海軍水面作戰中心胡內姆港分部發現,為了滿足未來的數據需求,需要改進艦岸數據傳輸能力。近年來,對更好的艦岸數據傳輸系統的需求日益增長,這主要是由于作戰系統元素日益復雜。這些數據需求,加上通信技術的進步,將有助于提供一個有效和高效的數據傳輸系統,超越目前帶寬的限制。增強數據傳輸能力和補充現有艦艇數據傳輸方法的一種方法是使用無人系統作為主要或輔助通信手段。本畢業設計提供了一個概念系統的作戰概念、系統架構以及建模和仿真分析,旨在滿足美國海軍提高艦對岸數據傳輸能力的需求。與目前的數據傳輸方法相比,這種方法的概念應用所顯示的結果可顯著縮短操作時間。在仿真和數據分析的支持下,操作時間的減少為使用無人飛行器的可行性和提高海軍艦艇上的艦岸數據傳輸能力帶來了積極的結果。
海軍水面作戰中心胡內姆港分部(NSWC PHD)需要改進艦岸數據傳輸能力,以支持美國海軍(USN)的測試活動,本項目正是針對這一需求而開發的。具體來說,需要一種更快的數據傳輸方法來增強現有的艦岸通信網絡,以支持美國海軍的測試活動。測試活動分析和遠程支持工作需要與岸基活動之間傳輸大量數據。現有通信系統對數據傳輸的限制會阻礙及時進行測試活動數據分析和遠程支持工作。測試活動通常在艦艇交付后或實施重大系統升級的可用期后進行。由于目前的目標是建立一支擁有 355 艘艦艇的艦隊(2020 年為 O'Rourke),而且艦艇系統的復雜性也在不斷增加,因此在可預見的未來,對改進數據傳輸能力以支持測試活動的需求將是持續而迫切的。為此,頂點團隊收集了相關信息,以制定頂點問題陳述: 近年來,對更好的艦岸(雙向)數據傳輸系統的需求一直是人們最關心的問題,這主要是由于作戰系統元素對數據的需求不斷增加。這些數據需求加上通信技術的進步,將有助于提供更好的決策支持和作戰能力,超越當前艦載系統的局限性。
頂點團隊發現了一個技術機會,即利用現有無人機(UAV)平臺的能力來填補這一能力差距,從而促進能夠滿足利益相關者要求的輔助通信線路。此外,該系統還必須在與美國海軍測試活動相關的環境條件下運行,與艦艇和地面站的操作人員連接,根據需要在艦艇和地面站之間建立并保持雙向數據連接,并具備連接和將數據寫入經批準的可移動媒體的能力。我們創建了一個概念性系統設計,命名為可部署空中數據鏈路(DAD),旨在表明利用無人機平臺可以實現利益相關者的目標。該系統旨在提高從船上到岸上的數據可用性。DAD 系統的操作概念包括使用艦艇部隊提供的可拆卸介質上傳至外部系統,然后與部署在無人機上的螺栓子系統通信,進行數據上傳或中繼。在圖 1 中,配備有 DAD 模塊化計算機子系統的美國海軍艦艇利用 DAD 系統通信線路,通過配備有 DAD 栓式子系統的無人機接收或傳輸來自 DAD 模塊化計算機子系統的數據。
圖 1 - DAD 作戰視圖
頂點團隊在系統概念化過程中使用了量身定制的系統工程 Vee 模型,該模型改編自國際系統工程理事會(INCOSE)和 Wiley(2015 年)。該研究提出了操作概念、技術方法、一套可行的候選解決方案、系統架構、系統模型和仿真以及可行性結果。得出的概念系統是對現有通信方法和相關系統的分析與運行目標的綜合。進行了替代方案分析(AoA),并確定了四種潛在解決方案供分析:(1) 繼續使用現有衛星技術,(2) 使用無人機作為中繼器,(3) 使用無人機進行接收和傳輸,以及 (4) 使用無人機進行數據上傳和硬盤移除。
根據得出的系統要求,通過應用分區標準將要求轉化為系統功能,開發了一個物理架構。然后進一步分解系統和子系統功能,并應用可行性標準來開發物理系統架構。功能、接口和系統組成在系統架構中得到進一步定義和捕捉,為此,頂點團隊使用基于模型的系統工程(MBSE)工具 Innoslate 創建了概念系統。圖 2 提供了一個高級 DAD 系統塊定義圖 (BDD)。
在確定了系統要求和系統架構后,確定了建模方法,以得出預期的系統性能。建模和仿真工具 ExtendSim 被用來分析特定場景條件下運行時間和數據傳輸率之間的關系。分析支持使用無人機作為數據傳輸平臺,并揭示了可取的系統配置和系統使用方法。初步研究結果表明,與現有通信系統相比,利用無人機的概念系統有可能以較低的運行成本為美國海軍提供更高的數據傳輸能力。
作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。
在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。
通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。
本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。
在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。
美國海軍陸戰隊正在全面采用無人自動化和半自動化資產。這些平臺將影響指揮鏈中的每一個人--從山頂上的班長、巡邏的排長,到監督所有戰場要素的營級作戰軍官。由于戰爭本質上仍然是人類的努力,因此在戰場上引入機器需要各級人員的團隊合作,以確保在未來的殺戮戰場上取得成功。要將這些資產整合到海軍陸戰隊的作戰行動中,就需要強有力的人機團隊合作(HMT),以保持海軍陸戰隊的競爭優勢。隨著越來越多的無人機和地面資產投入實戰,海軍陸戰隊的每項行動都需要不同程度的人機協作。雖然海軍陸戰隊的所有作戰功能都將受到這些資產的影響,但指揮與控制(C2)功能需要立即引起重視。本論文作者介紹了一個 C2 框架,它將幫助甲板上和作戰單元中的海軍陸戰隊員在 HMT 決策空間中做出正確的決策。該框架以 C2 理論、認知負荷理論以及最重要的相互依存關系為基礎。此外,作者還進行了知識增值(KVA)分析,以展示革命性技術在重新設計海軍陸戰隊熟悉的流程時所帶來的增值。
正如美國《國防戰略》(NDS)和《國家安全戰略》(NSS)所闡明的,潛在對手一直在發展尖端技術能力。反介入/區域拒止(A2/AD)等能力對美國國防部(DOD)贏得快速、決定性交戰的能力構成了威脅。國防部高級領導層已確定,要在未來作戰環境中開展多域作戰,隨時獲取數據和信息至關重要。此外,目前正在服役的國防部 C2 計劃沒有經過優化,無法滿足未來沖突的速度和復雜性。鑒于已發現的能力差距和潛在弱點,國防部已啟動聯合全域指揮與控制(JADC2)計劃,作為一項跨軍種的倡議。作為 JADC2 概念的一部分,美國海軍啟動了海軍戰術網格項目。本論文中描述的研究探討了美國海軍的通信路徑如何承載知識,以及 JADC2 概念如何改善知識流,并解決海軍和聯合資產之間預期的不連續、延遲或間歇通信問題。
指揮官理解戰斗空間中流動的知識和信息的能力對于有效指揮和控制至關重要。JADC2 的目的之一就是確保為通信和數據提供有效渠道。然而,對海洋領域顯性和隱性信息流效率的評估研究還很少。目前仍需開展研究,通過不同程度的通信可用性來分析這種知識流。
本研究的目的是利用差距和知識流分析以及觀察同步沖突,對海上環境中 C2 知識流的現狀與 JADC2 的既定目標、目的和要求進行比較分析。本研究旨在解決現有 C2 結構中的信息和知識流問題,并將其與 JADC2 的預期能力進行比較,以深入了解未來兵力所面臨的 C2 挑戰,為 JADC2 的開發和進一步的 C2 研究提供信息。
蜂群是戰爭的下一個進化步驟。激光武器系統(LWSs)將是在這個新的戰斗空間中競爭的一種具有成本效益的方法。無人機系統正被用于各個層面,從恐怖組織到世界超級大國,廉價的無人機系統作為采用蜂群戰的一種方式。目前,無人機群已經被用于異質配置,并在軍事演示中被展示出來(Hambling 2021)。作為反擊,國防部必須制定一個具有成本效益的對策,而LWSs具有每次射擊成本低、見效時間短的優點。
隨著通信方法、機器學習和蜂群理論的發展,無人機系統的能力也在增長。它們按重量、范圍和速度的不同組合進行分類。無人機系統執行廣泛的任務類型,包括監視、反制、誘餌、傳感器失效和有效載荷的交付。它們通常由高強度低重量的材料制成,如鋁或碳纖維增強聚合物;然而,最近也在探索使用鎂基復合材料以實現更廉價的制造(Hoeche等人,2021)。容易獲得和廉價的無人機系統使得形成蜂群成為一種具有成本效益的方式。LWS將是準備應對這種新型威脅的有效方式。
通過適當的使用,LWS將成為對廉價的蜂群攻擊的相稱和有效的反應,變得非常寶貴。擬議的每發1美元將使海軍在這些交戰中贏得經濟損耗(Smalley 2014; Perkins 2017)。然而,也有一些需要注意的障礙,如大氣效應、湍流和熱膨脹。LWS還需要能力很強的傳感器和控制系統來精確跟蹤遠距離目標,并在所需的停留時間內保持訓練好的光束。這種需求在海洋環境中被放大了,船舶的湍流和運動使問題更加復雜。戰術官做出的復雜決定是對蜂群戰和LWS使用的另一個關注。在蜂群戰環境中,交戰時間可能短至個位數分鐘。幫助決策者快速過濾大量信息的自動化決策輔助工具將是贏得這些快速小規模戰斗的關鍵所在。這篇論文探討了各種無人機威脅情況和LWS交戰策略,以確定一些關鍵因素。
無人機群可能由同質群或異質群組成。使用同質群可以簡化獲取和使用具有成本效益的蜂群,而異質群則會增加蜂群的復雜性和能力。同質蜂群的操作者可以改變攻擊的規模和隊形。異質蜂群可以利用各種角色的單位,如戰斗機、轟炸機、誘餌、干擾器和偵察兵。改變蜂群的組成可能會對整體的成功機會產生相當大的影響。
使用的LWS交戰策略會嚴重影響交戰的結果。最直接的技術是基于距離的方法,即武器系統僅根據距離來確定目標的優先次序。最短交戰 "算法提供了一個模型,它也考慮了LWS的回轉時間。如果來襲的威脅是一個異質的蜂群,LWS可以采用更復雜的策略,優先考慮蜂群的各種功能,如感知或通信。這些異質性交戰方法將要求防御者對蜂群有大量的了解,因此需要有能力很強的傳感器和數據融合系統。
本論文使用建模虛擬環境和模擬(MOVES)研究所的一個名為 "蜂群指揮官戰術"(SCT)的程序來探索和模擬蜂群戰環境。SCT被用來測試各種蜂群編隊,包括直線、楔形和波浪形楔形。此外,本論文還開發了一種采用誘餌無人機來掩護轟炸機部隊的異質蜂群編隊。對于LWS,本論文評估了一種交戰策略,使轟炸機部隊優先于任何其他部隊。
主要的發現是,最大限度地增加單位之間的角位移的蜂群編隊比緊密聚集的群體更成功。這些結果是由于每個目標之間需要增加LWS的回轉時間。裝甲誘餌方案增加了整個蜂群的存活率,因此也增加了性能。在艦艇幸存的模擬中,轟炸機能夠活得更久,在被摧毀前更接近艦艇。在艦艇被摧毀的模擬中,有更多的轟炸機幸存下來。關于LWS的交戰策略,這一轉變對結果造成了巨大的影響。在艦艇存活的模擬中,交戰時間要短得多,轟炸機被摧毀的距離也遠得多。在艦艇被摧毀的模擬中,交戰持續時間更長,轟炸機群的大部分被摧毀。這些結果強調了利用各種編隊、異質無人機群以及制定LWS交戰策略來對付它們的潛在好處。
圖1. 使用艦載LWS來防御無人機群的威脅。改編自洛克希德-馬丁公司(2020)和愛德華茲公司(2021)。
海運業對新加坡的生存至關重要。2019年,新加坡國防部發現,海運業占新加坡國內生產總值的7%,2018年供應了新加坡90%以上的食品消費。為了保護海上貿易,新加坡必須防御的眾多威脅之一是海軍水雷。使用無人系統進行有效的反雷措施(MCM)將提高安全性,減少對人類參與的依賴。本論文使用基于智能體的模擬、尖端的實驗設計和數據分析工具來探索不同的MCM作戰概念(CONOPS)的性能。該方案是一項防御性MCM任務,在該任務中,無人水面航行器被全天候部署,以消除沿作戰海上交通線的海軍水雷。60,000次模擬MCM任務的結果顯示,重疊的傳感器范圍和路徑偏差是影響殺傷概率的主要因素。風險的主要驅動因素是探測器的速度、重訪率和中和劑的扇形化。中和器的扇形化增加了對過境船只的風險,對殺傷概率的影響很小。建議決策者在改進本論文中提出的MCM方案的CONOPS時,將重點放在提高探測器的速度、優化傳感器范圍的重疊長度、以及使用減少路徑偏差的策略上。
近年來,各國軍隊加強了整合無人駕駛技術的努力,以提高有人-無人駕駛編隊(MUM-T)的能力。由于一些國家的戰斗年齡人口正在減少,軍隊正在轉向容易獲得的、具有成本效益的和復雜的無人駕駛技術。MUM-T擁有巨大的潛力,不僅可以緩解軍隊的人力短缺,還可以提高作戰能力。這篇論文研究了MUM-T在前線的有效性,直至步兵小組支持城市地形的進攻行動。一個基于智能體的模擬被用來模擬有無無人駕駛地面車輛(UGV)支持一個步兵連的MUM-T作戰行動。對超過76,800次的模擬戰斗進行了分析。據觀察,MUM-T概念可以極大地提高戰斗力,通過增加敵人的傷亡來評估。還觀察到UGV的重裝時間、武器精度和自身的力量結構對步兵的殺傷力和生存能力有很大影響。這項分析的結論是,在小單位戰術層面實施MUM-T對提高整體作戰性能有很大潛力。未來,作戰模型可以被整合到未來的軍事演習中,這樣就可以對模擬的結果進行驗證和確認。
隨著復雜技術和創新的使用,戰爭正在日益演變。在全球人力短缺的推動下,各國正在轉向無人駕駛技術以緩解這種短缺并提供作戰能力。因此,通過采用載人-無人小組(MUM-T),利用無人技術來支持前線步兵的潛力很大。
本論文旨在探索MUM-T在進攻性城市場景中的有效性。論文討論、分析和研究了在城市環境中連級無人駕駛地面車輛(UGV)的戰術運用效果。指導這項研究的研究問題包括以下幾個方面:
主要問題:
1.有UGV或UGV支持的步兵小隊的致命性和生存能力如何?
2.在模擬場景中,MUM-T部隊的不同部隊結構的戰斗結果和分析是什么?
次要問題:
本論文使用基于智能體的模擬環境 "地圖感知非統一自動機"(MANA),通過建立一個模擬并對UGV的作戰方案進行分析,再加上影響城市地形中進攻性步兵部隊作戰效率的因素,來研究MUM-T。
該作戰模型包括兩組主要的作戰部隊,以美國陸軍的步兵作戰順序(ORBAT)為模型: (1)由裝備有UGV的友軍步兵連組成的藍方部隊;(2)由作為防御方的對手步兵排組成的紅方部隊。圖1顯示了模擬作戰行動的一個迭代的開始狀態。
圖1. MANA的一個模擬復制的初始狀態的截圖。
共創建了三個不同的實驗設計(DOE),以研究MUM-T能力和概念的關鍵戰斗特征和效果。衡量性能的重點是任務的有效性,重點是確定與殺傷力和生存能力相關的因素。作者對每個DOE采取了迭代的方法,將前一個DOE的一些發現和分析納入下一個DOE。第一個DOE著重于與基線步兵ORBAT相比,最初引入MUM-T的效果。第二個DOE重點關注不同的人力和部隊結構,以研究支持MUM-T的部隊規模的影響。最后一個DOE結合了前兩個DOE的各個方面,并創建了一個近乎正交和平衡的混合設計,以實現一個更全面和結論性的實驗來結束這篇論文。近80,000次模擬戰役,每次涵蓋超過8小時的戰斗,被運行和分析。
美國陸軍認識到對手在戰略上正在整合信息作戰(IO)、網絡空間作戰和新興技術,挑戰美國在所有領域的機動自由,從而帶來了持續的威脅。因此,美國陸軍正在為向多領域作戰的理論轉變做準備,這將增加信息在戰爭中的作用。在此過程中,美國陸軍在設計和實踐中面臨著信息輸入方面的挑戰和差異。目前美國陸軍的信息輸入學說、術語和整體結構是不充分的,沒有促進概念上的共同理解。這導致了戰術單位在信息環境中的系統表現不佳,以及在戰略和計劃中對信息交流的次優整合。同樣地,美國陸軍的信息產業從業者群體也面臨著身份危機,這降低了該行業的凝聚力、影響力和有效運作的整體能力。為了克服這些挑戰,首先需要對美國陸軍IO的設計和實踐進行嚴格審查,以揭示差異的范圍。然后,社會網絡分析和社會認同理論的應用揭示了在IO培訓、教育和組織方面的潛在解決方案,這將使美國陸軍在信息環境中變得更具競爭力。這項投資將提高陸軍在當前和未來沖突中無縫整合和執行信息戰的能力。
美國海軍陸戰隊繼續發展遠征先進基地作戰(EABO)作為未來在太平洋地區的作戰模式。EABO將使用廣泛分散的、高度有力的、緊密結合的海軍和海軍陸戰隊團隊。由于固有的資源限制、遠距離通信以及對手在電磁波譜中的探測、攔截和干擾能力,這種作戰模式對海軍陸戰隊的指揮和控制能力提出了挑戰。這項研究試圖評估突發信號網狀網絡(BSMN)技術作為解決這些問題的一個潛在方案。通過比較EABO中指揮和控制的特點(通過對最近EABO演習的定性案例分析確定)和BSMN技術的特點(通過定量建模分析確定)來評估該技術的適用性。最后,通過定量的財務分析,評估了獲得和使用該技術的可行性。盡管研究人員建議進一步研究,但他們得出結論,BSMN技術的遠程、隱身和低功率能力很適合團級及以下的通信。此外,研究人員得出結論,該技術的獲取和應用是可行的,其價格遠遠低于目前使用的其他遠程通信資產(即衛星通信)。
自二戰以來,美國利用體型龐大、能力卓越的航空母艦和兩棲艦從海上投射軍事力量的能力基本上沒有受到質疑(海軍水面部隊指揮官[COMNAVSURFOR],2017;杰克遜等人,2020)。然而,近年來,遠程精確反艦導彈的發展和擴散,在海軍艦艇進入其目標范圍之前就已經危及到它們,這對美國海軍部隊的運作方式提出了挑戰(Office of the Secretary of Defense [SecDef], 2017, p. 57)。為了應對遠程反艦導彈的威脅,海軍部制定了一個新的分布式海上作戰(DMO)戰略,在這個戰略中,廣泛分散的海軍部隊以更大的個體殺傷力實現海上控制,而不是以前海軍作戰模式中相對密集和脆弱的編隊(COMNAVSURFOR, 2017)。遠征先進基地作戰(EABO)(海軍陸戰隊總部[HQMC],2021年)是海軍陸戰隊的作戰概念,它通過以高度整合、廣泛分散、物理和電磁隱蔽的方式部署部隊來實現DMO的原則(COMNAVSURFOR,2017;海軍作戰部長辦公室[CNO],2018;HQMC,2021)。
需要完善的幾個作戰功能之一是指揮和控制(C2),以充分支持DMO:在第38屆司令部的規劃指南中,海軍陸戰隊司令伯杰將軍明確提出需要靈活和有彈性的C2系統,以支持高節奏和分散的決策(海軍陸戰隊司令[CMC],2019,第9頁)。研究人員對新興的突發性信號網(BSMN)技術的初步了解是由Bordetsky、Benson和Hughes的《信號雜志》文章 "Hiding Comms in Plain Sight"(2016)中展出的研究提供的:這篇文章使人相信BSMN技術可以為DMO C2提供所需的靈活性和彈性的假設。突發信號被簡單地定義為在相對較短的輻射突發中傳輸大量數據的方法(劍橋,n.d.),這使其本身具有被對手探測、攔截或干擾的較低概率(Walkenhorst,2020)。網狀網絡是一種通信網絡方案,其中節點能夠充當動態路由器,將傳輸信息傳遞給其他節點,在用戶本身之外沒有任何基礎設施的情況下創建動態和靈活的網絡(Law, 2009)。在這些屬性之間,研究人員假設BSMN技術是一個合適的技術解決方案,為EABO中的C2提供靈活和彈性的通信。研究人員進一步假設,鑒于目前BSMN的商業使用,它也是EABO中C2的一個經濟上可行的解決方案。
為了確定BSMN技術對DMO的適用性,研究人員首先對海軍陸戰隊以EABO為模型的演習進行了案例研究。這些案例研究試圖描述EABO演習中C2的定量和定性方面,以確定BSMN必須支持什么樣的通信方式才能成為一個合適的技術解決方案。研究人員研究了三個獨立的案例,時間跨度超過兩年,涉及海軍陸戰隊的幾個單位,包括第一和第三海軍遠征軍(MEFs),以及美國第三艦隊和陸軍特種作戰部隊(SOF),范圍從營級到MEF級(海軍陸戰隊第三師[3dMARDIV],2019;第九通信營[9Com],2019;第六海軍團第一營[1/6],2020)。
在過去的十年中,空軍和空中機動性司令部(AMC)進行了大量的研究、活動計劃、愿景和范圍文件、作戰概念和路線圖,指出需要改進機動性空軍(MAF)的態勢感知(SA)能力和全球安全指揮與控制(C2)通信。最近,聯合作戰部門正在開發聯合全域指揮和控制,而空軍已經發布了描述敏捷戰斗力(ACE)和相關任務類型指令(MTO)的條令。空軍和聯合作戰部門都在努力解決的基本問題是任務保證。這項研究采用了AMC全球安全指揮與控制-空對地通信能力評估中的機載信息交換要求(IER)綜合清單,并試圖在任務保障方面對其進行描述和優先排序。一個IER框架被提出來,以幫助告知通信差距,并描述在MTO執行期間需要什么類型的決定。任務規劃人員可以根據預期的環境,根據潛在的通信退化情況,建立分支和序列來執行指揮官的意圖。這特別有助于根據飛機指揮官可能需要執行的決定類型進行風險指導。SA數據 "類別中的通信要求是最關鍵的,因為MAF飛機必須與其他飛機協同執行ACE行動。因此,任務保證,如任務基本功能的執行,與SA信息交流最密切相關。
菲律賓需要一種全面的海洋態勢感知(MDA)能力來應對日益增加的國家和非國家海洋威脅。菲律賓軍事現代化計劃的目標之一是通過菲律賓海軍海上態勢感知系統(PNMSAS)提高海上態勢感知。本研究的主要目的是了解PNMSAS的現狀、差距,以及海上特種作戰部隊在提高菲律賓海上態勢感知方面的潛在作用。這項定性研究利用了從政府文件和關鍵信息者訪談中收集到的數據,以及從公開文獻中獲得的信息。迄今為止,菲律賓海軍已經采取了若干舉措。這些舉措包括建立新的海岸觀察站和升級現有的觀察站,以及采購新的海軍平臺,以加強對海洋形勢的認識的信息收集。然而,菲律賓受到資源匱乏和已獲得的陸基和移動傳感器的長期交付的阻礙,因此需要尋找一個成本效益高的信息收集系統,而不僅僅是依賴昂貴的技術。本論文研究了海上特種作戰部隊作為低成本/低技術解決方案的潛在作用,它將增強現有的舉措并提高菲律賓海軍的海洋領域感知能力。