深度學習在過去的十年里引領了革命性的進展,它在各種任務的前沿,包括計算機視覺、自然語言處理和強化學習等領域取得了非凡的成就。然而,眾所周知,通過最大似然估計訓練的深度模型往往過于自信,并給出校準不良的預測。貝葉斯深度學習試圖通過在模型參數上放置先驗,然后與似然結合來執行后驗推斷來解決這個問題。不幸的是,對于深度模型來說,真實的后驗是難以處理的,迫使用戶不得不求助于近似。在這篇論文中,我們探討了作為近似的變分推斷的使用,因為它在同時近似后驗和提供邊緣似然的下界方面是獨一無二的。如果這個下界足夠緊,就可以用來優化超參數和促進模型選擇。然而,這種能力在貝葉斯神經網絡中很少被充分利用,可能是因為實踐中通常使用的近似后驗缺乏有效限制邊緣似然的靈活性。因此,我們探索了深度模型的貝葉斯學習的三個方面。首先,我們的調查從詢問是否有必要對盡可能多的參數進行推斷開始,或者是否合理地將許多參數作為超參數,我們通過邊緣似然來優化它們。這將帶來顯著的計算節省;然而,我們觀察到這可能導致病態行為和嚴重的過擬合,表明盡可能“完全貝葉斯”是更好的選擇。我們繼續我們的論文,提出了一種變分后驗,它為貝葉斯神經網絡和深度高斯過程中的推斷提供了統一的視角,我們展示了它有足夠的靈活性來利用添加的先驗超參數。最后,我們展示了如何在某些深度高斯過程模型中通過從后驗中解析去除對稱性,并對格拉姆矩陣而不是特征進行推斷來改進變分推斷。雖然我們沒有直接調查我們的改進在模型選擇中的使用,但我們希望我們的貢獻將為將來充分實現變分推斷的承諾提供一個跳板。
深度學習在過去十年里引發了革命性變化,它在計算機視覺、自然語言處理和強化學習等眾多任務中取得了非凡的進展,僅舉幾例。然而,眾所周知,通過最大似然估計訓練的深度模型往往過于自信,并給出校準不良的預測。貝葉斯深度學習試圖通過對模型參數設置先驗來解決這個問題,這些先驗然后與似然結合以進行后驗推斷。不幸的是,對于深度模型,真實的后驗是不可解的,迫使用戶不得不使用近似方法。 在這篇論文中,我們探索了使用變分推斷作為一種近似方法,因為它在同時近似后驗和提供邊緣似然的下界方面是獨一無二的。如果這個下界足夠緊,它可以用來優化超參數并促進模型選擇。然而,這種能力很少在貝葉斯神經網絡中充分利用,可能是因為實踐中通常使用的近似后驗缺乏有效約束邊緣似然的靈活性。因此,我們探討了三個方面的貝葉斯學習用于深度模型。首先,我們的調查從詢問是否有必要對盡可能多的參數進行推斷開始,或者是否可以將許多參數視為我們針對邊緣似然進行優化的超參數。這會帶來顯著的計算節省;然而,我們觀察到這可能導致病態行為和嚴重的過擬合,表明最好盡可能“完全貝葉斯”。接著,我們通過提出一種變分后驗,為貝葉斯神經網絡和深度高斯過程中的推斷提供了一個統一的視角,我們展示了這種方法足夠靈活,可以利用增加的先驗超參數。最后,我們展示了如何通過從后驗中解析地移除對稱性,并在Gram矩陣而不是特征上進行推斷,來改進某些深度高斯過程模型中的變分推斷。雖然我們沒有直接調查我們的改進對模型選擇的應用,但我們希望我們的貢獻能為未來充分實現變分推斷的承諾提供一個基石。
這篇論文探討了易處理概率建模原理在因果學習與推理中的應用。易處理概率建模是近年來出現的一個有前景的范式,專注于能夠進行精確和高效的概率推理的概率模型。特別地,概率電路框架為基于模型結構屬性的各種推理查詢提供了一個系統性的語言,近期的提案則擴展了表達能力和易處理性的邊界。然而,并非所有關于一個系統的信息都能通過觀測變量的概率分布來捕獲;例如,兩個變量之間的因果方向僅憑數據是無法區分的。為了形式化這一點,Pearl的因果層次結構(也稱為信息層次結構)劃分了三個層次的因果查詢,即關聯性、干預性和反事實性,這些需要越來越多地了解由結構因果模型和相關因果圖表示的底層因果系統。受此啟發,我們調查了易處理因果建模的可能性;也就是說,針對因果查詢類型進行精確和高效的推理。特別地,我們確定了三種場景,由模型者可用的知識量來區分:即當完整的因果圖/模型可用時,當僅觀測分布和可識別的因果估計量可用時,以及當對因果圖存在額外的不確定性時。在這些場景中,我們提出了能夠進行有效和精確因果推理的概率電路表示、結構屬性和算法。這些模型與易處理概率模型有所不同,因為它們不僅可以回答不同的概率推理查詢,還可以涉及不同的干預和甚至不同的因果圖的因果查詢。然而,我們也確定了一些關鍵局限性,這些局限性讓人懷疑是否存在一個完全通用的易處理因果模型。我們的貢獻還擴展了概率電路的理論,通過提出新的屬性和電路架構,從而使得包括但不限于因果推理估計量在內的高級推理查詢的分析成為可能。
近年來,機器學習在許多應用中證明了其極高的用途性。然而,這些成功故事很多都源于在與訓練數據非常相似的數據上評估算法。當應用于新的數據分布時,機器學習算法已被證明會失敗。鑒于現實世界數據的非平穩和異構性質,我們需要更好地掌握算法在分布外(out-of-distribution)的泛化能力,以便算法能被廣泛部署和信任。我的論文提出了三個研究課題,旨在調查和發展分布外泛化的領域。這些研究努力的中心目標是產生新的工具,如算法、理論結果、實驗結果和數據集,以提高在數據分布發生變化時機器學習方法的理解和性能。貫穿這三個機器學習場景的高級思想是模塊性——由組合在一起形成一個整體的獨立部分的質量。模塊化方法被假設為引導機器學習方法遠離僵化的記憶示例,走向更靈活和“更智能”的支持泛化的學習。
在我的第一項貢獻中,我從多個訓練分布的學習角度來接近論文目標。對這一研究方向的貢獻有兩方面。首先,我呈現了一組新的標準化任務,用于評估和比較分布外泛化算法。其次,我陳述了一系列新的理論結果,填補了數據中心和算法方法之間在分布外泛化方面的現有差距。這些理論發現引導了一組關于如何采用算法方法的新的實用建議。
在第二項貢獻中,我處理了監督圖像識別中的泛化問題。在這一背景下,我首先調查了多級特征聚合對泛化的影響,并證明了使用其中一種考慮的方法進行增強可以持續提高性能。其次,我提出了一組簡單的圖像數據集,可作為評估和比較圖像分類方法在分布外泛化方面的墊腳石。最后,我深入研究了多個神經網絡通信以解決共享任務的學習場景。這項工作以兩種方式支持論文目標。首先,我提出了一個新的環境,圖引用游戲(graph referential games),并在數據表示和相應的數據表示學習方法對分布外泛化的影響上提出了結果。這些結果連接了之前不相連的圖表示學習和新興通信領域。其次,我解決了基于現實圖像的群體通信這一具有挑戰性的領域。這篇論文中的數據集、算法、定理和實驗結果代表了在機器學習中理解和改進分布外泛化方面的幾個步驟。它們為研究人員提供了旨在促進這一領域研究的新工具和結果,其中一些已被證明對研究社群有用。最后,這項工作提出了機器學習的多個分布學習、圖像分類和多代理通信子領域中重要的未來方向。
//www.repository.cam.ac.uk/items/8680585b-87ca-4196-987f-c4d379259092
記憶與學習是否相同?阿根廷作家豪爾赫·路易斯·博爾赫斯(Jorge Luis Borges)的短篇小說《記憶者富內斯》(Funes the Memorious,由James E. Irby翻譯成英文[71,第59–66頁])描述了一個名叫富內斯的男孩,在頭部受傷后獲得了完美的記憶。他開始詳細地記住他一生的每一個時刻。同時,他失去了泛化的能力:他的記憶彼此是孤立的。例如,他從不同的角度看到同一只狗,卻只把同一只狗的不同側面視為獨立的信息。他甚至不了解自己的身體是什么樣的(‘每次看到鏡中的自己的臉,看到自己的手,都讓他感到驚訝’),這導致了一個結論:‘思考就是忘記一個差異,進行泛化,進行抽象。在富內斯過于充實的世界里,只有細節。’""與富內斯相似,具有數百萬參數的現代神經網絡已被證明會記住訓練樣本,這可能導致一系列問題,例如:(1)對噪聲數據的高度敏感性[150, 221],(2)易受對抗性攻擊的影響[271, 87, 269, 287],(3)與人類學習相比樣本效率低[302, 303, 275],以及(4)對新數據的泛化能力差[62],即使新數據樣本直觀地與模型已經訓練過的數據有相似之處[61, 251]。這些問題可能出現在應用現代機器學習的任何領域。它們可能導致機器學習系統在使用過程中產生不透明的故障模式,從而導致對機器學習系統的信任度下降[297]。"
"標準機器學習方法中缺少對分布外泛化(Out-of-distribution generalisation)的能力。這些方法得到了統計學習理論[279]的支持,該理論證明了使用基于平均值的優化(經驗風險最小化[279])以及使用測試集估計泛化誤差的做法是合理的。然而,這一理論假設訓練(過去)和測試(未來)數據是獨立同分布的。在應用機器學習的許多實際領域中,這一假設是不正確的:現實世界的數據是異構的,其分布通常會隨時間變化。分布變化的實際來源包括機器學習系統用戶特性的變化,或一個有實體的代理(embodied agent)所處環境的變化。另一個常見的分布變化例子是由于語言(包括在線使用的語言)動態性而產生的。自然語言的不斷演變已被證明會改變語言模型的困惑度(perplexity),當這些模型在數月內多次應用時[164]。背景章節的第2.4節更多地涵蓋了分布變化的類型和相應的例子。由于這些變化,即使在常用的分布內測試集上達到接近100%的準確率也不總是能預示未來的性能,這一點已被眾多論文所證明[137, 15, 61, 235, 204, 62]。"
"在機器學習領域,關于分布外泛化(OOD generalisation)的主題實質上與機器學習本身一樣廣泛和復雜,并且在研究社群中同樣容易受到瞬息萬變的趨勢和不同觀點的影響。在我看來,面對分布變化提高泛化能力是必要的,原因如下: ? 工程原因 — 提高樣本效率,并在沒有數千個訓練樣本的低資源領域提高性能[110]; ? 科學原因 — 深入了解神經網絡是如何學習的,并可能讓機器學習更接近人類學習; ? 商業原因 — 在目前由人類執行的越來越復雜的任務中使用神經網絡; ? 社會原因 — 通過控制簡單性偏見[246]來消除機器學習系統的偏見。
利用數據中的‘捷徑’可能會導致不公平的解決方案(例如,這可以在招聘工具中利用性別信息時看到[59])。在我的博士研究期間,我一直在問自己:致力于分布外泛化的機器學習研究社群最需要什么樣的工具?這篇論文旨在以新數據集、新理論結果、新測試平臺、新實驗結果和新算法的形式提供這樣的工具。這些研究努力的具體成果總結在圖1.1中。"
導致這篇論文的研究工作涉及機器學習的三個子領域:多分布學習(第3章)、圖像分類(第4章)和多智能體通信(第5章)。這種廣泛的視角使我能夠收集更多證據來支持中心假設,并探討研究問題(第1.2節)。同時,本論文中介紹的工具旨在對我在博士研究期間有幸與之合作和學習的幾個機器學習社群有所用處:(1)不變學習和群體魯棒性社群(第3章),(2)視覺社群(第4章),以及(3)新興通信社群(第5章)。所有這些社群都在獨立地研究機器學習中的分布外泛化,正如我在背景章節(第2章)以及各自貢獻章節中所回顧的。本論文聯系了我在研究中涉足的之前是分離的社群,例如圖神經網絡[141]與新興通信[43](第5章),以及面向群體魯棒性的數據導向方法[36]與分布魯棒優化[21](第3章)。"
機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。
深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958
深度學習為我們提供了越來越復雜的神經網絡,可以通過梯度上升來調整,以最大化某些目標。貝葉斯統計為我們提供了一種原則性和統一的方法來指定統計模型和執行推斷。將這兩種方法配對的一種有效方法產生了深度生成模型(DGM),其中概率模型中統計參數之間的映射本身使用神經網絡進行參數化。在本文中,我們研究了這種方法可以用于解決機器學習中的各種問題的方法,以及由此產生的模型的屬性。在這篇論文中,有三個反復出現的主題,魯棒性,結構和層次,貫穿始終。
首先研究如何構建一個深度生成模型,以在一種稱為半無監督學習的新學習機制中進行學習。這是半監督學習的一個極端情況,對于某些類別的數據,沒有給定的標記示例。在學習將數據劃分為不同的成分,不同的基礎真值類時,模型必須能夠在未標記的類上進行聚類,并在給出了一些標記示例的類上進行半監督學習。本文展示了如何在一系列標準數據集上實現這一點。
從處理一個離散潛變量聚類分配開始,研究具有離散潛變量層次結構的模型。我們提出了一種新的方法來參數化這種類型的模型中的潛在變量,放松的責任向量量化,可以訓練非常深的潛在變量層的層次結構。該方法在一系列標準數據集上,對端到端的分層離散DGM進行訓練,在最大化數據證據(訓練和測試集)的下界方面取得了最先進的結果。在這樣做的過程中,這些模型有助于縮小具有離散潛在的分層DGM和具有連續潛在的分層DGM之間的差距,并提供極其穩定的訓練。
然后我們切換到另一個問題,如何構建一個模型,以有效地從高維數據中學習統計獨立的潛在表示。本文提出一種分層方法,使用雙射函數flow來產生一個中間表示,然后由高度約束的線性獨立成分分析(ICA)模型起作用。與其他方法相比,這導致了在各種玩具和真實數據集上的優越性能。
然后,研究迄今為止未考慮的問題,即如何使DGM對對抗性攻擊具有魯棒性。對這些模型的潛空間進行正則化可以可靠地誘導魯棒性,并通過將這種正則化應用于分層的DGM來獲得更魯棒的模型。最后,從理論角度研究了DGM算法的魯棒性問題。我們定義r-魯棒性,DGM魯棒性的新標準,然后得出該標準上的間隔,在該間隔內的模型可以說是魯棒的。與潛空間被正則化的各種DGM的最佳模型的新理論相結合,這種間隔的形式有助于了解這種正則化如何提高魯棒性。
**本文提出的工作表明,深度學習和貝葉斯統計的結合是多么有效,并提供了對他們的組合所產生的模型本質的見解。**這為這兩個方向開辟了新的研究——為建立在所提出工作之上的新模型,也為研究深度生成模型的理論工作開辟了新途徑。
//ora.ox.ac.uk/objects/uuid:fa76ad20-30bb-48a3-8ae4-56da578a1767
深度學習在多個領域都取得了突破性進展,從圖像、語言和視頻理解等核心機器學習任務,到醫療、自動駕駛和農業等現實行業。它的成功是通過為神經網絡提供人工監督,從大型標記數據集(如ImageNet)自動學習分層數據表示。然而,獲取大規模的標簽數據通常是一個非常耗時和昂貴的過程。為應對這一挑戰,本文挑戰多模態視頻數據的自監督極限。視頻數據通常包含多種形式,如圖像、音頻、轉錄語音和可免費獲得的文本標題。這些模態通常共享冗余語義信息,因此可以作為偽標簽來監督彼此進行表示學習,而不需要使用人工標簽。在不依賴標簽數據的情況下,我們能夠在從互聯網收集的數百萬個視頻剪輯的非常大規模的視頻數據上訓練這些深度表示。通過在各種領域建立新的最先進的性能,展示了多模態自監督的可擴展性好處:視頻動作識別、文本到視頻檢索、文本到圖像檢索和音頻分類。我們還引入了數據轉換、模型架構和損失函數方面的其他技術創新,以使用多模態自監督進一步改進對這些深度視頻表示的學習。本文的第二個貢獻是改進深度表示的可解釋性的新工具,因為要破譯這些深度表示中編碼的關鍵特征是非常困難的。對于圖像,我們展示了如何使用攝動分析來分析網絡的中間表示。對于視頻,我們提出了一種新的聚類方法,使用Sinkhorn-Knopp算法將深度視頻表示映射到人類可解釋的語義偽標簽。本論文的研究成果為進一步提高深度視頻表示學習的可擴展性和可解釋性做出了貢獻。
//ora.ox.ac.uk/objects/uuid:3a0721a0-025e-423c-b441-2d7af5d960da
在過去的十年里,深度學習取得了巨大的成功,但在權值更新和訓練樣本數量方面,實際有用的深度模型的訓練仍然非常低效。為了解決這些問題的一個方面,本文研究了持續學習設置,該模型利用一系列的任務,利用之前的知識來快速學習新任務。持續學習的主要挑戰是,在為新任務更新模型時,避免模型災難性地忘記之前的信息。
//ora.ox.ac.uk/objects/uuid:7a3e5c33-864f-4cfe-8b80-e85cbf651946
為此,本文首先提出了一種持續學習算法,通過正則化兩個連續任務的條件似然之間的kl -散度來保留之前的知識。結果表明,這種正則化對網絡權值施加了二次懲罰,該懲罰基于上一個任務的最小曲率。其次,本文提出了一種更有效的持續學習算法,利用對過去任務的情景記憶作為約束,這樣當對新任務進行權重更新時,情景記憶的損失不會增加。結果表明,使用情景記憶約束目標比正則化網絡參數更有效。此外,為了提高學習新任務的速度,提出了使用組合任務描述符的聯合嵌入模型,大大提高了正向遷移。基于情景記憶的持續學習目標通過直接在損失函數中使用記憶來簡化。盡管它傾向于記憶出現在微小情景記憶中的數據,結果算法顯示出比使用記憶作為約束的算法更好的泛化。分析認為,這種驚人的概化是由于新任務數據帶來的正則化效應。然后利用該算法對合成數據和真實數據進行持續學習。為此,提出了一種方法,通過優化重放緩沖區上的事后遺忘損失,為每個任務生成合成數據點。設計了一個嵌套的持續學習優化目標,有效地利用這些綜合點來減少基于記憶的持續學習方法的遺忘。最后,本文提出了一種持續學習算法,在不重疊的特征子空間中學習不同的任務。通過保持不同任務的子空間相互正交來最小化重疊,可以減少這些任務表示之間的干擾。
在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。
//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。
近年來,深度學習已經將自己定位為機器學習最有前途的方向之一。然而,深度神經網絡在不確定性估計、模型選擇、先驗知識的整合等方面存在許多不足。幸運的是,所有這些問題都可以在貝葉斯深度學習框架內克服,使用貝葉斯神經網絡、變分自編碼器或深度神經網絡高斯過程等模型。不幸的是,這需要使用近似推理過程和先驗分布的規范。在這篇論文中,我們展示了這些模型中先驗規范不僅僅是一個麻煩,而是一個寶貴的機會,可以將領域知識和歸納偏見加入到學習算法中,從而提升全新應用的性能。為此,我們對相關文獻進行了全面的回顧,并進一步貢獻了不同的原創研究成果。
具體地說,我們證明了變分自編碼器中的高斯過程先驗可以改進時間序列的表示學習,并允許對缺失數據進行有效的插補,同時還可以提供校準的不確定性估計。我們還表明,通過使用變分高斯-馬爾可夫過程,這是可能的,在沒有顯著的額外計算成本。此外,我們表明,在變分自編碼器中使用自組織映射作為結構歸納偏差,可以提高學習表示的可解釋性,并使有效的潛在聚類。這些聚類表示可以作為潛在時間序列模型的輸入,從而準確地預測未來的狀態。在貝葉斯神經網絡中,我們證明了常用的各向同性高斯先驗不僅會導致次優性能,而且在某些情況下還會產生所謂的冷后驗效應,即經過緩和的后驗比真正的貝葉斯后驗表現更好。相反,我們提出了具有重尾性和空間相關性的備選先驗,可以提高性能,緩解冷后驗效應。最后,當沒有先驗知識可用時,我們表明先驗分布可以在元學習環境中從相關任務中學習。在深度神經網絡高斯過程的情況下,我們表明元學習的均值函數和核函數的先驗改進預測性能和不確定性估計。
我們希望本文將為貝葉斯深度學習框架奠定基礎,在該框架中,先驗分布的選擇將被視為建模任務的關鍵部分,手工設計和元學習的先驗將在任務之間自由共享,以實現貝葉斯深度學習。
//www.research-collection.ethz.ch/handle/20.500.11850/523269
近年來,深度學習徹底改變了機器學習和計算機視覺。許多經典的計算機視覺任務(例如目標檢測和語義分割),傳統上非常具有挑戰性,現在可以使用監督深度學習技術來解決。雖然監督學習是一個強大的工具,當標簽數據是可用的,并考慮的任務有明確的輸出,這些條件并不總是滿足。在這種情況下,生成建模給出了一個很有前途的方法。與純粹的判別型模型相比,生成型模型可以處理不確定性,甚至在沒有標簽訓練數據的情況下也可以學習強大的模型。然而, 雖然目前的方法生成建模取得可喜的成果, 他們遭受兩個方面,限制他們的表現力: (i) 為圖像數據建模的一些最成功的方法不再使用優化算法來訓練,而是使用其動力學尚未被很好理解的算法,(ii) 生成模型往往受到輸出表示的內存需求的限制。我們在本文中解決了這兩個問題:在第一部分中,我們介紹了一個理論,它使我們能夠更好地理解生成式對抗網絡(GANs)的訓練動力學,這是生成式建模最有前途的方法之一。我們通過引入可解析理解的GAN訓練的最小示例問題來解決這個問題。隨后,我們逐漸增加了這些示例的復雜性。通過這樣做,我們對GANs的訓練動力學有了新的認識,并推出了新的正則化器,也適用于一般的GANs。新的正則化器使我們能夠——第一次——以百萬像素的分辨率訓練GAN,而不必逐漸增加訓練分布的分辨率。在本論文的第二部分,我們考慮生成模型的三維輸出表示和三維重建技術。通過將隱式表示法引入深度學習,我們能夠在不犧牲表現力的情況下將許多2D領域的技術擴展到3D領域。