和工作量管理(期望循環)。感知也會產生目標,反過來驅動決定和計劃,以及有效的團隊工作所需的溝通和協調(目標到行動的循環)。綜合框架為下一組任務的執行提供了基礎,最終確定了可用于評估新技術對動態陸軍航空決策的各種認知活動的影響的方法和措施。

圖11. 一個表征決策的綜合框架

付費5元查看完整內容

陸軍醫療現代化戰略

“未來的作戰環境將迫使我們以不同的方式思考,并在非傳統空間尋求機會。如果我們不做大的想象和深入的接觸,我們將無法在未來戰場上取得成功。”約翰-"邁克"-默里將軍,陸軍未來司令部前指揮官

陸軍醫療現代化戰略(AMMS)闡明了陸軍醫療系統(AHS)將如何從根本上轉變為一種半自主的、綜合的、網絡化的能力,以保存2035年及以后進行多域作戰(MDO)的戰斗力。這種變化既不是表面的,也不是漸進的;它是對陸軍醫學基礎的變革。這種方法將與陸軍最近發布的《2035年陸軍現代化戰略》(AMS)完全一致,并為其提供全面支持,確保陸軍醫療系統在更廣泛的潛在軍事應用范圍內保持相關性。

AHS目前的采購和現代化進程已經過時,無法跟上當前威脅環境的步伐。自從40多年前的 "空地戰"轉型以來,陸軍醫學不斷將新技術置于現有理論之上。這已經不夠了。現代化必須被納入其中,使理論與成熟的技術和治療方式同步發展。

利用基于威脅的路線圖,不僅僅是在現有的理論和編制上設計和鋪設新的醫療工具。它指導我們如何重塑陸軍的醫療部門,為陸軍提供相關的價值。其主要目的是重新想象和設計整個DOTMLPF-P的醫療能力、編制和人員。這將使以前各自為政的醫療實體匯聚成一個強大的、有彈性的、聯合的軍事-醫療體系。這一戰略也確保了陸軍的生物醫學投資繼續響應醫療現代化和戰備,以及當前和未來的作戰要求。

AMMS通過改善所有領域的醫療任務關鍵能力的整合、效率和功效,優化了作戰人員的表現和部隊的準備狀態。從宏觀上看,未來我們的醫療能力、容量和熟練程度將大幅提高,而人力、物力和成本將大幅降低。

美國防部(DoD)的醫療界正在經歷重大改革。本文件旨在統一醫療現代化事業,并指導陸軍醫療現代化工作的要求、重點和方向,這對實現2035年及以后的陸軍至關重要。隨著整個國防部醫療事業的改革工作繼續進行,陸軍必須使其醫療編隊和能力現代化。

軍隊醫療現代化框架

2022年陸軍醫療現代化框架的最終狀態是一個根本性的轉型和現代化的陸軍醫療系統--以編隊、能力和人員為重點--在2035年及以后作為綜合的、適應性強的、反應靈敏的、有彈性的聯合醫療部隊的一部分,實現多域作戰。這個AMMS將確保陸軍擁有一支訓練有素的醫療部隊,組織和整合成有效的作戰編隊,擁有現代醫療系統和足夠的能力,處于戰略地位,能夠利用國家一級的能力和權威,在世界任何地方的任何戰場上支持任何沖突。

為了在2035年之前實現這一目標,美國衛生署將使我們的支持方式、支持內容以及我們的身份現代化。這種方法與AMS和 "人民至上"戰略相呼應,并在陸軍和聯合部隊中與美國盟友和合作伙伴一起整合招募、理論、組織、訓練、物資、領導人發展和教育、人員、設施和政策(DOTMLPF-P)等要素。我們如何支持以新的編隊為中心,是理論、組織和訓練的領域,這將使陸軍在可能迅速積累傷亡的環境中保持高生存率。我們所支持的是以新能力為中心,以物資開發、設備現代化和采購為特點,以陸軍醫療整合到跨職能小組、陸軍物資現代化優先事項以及正在進行的 "融合項目"(陸軍對聯合全域指揮與控制(CJADC2)的貢獻)為指導。這些新的能力也必須允許在退化或有限的網絡/網絡空間環境中繼續運作。我們的核心是我們的人,包括我們的領導者發展、教育、招聘、保留和21世紀的人才管理,以提供關鍵的武器系統和AHS的差異化-我們的人。我們的醫療要素的相互依存將需要對全球部隊態勢、設施、管理和政策進行相應的更新,以確保陸軍的現代化努力與聯合部隊的其他部門保持同步。隨著AHS對陸軍2040年的展望,未來的概念也將有助于為實驗提供信息,以及AMMS的未來版本必須解決的問題。

通過系統的方法將AHS系統凝聚在戰場網絡中,將需要加強與不同戰場治理的協調。

鑒于戰爭的聯合性質,共同的數據標準和信息格式將為行政和戰術系統之間通過國防部、退伍軍人事務部、民用醫院和聯盟伙伴的連續性的無縫鏈接的發展提供信息。

美國防部還重新調整了聯合醫療企業的要素,將固定的軍事治療設施(MTFs)業務的責任轉移到國防衛生局(DHA),導致整個軍隊的AHS被分解。這一轉移使AHS與復雜的全球醫療系統的日常勞動密集型管理脫鉤,使其能夠重新關注作戰人員和其他集中的戰爭工作。醫療企業的重新調整,優先考慮需求和能力差距以及相關的投資,再加上與作戰部隊的改進和持續的反饋,這些都是AHS與AFC執行AMMS的手段。

最終狀態:一個從根本上轉變的、現代化的陸軍醫療系統,使陸軍能夠作為聯合部隊的一部分進行戰斗并取得勝利。

圖1. 陸軍醫療現代化框架

付費5元查看完整內容
北京阿比特科技有限公司