該文被大會錄用為Oral論文,是北京郵電大學與英國薩里大學“北郵-薩里人工智能聯合實驗室”的聯合研究成果,指導老師是來自人工智能與網絡搜索教研中心的郭軍教授、馬占宇教授和薩里大學CVSSP中心SketchX Lab的Yi-Zhe Song教授。人工智能學院博士生常東良同學為論文一作。本文首先通過一個Human Study 發現了傳統細粒度圖像分類任務無法滿足大多人需求的問題,進而重新定義了該任務:從單標簽分類任務拓展為按照預先定義的層次化標簽(從粗粒度到細粒度)進行自上而下的多標簽分類任務。此外,通過實驗發現粗粒度標簽預測任務會抑制細粒度特征的學習,而細粒度標簽預測任務則會促進粗粒度特征的學習。該發現促使我們設計了一個簡單且高效的解決方案來解決本文提出的新任務:(1)利用與粒度相關的分類器將粗粒度特征與細粒度特征進行解耦;(2)通過一個梯度控制器使得細粒度特征能夠參與粗粒度分類器的決策。實驗表明,本文提出的方法在新的細粒度圖像分類任務中獲得了最佳的性能。
基于CAM的弱監督定位方法主要通過多樣的空間正則提高目標響應區域,忽略了模型中隱含的目標結構信息。我們提出了基于高階相似性的目標定位方法 (SPA),充分挖掘了模型隱含的目標結構信息,顯著提高了弱監督目標定位準確度。
目前代碼已開源:
//github.com/Panxjia/SPA_CVPR2021
弱監督目標檢測近年來逐漸受到國內外研究機構以及工業界關注。基于全監督的目標檢測方法需要耗費大量的人力、物力獲取大量準確的標注信息,對于任務更新以及遷移極其不友好。近年來,全世界范圍內的研究者試圖從弱監督學習方面突破標注數據的限制,為目標檢測尋找一種更加高效、低廉的解決框架
弱監督定位研究如何僅利用圖像的類別標簽對圖像中目標進行定位。
2014年MIT提出的類別響應圖CAM,得到目標的響應掩模,之后通過最小包圍框得到目標的定位結果。CAM得到的類別響應掩模只能覆蓋目標最具判別性的局部區域,如圖1第二行所示。后續的研究工作多通過空間正則技術,如通過擦除、多分支補充等方法試圖擴大類別響應區域。雖然在響應區域上有一定的改善,但是現有的工作均忽略了保持目標結構特性的重要性,無法刻畫目標的邊緣、形狀等特性。另外,現有方法的分類網絡均采用Global Average Pooling(GAP)結構對特征進行聚合,這在一定程度上損失了目標的結構信息。
本文提出了一種兩階段的弱監督目標定位方法(SPA),從模型結構與類別響應圖兩個方面優化定位結果,提高響應掩模的準確度。整體方法框架如圖2所示。
具體地,從模型結構方面,我們提出了受限激活模塊。
現有方法中往往采用Global Average Pooling (GAP)+Softmax的分類結構,這種結構導致模型丟失目標結構信息,主要原因包括:
一,GAP結構將前景目標與背景區域混為一談,限制了模型定位前景目標的能力;
二,無限制的類別響應特征圖往往出現局部極高響應誤導模型分類的現象,不利于模型準確定位到目標的位置。
因此,我們設計了一個簡單有效的受限激活模塊,主要包括兩個部分:
一,我們首先通過計算每個特征位置在類別響應圖上的方差分布得到粗略的偽mask, 用以區分前背景;
二,我們利用Sigmoid操作對類別響應特征圖進行歸一化,之后利用提出的受限激活損失函數引導模型關注目標前景區域。
本文由騰訊 AI Lab 主導,與清華大學、電子科技大學、香港中文大學(深圳)合作完成。為了生成“精確”表述的場景圖,幾乎所有現有的方法都以確定性的方式預測成對關系,我們認為視覺關系在語義上往往具有模糊歧義性。
具體來說,受語言學知識的啟發,我們將歧義分為三類:同義歧義、上下義歧義和多視點歧義。這種模糊性自然會導致隱性多標簽問題,也激發了對預測多樣性的需求。在這項工作中,我們提出了一個新的即插即用概率不確定性建模(PUM)模塊。它將每個聯合區域建模為高斯分布,其方差度量相應視覺內容的不確定性。與傳統的確定性方法相比,這種不確定性建模帶來了特征表示的隨機性,使得預測具有多樣性。作為一個副產品,PUM還能夠覆蓋更細粒度的關系,從而減輕對頻繁關系的偏見。
在大規模視覺數據集上的大量實驗表明,將PUM與新提出的ResCAGCN相結合可以在平均召回度量下獲得最佳性能。此外,我們通過將PUM插入到一些現有模型中,證明了PUM的普適性,文中也對其生成多樣化但合理的視覺關系的能力進行了深入分析。
盡管主動學習在圖像識別方面取得了長足的進步,但仍然缺乏一種專門適用于目標檢測的示例級的主動學習方法。在本文中,我們提出了多示例主動目標檢測(MI-AOD),通過觀察示例級的不確定性來選擇信息量最大的圖像用于檢測器的訓練。MI-AOD定義了示例不確定性學習模塊,該模塊利用在已標注集上訓練的兩個對抗性示例分類器的差異來預測未標注集的示例不確定性。MI-AOD將未標注的圖像視為示例包,并將圖像中的特征錨視為示例,并通過以多示例學習(MIL)方式對示例重加權的方法來估計圖像的不確定性。反復進行示例不確定性的學習和重加權有助于抑制噪聲高的示例,來縮小示例不確定性和圖像級不確定性之間的差距。實驗證明,MI-AOD為示例級的主動學習設置了堅實的基線。在常用的目標檢測數據集上,MI-AOD和最新方法相比具有明顯的優勢,尤其是在已標注集很小的情況下。
代碼地址為//github.com/yuantn/MI-AOD
被錄用論文之一為“Uncertainty-aware Joint Salient Object and Camouflaged Object Detection”,是CVPR口頭報告,第一作者為研二學生李艾軒,由我校、澳大利亞國立大學以及瑞士洛桑聯邦理工大學合作完成。該論文圍繞視覺顯著性物體檢測與偽裝性物體檢測任務的相互對立與學習展開,提出了基于不確定性感知的顯著性物體檢測和偽裝物體檢測的聯合學習網絡,建模網絡預測的置信度,并通過深入挖掘兩任務間的相關性,利用顯著性物體和偽裝物體的矛盾對立屬性,使相互對立的顯著性物體檢測與偽裝物體檢測任務相互幫助。
本文研究了卷積神經網絡(CNN)和視覺語言預訓練Transformer(VLPT)的聯合學習,旨在從數百萬個圖像-文本對中學習跨模態對齊。當前大多數文章都是先抽取出圖像中的顯著性區域,再將其與文字一一對齊。由于基于區域的視覺特征通常代表圖像的一部分,因此現有的視覺語言模型要充分理解配對自然語言的語義是一項挑戰。由于基于區域的視覺特征通常代表圖像的一部分,現有的視覺語言模型很難完全理解成對自然語言的語義。本文提出SOHO“開箱即看”的概念,將完整的圖像為輸入,以一種端到端的方式學習視覺語言表達。SOHO不需要邊界框標注,這使得推理速度比基于區域的方法快10倍。特別地,SOHO學會了通過視覺詞典(VD)來提取全面而緊湊的圖像特征,這有助于跨模態理解。大量的實驗結果也驗證了本文SOHO的有效性。
//www.zhuanzhi.ai/paper/a8c52c4b641c0a5bc840a955b6258b39
//www.zhuanzhi.ai/paper/d5394f35aef16fb3a4dca59d68fb1882
一個有效的神經網絡結構性能評估方案是神經網絡結構搜索(NAS)成功的關鍵。現有NAS算法通常在訓練時間有限的小型數據集上訓練和評估神經結構。但這樣一種粗糙的評估方式很難對神經網絡結構進行準確評估。本文提出一種新的神經網絡結構評價方案,旨在確定哪個神經網絡結構的性能更好,而不是精確地預測性能絕對值。因此,我們提出了一個結構相對性能預測NAS (ReNAS)。我們將神經結構編碼為特征張量,并利用預測器進一步細化表示。本方法可用于離散搜索,無需額外評估。在NASBench101數據集上抽樣424個(搜索空間的0.1%)神經架構及其標簽已經足夠學習一個準確的架構性能預測器。在NAS-Bench-101和NAS-Bench-201數據集上,我們搜索的神經結構的準確性高于最新的方法,顯示了本方法的優先性。
論文:Adaptive Consistency Regularization for Semi-Supervised Transfer Learning 鏈接: //www.zhuanzhi.ai/paper/43d085f2c66d68b77584edcb0ee36ba0 代碼:
盡管最近半監督學習的研究在利用標記和未標記數據方面有顯著進步,但大多數假設模型的基本設置是隨機初始化的。
因此本文將半監督學習和遷移學習相結合提出了一種半監督的轉移學習框架,該方法不僅能利用目標域(目標任務數據集)中的標記/未標記數據,還能利用源域(具有不同語義的通用數據集,如:ImageNet)中的預訓練模型。為了更好地利用預訓練權重和未標記目標數據,我們引入了自適應一致性正則化,它由兩個互補組件組成:源模型和目標模型之間的示例上的自適應知識一致性(AKC),以及自適應表示一致性(ARC) ),在目標模型上標記和未標記的示例之間,根據它們對目標任務的潛在貢獻,自適應地選擇一致性正則化中涉及的示例。
通過微調ImageNet預訓練的ResNet-50模型,我們在幾個流行的基準上進行了廣泛的實驗,包括CUB-200-2011,MIT Indoor-67,MURA。結果表明,我們提出的自適應一致性正則化性能優于最新的半監督學習技術,例如Pseudo Label,Mean Teacher和MixMatch。此外,我們的算法能與現有方法共同使用,因此能夠在MixMatch和FixMatch之上獲得其他改進。
本文的主要貢獻包含以下三點:
1、第一個提出用于深度神經網絡的半監督轉移學習框架 2、利用半監督學習和轉移學習的特性引入自適應一致性正則化來改善半監督轉移學習 3、實驗結果表明所提出的自適應一致性正則化性能優于最新的半監督學習技術
//www.zhuanzhi.ai/paper/cc9fa0af60aee58e256bce07f15065a0
code:
本文是新加坡國立大學Qinbin Hou&Jiashi Feng等人在注意力機制方面的一次探索,針對如何有效提升移動網絡的卷積特征表達能力,以及通道注意力(如SE)機制能夠有效建模通道間相關性但忽視了位置信息的問題,提出了一種的新穎的注意力機制:Coordinate Attention。
Coordinate Attention通過水平與垂直方向注意力圖捕獲特征的遠程依賴關系,而且水平與垂直注意力還可以有效保持精確的位置信息。所提注意力集中的精確位置信息無論對于分類,還是檢測與分割而言都是一種非常重要的性能,因而所提注意力機制在圖像分類、目標檢測以及語義分割方面均取得了顯著的性能提升,尤其需要注意的是,所提注意力尤其適合于語義分割等稠密預測任務
移動網絡設計的近期研究表明:通道注意力(如Squeeze-and-Excitation)機制對于提升模型性能極為有效,但是忽略了位置信息,這對于生成空間選擇注意力圖非常重要。
針對通道注意力機制存在的上述問題,我們提出了一種用于移動網絡的新穎注意力機制:它將位置信息嵌入到通道注意力中,我們將其稱之為Coordinate Attention。不同于通道注意力將特征張量通過GAP轉換為特征向量,坐標注意力將通道注意力拆分為兩個1D特征編碼過程,分別沿著兩個空間方向集成特征。
通過這種處理,遠程相關性可以通過空間方向捕獲,于此同時,精確的位置信息可以通過另一個空間方向得以保持。所得到的特征圖分辨編碼為成對的方向相關注意力圖與通道注意力圖(兩者具有互補性),并用于增強輸入特征以增廣目標的表達能力。
所提坐標注意力機制極為簡單,可以靈活嵌入到現有移動網絡(比如MobileNetV2, MobileN2Xt, EfficientNet)中,且幾乎不會導致額外的計算負載。
我們通過實驗證實:坐標注意力不僅有助于ImageNet分類,在下游任務(比如目標檢測、語義分割)上表達更佳。下圖給出了所提注意力與SE/CBAM在不同任務上的性能對比。
Adaptive Consistency Regularization for Semi-Supervised Transfer Learning Abulikemu Abuduweili1,2*, Xingjian Li1,3? , Humphrey Shi2? , Cheng-Zhong Xu3 , Dejing Dou1?
雖然最近關于半監督學習的研究在利用標記和未標記數據方面取得了顯著進展,但大多數研究都假定模型的基本設置是隨機初始化的。在這項工作中,我們將半監督學習和遷移學習結合起來,從而形成一個更實用和更具競爭力的范式,該范式可以利用來自源領域的強大的預訓練模型以及目標領域的標記/未標記數據。更好地利用pre-trained權重和標記的價值目標的例子,我們引入自適應一致性互補正規化,由兩部分組成:自適應知識一致性(AKC)在源和目標之間的示例模型和自適應表示一致性(AKC)標記和未標記示例之間的目標模型。一致性正則化所涉及的實例是根據它們對目標任務的潛在貢獻自適應選擇的。通過微調ImageNet預先訓練的ResNet-50模型,我們對流行基準進行了廣泛的實驗,包括CIFAR-10、CUB-200、Indoor67和MURA。結果表明,我們提出的自適應一致性正則化優于最先進的半監督學習技術,如偽標簽、Mean Teacher和MixMatch。此外,我們的算法與現有的方法是正交的,因此能夠在MixMatch和FixMatch之上獲得額外的改進。我們的代碼可以在//github.com/SHI-Labs/SemiSupervised-Transfer-Learning上找到。
我們提出了自監督幾何感知(SGP),這是第一個學習特征描述符進行對應匹配的通用框架,不需要任何真實的幾何模型標簽(例如,相機姿態,剛性轉換)。我們的第一個貢獻是將幾何感知形式化為一個優化問題,在給定大量視覺測量數據(如圖像、點云)的基礎上,聯合優化特征描述符和幾何模型。在這個優化公式下,我們展示了視覺領域的兩個重要的研究流,即魯棒模型擬合和深度特征學習,對應著優化未知變量的一個塊,同時固定另一個塊。這種分析自然引出了我們的第二個貢獻——SGP算法,它執行交替最小化來解決聯合優化。SGP迭代地執行兩個元算法:一個教師對已知的學習特征進行魯棒模型擬合以生成幾何偽標簽,一個學生在偽標簽的嘈雜監督下進行深度特征學習。作為第三個貢獻,我們將SGP應用于大規模真實數據集上的兩個感知問題,即MegaDepth上的相對相機姿態估計和3DMatch上的點云配準。我們證明,SGP達到了最先進的性能,與使用真實標簽訓練的受監督的模型相當。