ML模型無處不在——從交通(自動駕駛汽車)到金融(信用卡或抵押貸款申請)和職業(公司招聘)。然而,ML并非沒有風險。一些重要的風險涉及模型理解和問責:機器學習創建的模型很大程度上是我們難以窺視和理解的黑盒子;他們容易受到不可預見的錯誤、對抗性操縱以及在隱私和公平方面違反倫理規范的影響。
本課程將提供最先進的ML方法的介紹,旨在使人工智能更值得信賴。本課程關注四個概念: 解釋、公平、隱私和健壯性。我們首先討論如何解釋ML模型輸出和內部工作。然后,我們研究了偏差和不公平是如何在ML模型中產生的,并學習了緩解這個問題的策略。接下來,我們將研究模型在不應該泄漏敏感信息的情況下泄漏敏感信息的上下文中的差異隱私和成員關系推斷。最后,我們將討論對抗性攻擊和提供抗對抗性操作的健壯性的方法。
學生將了解一套方法和工具,以部署透明、倫理和魯棒的機器學習解決方案。學生將完成實驗,家庭作業,并討論每周閱讀。
課程名稱: Deep Learning
課程地址: //github.com/glouppe/info8010-deep-learning
課程簡介: 深度機器學習的最新發展使視覺識別、語音和文本理解或自主智能體系統取得了前所未有的巨大進步。在此背景下,本課程將深入探討深度學習架構的細節,重點是學習這些任務的端到端模型。學生將學習實施、訓練和調試自己的神經網絡,并對該領域的前沿研究有詳細的了解。該課程還將介紹推理方法的最新創新,包括微分推理、對抗性訓練和貝葉斯深度學習。
課程大綱: 引言 機器學習基礎 多層感知器 自動微分 訓練神經網絡 卷積神經網絡 計算機視覺 遞歸神經網路 注意力機制與Transformer 生成式對抗網絡 不確定性 深度強化學習
你講學習到:
講師介紹: Gilles Louppe是比利時列日大學人工智能和深度學習的副教授。他曾是紐約大學物理系和數據科學中心的博士后助理,與歐洲核子研究中心的阿特拉斯實驗關系密切。他的研究處于機器學習、人工智能和物理科學的交叉點上,他目前的研究興趣包括使用和設計新的機器學習算法,以新的和變革性的方式處理來自基礎科學的數據驅動的問題。個人官網:
本課程是為那些想要了解操作系統的設計與實現的本科生而設。
醫療保健是人工智能最令人興奮的應用領域之一,在醫學圖像分析、基于電子健康記錄的預測和精確醫療等領域具有變革潛力。本課程將深入探討醫療領域人工智能的最新進展,特別關注醫療問題的深度學習方法。我們將從神經網絡基礎開始,然后在各種醫療保健數據(包括圖像、文本、多模態和時間序列數據)的背景下研究前沿的深度學習模型。在本課程的后半部分,我們將討論在社會應用(如醫療保健)中整合人工智能所面臨的開放挑戰,包括可解釋性、健壯性、隱私性和公平性。本課程旨在為來自不同背景的學生提供醫療領域人工智能前沿研究的概念理解和實踐基礎。
//web.stanford.edu/class/biods220/index.html
以深度神經網絡為代表的“深度學習”系統正越來越多地接管所有人工智能任務,從語言理解、語音和圖像識別,到機器翻譯、規劃,甚至是游戲和自動駕駛。因此,在許多高級學術機構中,深度學習的專業知識正從深奧的要求迅速轉變為強制性的先決條件,并成為工業就業市場的一大優勢。
在本課程中,我們將學習深度神經網絡的基礎知識,以及它們在各種人工智能任務中的應用。在本課程結束時,預計學生將對這門學科非常熟悉,并能夠將深度學習應用于各種任務。他們也將被定位去理解關于這個主題的許多當前的文獻,并通過進一步的學習來擴展他們的知識。
如果你只對課程感興趣,你可以在YouTube頻道上觀看。
多模態機器學習(MMML)是一個充滿活力的多學科研究領域,通過整合和建模多種交流模態(包括語言、聲音和視覺信息)來實現人工智能的一些原始目標。隨著對視聽語音識別的初步研究,以及最近的語言和視覺項目,如圖像和視頻字幕,這個研究領域給多模態研究人員帶來了一些獨特的挑戰,因為數據的異質性和模式之間經常發現的偶然性。本課程將教授與MMML相關的基本數學概念,包括多模態對齊與融合、異質表示學習和多流時間建模。我們還將回顧最近描述最先進的MMML概率模型和計算算法的論文,并討論當前和即將面臨的挑戰。
本課程將介紹機器學習和深度學習中與多模態機器學習中的五個主要挑戰相關的基本數學概念:(1)多模態表示學習,(2)平移與映射,(3)模態對齊,(4)多模態融合和(5)協同學習。這些包括但不限于,多模態自動編碼器,深度典型相關分析,多核學習,注意力模型和多模態遞歸神經網絡。本課程還將討論MMML的許多最新應用,包括多模式的情感識別、圖像和視頻字幕以及跨模式的多媒體檢索。
課程目錄:
//www.math.arizona.edu/~hzhang/math574.html
隨著信息技術的飛速發展,在各個領域產生了大量的科學和商業數據。例如,人類基因組數據庫項目已經收集了千兆字節的人類遺傳密碼數據。萬維網提供了另一個例子,它擁有由數百萬人使用的文本和多媒體信息組成的數十億Web頁面。
本課程涵蓋了現代數據科學技術,包括基本的統計學習理論及其應用。將介紹各種數據挖掘方法、算法和軟件工具,重點在概念和計算方面。將涵蓋生物信息學、基因組學、文本挖掘、社交網絡等方面的應用。
本課程著重于現代機器學習的統計分析、方法論和理論。它是為學生誰想要實踐先進的機器學習工具和算法,也了解理論原理和統計性質的算法。主題包括回歸、分類、聚類、降維和高維分析。
本文為大家帶來了一份斯坦福大學的最新課程CS234——強化學習,主講人是斯坦福大學Emma Brunskill,她是斯坦福大學計算機科學助理教授,任職斯坦福大學人類影響力實驗室、斯坦福人工智能實驗室以及統計機器學習小組,主要研究強化學習。要實現人工智能的夢想和影響,需要能夠學會做出正確決策的自主系統。強化學習是這樣做的一個強有力的范例,它與大量的任務相關,包括機器人、游戲、消費者建模和醫療保健。本課程通過講課、書面作業和編碼作業的結合,學生將精通強化學習的關鍵思想和技術。
1.課程介紹(Description)
要實現人工智能的夢想和影響,需要能夠學會做出正確決策的自主系統。強化學習是這樣做的一個強有力的范例,它與大量的任務相關,包括機器人、游戲、消費者建模和醫療保健。本課程將為強化學習領域提供扎實的介紹,學生將學習包括通用化和探索在內的核心挑戰和方法。通過講課、書面作業和編碼作業的結合,學生將精通強化學習的關鍵思想和技術。作業將包括強化學習和深度強化學習的基礎,這是一個極有前途的新領域,將深度學習技術與強化學習相結合。此外,學生將通過期末專題來增進對強化學習領域的理解。
課程地址:
//web.stanford.edu/class/cs234/schedule.html
2.預備知識(Prerequisites)
1)熟練Python
所有的課程都將使用Python(使用numpy和Tensorflow,也可以使用Keras)。這里有一個針對那些不太熟悉Python的人的教程。如果你有很多使用不同語言(如C/ c++ / Matlab/ Javascript)的編程經驗,可能會很好。
2)大學微積分,線性代數(如 MATH 51, CME 100)
你應該能夠熟練地進行(多變量)求導,理解矩陣/向量符號和運算。
3)基本概率及統計(例如CS 109 或同等課程)
你應該了解基本的概率,高斯分布,均值,標準差等。
4)機器學習基礎
我們將闡述成本函數,求導數,用梯度下降法進行優化。CS 221或CS 229均可涵蓋此背景。使用一些凸優化知識,一些優化技巧將更加直觀。
3.主講:Emma Brunskill
Emma Brunskill是斯坦福大學計算機科學助理教授,任職斯坦福大學人類影響力實驗室、斯坦福人工智能實驗室以及統計機器學習小組。
主要研究強化學習系統,以幫助人們更好地生活。并處理一些關鍵技術。最近的研究重點包括:1)有效強化學習的基礎。一個關鍵的挑戰是要了解代理商如何平衡勘探與開發之間的局限性。2)如果要進行順序決策,該怎么辦。利用巨大數量的數據來改善在醫療保健,教育,維護和許多其他應用程序中做出的決策,這是一個巨大的機會。這樣做需要假設/反事實推理,以便在做出不同決定時對潛在結果進行推理。3)人在回路系統。人工智能具有極大地擴大人類智能和效率的潛力。我們正在開發一個系統,用其他眾包商(CHI 2016)生產的(機器)固化材料對眾包商進行訓練,并確定何時擴展系統規格以包括新內容(AAAI 2017)或傳感器。我們也有興趣研究確保機器學習系統在人類用戶的意圖方面表現良好(Arxiv 2017),也被稱為安全和公平的機器學習。
個人主頁:
4.課程安排
01: 強化學習導論(Introduction to Reinforcement Learning)
02: 表格MDP規劃(Tabular MDP planning)
03: 表格RL政策評估(Tabular RL policy evaluation)
04: Q-learning
05: 帶函數逼近的強化學習(RL with function approximation)
06: 帶函數逼近的強化學習(RL with function approximation)
07: 帶函數逼近的強化學習(RL with function approximation)
08: 從馬爾可夫決策過程到強化學習(Policy search)
09: 從馬爾可夫決策過程到強化學習(Policy search)
10: 課堂中期(In-class Midterm)
11: 模仿學習/探索(Imitation learning/Exploration)
12: 探索/開發(Exploration/Exploitation)
13: 探索/開發(Exploration/Exploitation)
14: 批處理強化學習(Batch Reinforcement Learning)
15: 嘉賓講座:Craig Boutilier(Guest Lecture: Craig Boutilier)
16: 課堂測驗(In-class Quiz)
17: 蒙特卡洛樹搜索算法(Monte Carlo Tree Search)
18: 墻報展示(Poster presentations)