亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

結構化數據的自適應處理是機器學習中一個長期存在的研究課題,研究如何自動學習從結構化輸入到各種性質的輸出的映射。最近,人們對圖形的自適應處理越來越感興趣,這導致了不同的基于神經網絡的方法的發展。在本論文中,我們采用不同的方法,開發了一個用于圖學習的貝葉斯深度學習框架。本論文首先回顧了該領域中大多數方法建立的原則,然后對圖分類再現性問題進行了研究。然后,通過以增量的方式構建我們的深度架構,我們繼續將深度學習的基本思想與貝葉斯世界聯系起來。這個框架允許我們考慮具有離散和連續邊緣特征的圖,產生足夠豐富的無監督嵌入,以達到在多個分類任務上的先進水平。該方法還支持貝葉斯非參數擴展,它可以自動選擇幾乎所有模型的超參數。兩個真實世界的應用證明了深度學習對圖形的有效性。第一個問題是用有監督的神經模型預測分子模擬的信息理論量。之后,我們利用貝葉斯模型來解決惡意軟件分類任務,同時對過程內代碼混淆技術具有魯棒性。最后,我們試圖將神經和貝葉斯世界的精華融合在一起。由此產生的混合模型能夠預測以輸入圖為條件的多模態分布,因此能夠比大多數工作更好地模擬隨機性和不確定性。總的來說,我們的目標是為圖形深度學習的研究領域提供一個貝葉斯視角。

付費5元查看完整內容

相關內容

貝葉斯方法可以用于學習神經網絡權重的概率分布。將神經網絡中的wi 和 b 由確定的值變成分布(distributions)。具體而言,為彌補反向傳播的不足,通過在模型參數或模型輸出上放置概率分布來估計。在權重上放置一個先驗分布,然后嘗試捕獲這些權重在給定數據的情況下變化多少來模擬認知不確定性。該方法不是訓練單個網絡,而是訓練網絡集合,其中每個網絡的權重來自共享的、已學習的概率分布。

盡管最近在深度學習方面取得了進展,但大多數方法仍然采用豎井式的解決方案,即為每個單獨的任務訓練一個單獨的神經網絡。然而,許多現實世界的問題需要同時解決許多任務。例如,一輛自動駕駛汽車應該能夠檢測場景中的所有物體,對其進行定位,估計其距離和軌跡等,以便在其周圍環境中安全導航。類似地,用于商業應用的圖像識別系統應該能夠標記產品、檢索類似的商品、提出個性化的建議等,以便為客戶提供盡可能好的服務。這類問題促使研究人員建立多任務學習模型。多任務學習的核心思想是并行學習多個任務,同時共享學習到的表示。與單任務情況相比,多任務網絡具有許多實際的優點,單任務情況下,每個單獨的任務由自己的網絡單獨解決。首先,由于層的共享,產生的內存占用大大減少。其次,由于它們避免在共享層中重復計算特征,每個任務一次,它們顯示出提高的推理速度。第三,如果相關的任務共享互補信息,或者作為一個正則化器,它們有可能提高性能。

在構建多任務學習模型時,我們面臨著兩個重要的挑戰。首先,我們需要想出能夠處理多個任務的神經網絡架構。其次,我們需要為共同學習任務制定新的訓練方案。特別是,由于我們并行地優化多個目標,一個或多個任務可能會開始主導權重更新過程,從而阻礙模型學習其他任務。在這份手稿中,我們在視覺場景理解的背景下鉆研了這兩個問題。我們提出了兩種新的模型類型來解決體系結構問題。首先,我們探索了分支多任務網絡,其中神經網絡的更深層次逐漸成長為更具體的任務。我們介紹了一種有原則的方法來自動構建這樣的分支多任務網絡。構造過程將可以用一組相似特征來解決的任務組合在一起,同時在任務相似性和網絡復雜性之間進行權衡。通過這種方式,我們的方法生成的模型可以在性能和計算資源量之間做出更好的權衡。

其次,我們提出了一種新的神經網絡結構,用于聯合處理多個密集的預測任務。其關鍵思想是從多個尺度上對其他任務的預測中提取有用信息,從而提高對每個任務的預測。包含多個尺度的動機是基于這樣的觀察:在某個尺度上具有高相似性的任務不能保證在其他尺度上保持這種行為,反之亦然。在密集標記的兩個流行基準上進行的廣泛實驗表明,與之前的工作不同,我們的模型提供了多任務學習的全部潛力,即更小的內存占用,減少的計算數量,以及更好的性能w.r.t.單任務學習。此外,我們還考慮了多任務學習優化問題。我們首先分析幾種平衡任務學習的現有技術。令人驚訝的是,我們發現了這些工作之間的一些差異。我們假設,這可能是由于多任務學習缺乏標準化的基準,不同的基準受益于特定的策略。基于這個結果,我們然后分離最有希望的元素,并提出一組啟發式方法來平衡任務。啟發式具有實際性質,并在不同的基準測試中產生更魯棒的性能。

在最后一章中,我們從另一個角度來考慮場景理解的問題。文獻中描述的許多模型都受益于有監督的預訓練。在這種情況下,在轉移到感興趣的任務之前,模型首先在一個更大的帶注釋的數據集(如ImageNet)上進行預訓練。這使得模型能夠很好地執行,即使是在只有少量標記示例的數據集上。不幸的是,有監督的預訓練依賴于帶注釋的數據集本身,這限制了它的適用性。為了解決這個問題,研究人員開始探索自監督學習方法。我們以對比學習為基礎來回顧最近流行的作品。首先,我們展示了現有的方法,如MoCo可以在不同的數據集上獲得穩健的結果,包括以場景為中心的數據、長尾數據和特定領域的數據。其次,我們通過增加額外的不變性來改進學習的表示。這一結果直接有利于許多下游任務,如語義分割、檢測等。最后,我們證明了通過自監督學習所獲得的改進也可以轉化為多任務學習網絡。綜上所述,本文提出了幾個重要的貢獻,以改進多任務學習模型的視覺場景理解。創新集中在改進神經網絡結構、優化過程和訓練前方面。所有方法都經過了各種基準測試。該代碼公開發布://github.com/SimonVandenhende。

付費5元查看完整內容

作者介紹

Federico Errica在比薩大學獲得計算機科學博士學位,導師是Alessio Micheli和Davide Bacciu。他現在是NEC歐洲實驗室有限公司的研究科學家。他的研究興趣包括圖形的深度概率模型、神經網絡和混合架構。

Bayesian Deep Learning for Graphs

**結構化數據的自適應處理是機器學習中一個長期存在的研究課題,**研究如何自動學習從結構化輸入到各種性質的輸出的映射。最近,人們對圖形的自適應處理越來越感興趣,這導致了不同的基于神經網絡的方法的發展。**在本論文中,我們采用不同的方法,提出了一個用于圖學習的貝葉斯深度學習框架。本論文首先回顧了該領域中大多數方法建立的原則,然后對圖分類再現性問題進行了研究。然后,通過以增量的方式構建我們的深度架構,我們繼續將深度學習的基本思想與貝葉斯世界聯系起來。這個框架允許我們考慮具有離散和連續邊緣特征的圖,產生足夠豐富的無監督嵌入,以達到在多個分類任務上的先進水平。該方法還支持貝葉斯非參數擴展,它可以自動選擇幾乎所有模型的超參數。兩個真實世界的應用證明了深度學習對圖形的有效性。第一個問題是用有監督的神經模型預測分子模擬的信息理論量。**之后,我們利用貝葉斯模型來解決惡意軟件分類任務,同時對過程內代碼混淆技術具有魯棒性。最后,我們試圖將神經和貝葉斯世界的精華融合在一起。由此產生的混合模型能夠預測以輸入圖為條件的多模態分布,因此能夠比大多數工作更好地模擬隨機性和不確定性。總的來說,我們的目標是為圖深度學習的研究領域提供一個貝葉斯視角。

**//www.zhuanzhi.ai/paper/b323bf6a83ab7fa0e026ef63a6cb988e

目錄內容

在第二章中,我們首先回顧了概率論、貝葉斯學習的基本定義,以及我們將在接下來的工作中得到啟發的模型。然后,我們將討論圖的正式定義,從而引導讀者了解最常用的數學符號。最后,我們將簡要總結不直接屬于深度學習的圖的自適應處理的相關方法。

在第三章中,我們介紹了機器學習圖的基本原理,不管模型的性質如何,可以是神經模型、概率模型或混合模型。我們以一個分子生物科學領域的應用來結束本章。

在第四章中,我們介紹了本論文在方法論上的主要貢獻,即深度貝葉斯圖網絡。這篇論述的組織方式是,新技術可以被看作是以前技術的擴展,許多并行性與第三章的基本概念相一致。對于提出的每個模型,我們將展示各種各樣的實證分析,以支持基準的結果。在本章的最后,我們將所開發的模型應用于一個真實世界的惡意軟件分類任務。

在第五章中,我們利用神經網絡和概率網絡的優點,設計了一個混合模型,稱為圖混合密度網絡,以輸出任意輸入圖的多模態分布。對合成隨機圖和真實世界的化學任務的經驗評估是為了表明,對于某些問題,圖深度學習的“標準”方法不能產生正確的輸出。

第六章對論文進行了總結,討論了有待解決的問題和未來的研究方向。

付費5元查看完整內容

近年來,深度學習已經將自己定位為機器學習最有前途的方向之一。然而,深度神經網絡在不確定性估計、模型選擇、先驗知識的整合等方面存在許多不足。幸運的是,所有這些問題都可以在貝葉斯深度學習框架內克服,使用貝葉斯神經網絡、變分自編碼器或深度神經網絡高斯過程等模型。不幸的是,這需要使用近似推理過程和先驗分布的規范。在這篇論文中,我們展示了這些模型中先驗規范不僅僅是一個麻煩,而是一個寶貴的機會,可以將領域知識和歸納偏見加入到學習算法中,從而提升全新應用的性能。為此,我們對相關文獻進行了全面的回顧,并進一步貢獻了不同的原創研究成果。

具體地說,我們證明了變分自編碼器中的高斯過程先驗可以改進時間序列的表示學習,并允許對缺失數據進行有效的插補,同時還可以提供校準的不確定性估計。我們還表明,通過使用變分高斯-馬爾可夫過程,這是可能的,在沒有顯著的額外計算成本。此外,我們表明,在變分自編碼器中使用自組織映射作為結構歸納偏差,可以提高學習表示的可解釋性,并使有效的潛在聚類。這些聚類表示可以作為潛在時間序列模型的輸入,從而準確地預測未來的狀態。在貝葉斯神經網絡中,我們證明了常用的各向同性高斯先驗不僅會導致次優性能,而且在某些情況下還會產生所謂的冷后驗效應,即經過緩和的后驗比真正的貝葉斯后驗表現更好。相反,我們提出了具有重尾性和空間相關性的備選先驗,可以提高性能,緩解冷后驗效應。最后,當沒有先驗知識可用時,我們表明先驗分布可以在元學習環境中從相關任務中學習。在深度神經網絡高斯過程的情況下,我們表明元學習的均值函數和核函數的先驗改進預測性能和不確定性估計。

我們希望本文將為貝葉斯深度學習框架奠定基礎,在該框架中,先驗分布的選擇將被視為建模任務的關鍵部分,手工設計和元學習的先驗將在任務之間自由共享,以實現貝葉斯深度學習。

//www.research-collection.ethz.ch/handle/20.500.11850/523269

付費5元查看完整內容

一個綜合的人工智能系統應該不止能“感知”環境,還要能“推斷”關系及其不確定性。深度學習在各類感知的任務中表現很不錯,如圖像識別,語音識別。然而概率圖模型更適用于inference的工作。這篇survey提供了貝葉斯深度學習(Bayesian Deep Learning, BDL)的基本介紹以及其在推薦系統,話題模型,控制等領域的應用。

基于深度學習的人工智能模型往往精于 “感知” 的任務,然而光有感知是不夠的,“推理” 是更高階人工智能的重要組成部分。比方說醫生診斷,除了需要通過圖像和音頻等感知病人的癥狀,還應該能夠推斷癥狀與表征的關系,推斷各種病癥的概率,也就是說,需要有“thinking”的這種能力。具體而言就是識別條件依賴關系、因果推斷、邏輯推理、處理不確定性等。

概率圖模型(PGM)能夠很好處理概率性推理問題,然而PGM的弊端在于難以應付大規模高維數據,比如圖像,文本等。因此,這篇文章嘗試將二者結合,融合到DBL的框架之中。

比如說在電影推薦系統中,深度學習適于處理高維數據,比如影評(文本)或者海報(圖像);而概率圖模型適于對條件依賴關系建模,比如觀眾和電影之間的網絡關系。

從uncertainty的角度考慮,BDL適合于去處理這樣的復雜任務。復雜任務的參數不確定性一般有如下幾種:(1)神經網絡的參數不確定性;(2)與任務相關的參數不確定性;(3)perception部分和task-specific部分信息傳遞的不確定性。通過將未知參數用概率分布而不是點估計的方式表示,能夠很方便地將這三種uncertainty統一起來處理(這就是BDL框架想要做的事情)。

另外BDL還有 “隱式的”正則化作用,在數據缺少的時候能夠避免過擬合。通常BDL由兩部分組成:perception模塊和task-specific模塊。前者可以通過權值衰減或者dropout正則化(這些方法擁有貝葉斯解釋),后者由于可以加入先驗,在數據缺少時也能較好地進行建模。

當然,BDL在實際應用中也存在著挑戰,比如時間復雜性的問題,以及兩個模塊間信息傳遞的有效性。

付費5元查看完整內容

摘要

一個綜合的人工智能系統不僅需要用不同的感官(如視覺和聽覺)感知環境,還需要推斷世界的條件(甚至因果)關系和相應的不確定性。在過去的十年里,我們看到了許多感知任務的重大進展,比如視覺對象識別和使用深度學習模型的語音識別。然而,對于更高層次的推理,具有貝葉斯特性的概率圖模型仍然更加強大和靈活。近年來,貝葉斯深度學習作為一種將深度學習與貝葉斯模型緊密結合的統一的概率框架出現了。在這個總體框架中,利用深度學習對文本或圖像的感知可以提高更高層次推理的性能,推理過程的反饋也可以增強文本或圖像的感知。本文對貝葉斯深度學習進行了全面的介紹,并對其在推薦系統主題模型控制等方面的最新應用進行了綜述。此外,我們還討論了貝葉斯深度學習與其他相關課題如神經網絡的貝葉斯處理之間的關系和區別。

介紹

在過去的十年中,深度學習在許多流行的感知任務中取得了顯著的成功,包括視覺對象識別、文本理解和語音識別。這些任務對應于人工智能(AI)系統的看、讀、聽能力,它們無疑是人工智能有效感知環境所必不可少的。然而,要建立一個實用的、全面的人工智能系統,僅僅有感知能力是遠遠不夠的。首先,它應該具備思維能力。

一個典型的例子是醫學診斷,它遠遠超出了簡單的感知:除了看到可見的癥狀(或CT上的醫學圖像)和聽到患者的描述,醫生還必須尋找所有癥狀之間的關系,最好推斷出它們的病因。只有在那之后,醫生才能給病人提供醫療建議。在這個例子中,雖然視覺和聽覺的能力讓醫生能夠從病人那里獲得信息,但醫生的思維能力才是關鍵。具體來說,這里的思維能力包括識別條件依賴、因果推理、邏輯演繹、處理不確定性等,顯然超出了傳統深度學習方法的能力。幸運的是,另一種機器學習范式,概率圖形模型(PGM),在概率或因果推理和處理不確定性方面表現出色。問題在于,PGM在感知任務上不如深度學習模型好,而感知任務通常涉及大規模和高維信號(如圖像和視頻)。為了解決這個問題,將深度學習和PGM統一到一個有原則的概率框架中是一個自然的選擇,在本文中我們稱之為貝葉斯深度學習(BDL)。 在上面的例子中,感知任務包括感知病人的癥狀(例如,通過看到醫學圖像),而推理任務包括處理條件依賴性、因果推理、邏輯推理和不確定性。通過貝葉斯深度學習中有原則的整合,將感知任務和推理任務視為一個整體,可以相互借鑒。具體來說,能夠看到醫學圖像有助于醫生的診斷和推斷。另一方面,診斷和推斷反過來有助于理解醫學圖像。假設醫生可能不確定醫學圖像中的黑點是什么,但如果她能夠推斷出癥狀和疾病的病因,就可以幫助她更好地判斷黑點是不是腫瘤。 再以推薦系統為例。一個高精度的推薦系統需要(1)深入了解條目內容(如文檔和電影中的內容),(2)仔細分析用戶檔案/偏好,(3)正確評價用戶之間的相似度。深度學習的能力有效地處理密集的高維數據,如電影內容擅長第一子任務,而PGM專攻建模條件用戶之間的依賴關系,項目和評分(參見圖7為例,u, v,和R是用戶潛在的向量,項目潛在的向量,和評級,分別)擅長其他兩個。因此,將兩者統一在一個統一的概率原則框架中,可以使我們在兩個世界中都得到最好的結果。這種集成還帶來了額外的好處,可以優雅地處理推薦過程中的不確定性。更重要的是,我們還可以推導出具體模型的貝葉斯處理方法,從而得到更具有魯棒性的預測。

作為第三個例子,考慮根據從攝像機接收到的實時視頻流來控制一個復雜的動態系統。該問題可以轉化為迭代執行兩項任務:對原始圖像的感知和基于動態模型的控制。處理原始圖像的感知任務可以通過深度學習來處理,而控制任務通常需要更復雜的模型,如隱馬爾科夫模型和卡爾曼濾波器。由控制模型選擇的動作可以依次影響接收的視頻流,從而完成反饋回路。為了在感知任務和控制任務之間實現有效的迭代過程,我們需要信息在它們之間來回流動。感知組件將是控制組件估計其狀態的基礎,而帶有動態模型的控制組件將能夠預測未來的軌跡(圖像)。因此,貝葉斯深度學習是解決這一問題的合適選擇。值得注意的是,與推薦系統的例子類似,來自原始圖像的噪聲和控制過程中的不確定性都可以在這樣的概率框架下自然地處理。 以上例子說明了BDL作為一種統一深度學習和PGM的原則方式的主要優勢:感知任務與推理任務之間的信息交換、對高維數據的條件依賴以及對不確定性的有效建模。關于不確定性,值得注意的是,當BDL應用于復雜任務時,需要考慮三種參數不確定性:

  1. 神經網絡參數的不確定性
  2. 指定任務參數的不確定性
  3. 感知組件和指定任務組件之間信息交換的不確定性

通過使用分布代替點估計來表示未知參數,BDL提供了一個很有前途的框架,以統一的方式處理這三種不確定性。值得注意的是,第三種不確定性只能在BDL這樣的統一框架下處理;分別訓練感知部分和任務特定部分相當于假設它們之間交換信息時沒有不確定性。注意,神經網絡通常是過參數化的,因此在有效處理如此大的參數空間中的不確定性時提出了額外的挑戰。另一方面,圖形模型往往更簡潔,參數空間更小,提供了更好的可解釋性。

除了上述優點之外,BDL內建的隱式正則化還帶來了另一個好處。通過在隱藏單元、定義神經網絡的參數或指定條件依賴性的模型參數上施加先驗,BDL可以在一定程度上避免過擬合,尤其是在數據不足的情況下。通常,BDL模型由兩個組件組成,一個是感知組件,它是某種類型神經網絡的貝葉斯公式,另一個是任務特定組件,使用PGM描述不同隱藏或觀察變量之間的關系。正則化對它們都很重要。神經網絡通常過度參數化,因此需要適當地正則化。正則化技術如權值衰減和丟失被證明是有效地改善神經網絡的性能,他們都有貝葉斯解釋。在任務特定組件方面,專家知識或先驗信息作為一種正規化,可以在數據缺乏時通過施加先驗來指導模型。 在將BDL應用于實際任務時,也存在一些挑戰。(1)首先,設計一個具有合理時間復雜度的高效的神經網絡貝葉斯公式并非易事。這一行是由[42,72,80]開創的,但是由于缺乏可伸縮性,它沒有被廣泛采用。幸運的是,這個方向的一些最新進展似乎為貝葉斯神經網絡的實際應用提供了一些啟示。(2)第二個挑戰是如何確保感知組件和任務特定組件之間有效的信息交換。理想情況下,一階和二階信息(例如,平均值和方差)應該能夠在兩個組件之間來回流動。一種自然的方法是將感知組件表示為PGM,并將其與特定任務的PGM無縫連接,如[24,118,121]中所做的那樣。 本綜述提供了對BDL的全面概述,以及各種應用程序的具體模型。綜述的其余部分組織如下:在第2節中,我們將回顧一些基本的深度學習模型。第3節介紹PGM的主要概念和技術。這兩部分作為BDL的基礎,下一節第4節將演示統一BDL框架的基本原理,并詳細說明實現其感知組件和特定于任務的組件的各種選擇。第5節回顧了應用于不同領域的BDL模型,如推薦系統、主題模型和控制,分別展示了BDL在監督學習、非監督學習和一般表示學習中的工作方式。第6部分討論了未來的研究問題,并對全文進行了總結。

結論和未來工作

BDL致力于將PGM和NN的優點有機地整合在一個原則概率框架中。在這項綜述中,我們確定了這種趨勢,并回顧了最近的工作。BDL模型由感知組件和任務特定組件組成;因此,我們分別描述了過去幾年開發的兩個組件的不同實例,并詳細討論了不同的變體。為了學習BDL中的參數,人們提出了從塊坐標下降、貝葉斯條件密度濾波、隨機梯度恒溫器到隨機梯度變分貝葉斯等多種類型的算法。 BDL從PGM的成功和最近在深度學習方面有前景的進展中獲得了靈感和人氣。由于許多現實世界的任務既涉及高維信號(如圖像和視頻)的有效感知,又涉及隨機變量的概率推理,因此BDL成為利用神經網絡的感知能力和PGM的(條件和因果)推理能力的自然選擇。在過去的幾年中,BDL在推薦系統、主題模型、隨機最優控制、計算機視覺、自然語言處理、醫療保健等各個領域都有成功的應用。在未來,我們不僅可以對現有的應用進行更深入的研究,還可以對更復雜的任務進行探索。此外,最近在高效BNN (BDL的感知組件)方面的進展也為進一步提高BDL的可擴展性奠定了基礎。

付費5元查看完整內容

近年來,神經網絡已成為分析復雜和抽象數據模型的有力工具。然而,它們的引入本質上增加了我們的不確定性,即分析的哪些特征是與模型相關的,哪些是由神經網絡造成的。這意味著,神經網絡的預測存在偏差,無法與數據的創建和觀察的真實本質區分開來。為了嘗試解決這些問題,我們討論了貝葉斯神經網絡:可以描述由網絡引起的不確定性的神經網絡。特別地,我們提出了貝葉斯統計框架,它允許我們根據觀察某些數據的根深蒂固的隨機性和我們缺乏關于如何創建和觀察數據的知識的不確定性來對不確定性進行分類。在介紹這些技術時,我們展示了如何從原理上獲得神經網絡預測中的誤差,并提供了描述這些誤差的兩種常用方法。我們還將描述這兩種方法在實際應用時如何存在重大缺陷,并強調在使用神經網絡時需要其他統計技術來真正進行推理。

付費5元查看完整內容

【導讀】圖數據處理是一個長期存在的研究課題,近年來又被深度學習領域廣泛關注。相關研究在數量和廣度上飛速增長,但這也導致了知識系統化的缺失和對早期文獻關注的缺失。《A Gentle Introduction to Deep Learning for Graphs》是圖深度學習領域的教程導論,它傾向于對主流概念和架構的一致和漸進的介紹,而不是對最新文獻的闡述。

教程在介紹概念和想法時采用了自上而下的方法并保留了清晰的歷史觀點,為此,導論在第2節中提供了圖表示學習的泛化形式,將圖表示學習泛化為一種基于局部和迭代的結構化信息處理過程。同時,介紹了架構路線圖,整個導論也是圍繞該路線圖進行開展的。導論聚焦于面向局部和迭代的信息處理過程,因為這些過程與神經網絡的體系更為一致。因此,導論會淡化那些基于圖譜理論的全局方法(假設有一個固定的鄰接矩陣)。

后續,導論介紹了可以用于組裝構建新奇和有效圖神經網絡模型的基本構建單元。導論還對圖深度學習中有意思的研究挑戰和應用進行了闡述,同時介紹了相關的方法。導論的內容大致如下:

  • 摘要

  • 簡介

  • 高階概覽

    • 數學符號

    • 動機

    • 路線圖

    • 局部關系和信息的迭代處理

    • 三種上下文傳播機制

  • 構建塊/單元

    • 鄰接聚合

    • 池化

    • 面向圖嵌入的節點聚合

    • 總結

  • 任務

    • 無監督學習

    • 有監督學習

    • 生成式學習

    • 總結

  • 其他方法和任務的總結

    • 圖譜方法

    • 隨機游走

    • 圖上的對抗訓練和攻擊

    • 圖序列生成模型

  • 開放挑戰和研究方法

    • 時間進化圖

    • 偏置方差權衡

    • 邊信息的明智用法

    • 超圖學習

  • 應用

    • 化學和藥物設計

    • 社交網絡

    • 自然語言處理

    • 安全

    • 時空預測

    • 推薦系統

  • 總結

付費5元查看完整內容

課程名稱: Deep Learning and Bayesian Methods

課程介紹: 在Deep|Bayes暑期學校,我們將討論如何將Bayes方法與Deep Learning相結合,并在機器學習應用程序中帶來更好的結果。 最近的研究證明,貝葉斯方法的使用可以通過各種方式帶來好處。 學校參與者將學習對理解當前機器學習研究至關重要的方法和技術。 他們還將具有使用概率模型來構建神經生成和判別模型的動手經驗,學習神經網絡的現代隨機優化方法和正則化技術,并掌握推理神經網絡及其權重不確定性的方法,預測。

部分邀請嘉賓: Maurizio Filippone,AXA計算統計主席,EURECOM副教授

Novi Quadrianto,薩塞克斯大學助理教授

課程大綱:

  • 貝葉斯方法介紹
  • 貝葉斯推理
  • EM算法
  • 隨機變分推理與變分自編碼器
  • GAN
  • 高斯分布與貝葉斯優化
  • 貝葉斯神經網絡
付費5元查看完整內容
北京阿比特科技有限公司