亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國空軍部對人工智能(AI)徹底改變作戰各個方面的潛力越來越感興趣。在這個項目中,美國空軍要求蘭德公司的 "空軍項目"(Project AIR FORCE)廣泛考慮人工智能無法做到的事情,以了解人工智能在作戰應用中的局限性。本報告討論了人工智能系統在執行兩種常見網絡安全任務(檢測網絡入侵和識別惡意軟件)中的應用,以及分布轉移對這些任務的影響,這種現象會極大地限制人工智能的有效性。當人工智能系統在部署后遇到的數據與經過訓練和測試的數據有明顯差異時,就會發生分布偏移。

本報告闡述了分布偏移的重要性,它如何并確實顯著限制了人工智能在檢測網絡入侵和識別惡意軟件方面的有效性,如何測試和量化其影響,以及如何減輕這些影響。這項工作主要針對大型組織,如總部設施,它們有足夠的帶寬和計算能力來實施人工智能網絡安全系統并定期更新系統。

本報告是五卷系列報告中的第二卷,論述了如何利用人工智能在網絡安全、預測性維護、兵棋推演和任務規劃四個不同領域為作戰人員提供幫助。本卷面向技術讀者;整個系列面向對作戰和人工智能應用感興趣的讀者。

研究問題

  • 網絡安全數據集是否受到分布漂移的影響?
  • 如何在網絡安全數據集中檢測和描述分布漂移?
  • 用于檢測分布漂移的數據集的質量和周期有多重要,這些因素如何影響人工智能的性能?

主要發現

  • 網絡安全數據集存在分布偏移問題,尤其是在標準網絡入侵檢測和惡意軟件分類方面。
  • 分布偏移有多種表現形式,檢測的難易程度取決于數據集。
  • 雖然數據質量對訓練機器學習算法很重要,但數據的新舊程度也很重要。
  • 在某些情況下,數據必須是近期的才有用,這就限制了可用于訓練的數據,反過來又限制了人工智能的性能。

建議

  • 任何基于人工智能的網絡安全系統都應進行數據集分割測試,以評估隨時間推移的分布變化對性能的可能影響。這些測試可用于估算數據衰減率,而數據衰減率又可用于估算人工智能系統在必須完全重新訓練之前可能的保質期。
  • 此外,我們還建議對數據集進行著名的統計檢驗,如 Kolmogorov-Smirnov 檢驗,作為檢測或確認分布偏移的額外措施。
付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本文是研究指揮與控制(C2)未來表現形式的四篇系列論文中的第一篇。第一篇論文通過探討未來指揮與控制(C2)系統需要在其中運行的未來作戰環境,為后續研究設定了基線。具體來說,本文探討了復雜性的驅動因素、表現形式和影響,而此前的研究表明,復雜性很可能是這一環境的特征。為此,它討論了 C2 和復雜性等關鍵術語的定義;介紹了未來運行環境中復雜性的一些驅動因素,并討論了這些因素如何對 C2 系統和組織造成新的壓力;研究了分析和理解復雜性的可能方法;并概述了 2030 年代及以后可能產生的一些實際考慮因素。由于本文旨在為本系列的后續三篇論文提供資料,因此沒有全面涵蓋未來 C2 思考的所有方面,包括提出具體建議。

研究問題

  • 根據當前的全球社會和技術趨勢進行預測,國防和合作伙伴可能面臨的持續競爭和多領域作戰的作戰環境的性質是什么?
  • 基于這種對未來的預測,未來的 C2 系統和組織將面臨怎樣的復雜性;即復雜性的可能來源是什么?
  • 考慮到未來作戰環境的這一特點,未來的 C2 系統和組織需要具備哪些條件?
  • 未來的 C2 系統和組織需要什么樣的新能力和特性才能有效應對這些需求?

有爭議的定義

C2 沒有直截了當的定義,對于該術語在當代作戰環境中的范圍和相關性也存在爭議。對 C2 傳統定義的批判來自于對 21 世紀有效領導力構成要素的更廣泛質疑。在英國、美國和北約,最近出現了大量與 C2 相關的新術語,并將重點從聯合思維轉向多領域思維。我們的研究將 C2 定義為一個動態的、適應性強的社會技術系統,因此有必要考慮組織、技術和人力要素。

同樣,復雜性也沒有一個公認的定義。學術界對復雜性的研究日益增多,涉及多個科學學科,但缺乏統一的方法或理論框架。一個有用的出發點是區分簡單系統、復雜系統、復雜系統和復雜適應系統。文獻還描述了在這些條件下可能出現的所謂 "棘手"或 "超級棘手問題"。還可以對有限博弈和無限博弈進行重要區分--這是考慮作為復雜適應系統的國家間競爭時的一個有用視角。鑒于這些爭論,我們的研究避開了對復雜性的僵化定義,而是從其關鍵屬性的角度對這一現象進行了 DCDC 式的描述。

復雜性的預計驅動因素

未來作戰環境的特征--以及國防 C2 系統和組織預計將執行的任務類型--具有很大的不確定性,因此任何預測都必須謹慎。盡管如此,文獻指出了各種政治、經濟、社會、技術、法律、環境和軍事(PESTLE-M)趨勢,預計這些趨勢將影響國際體系的演變,進而影響 2030 年及以后的國防行動。這些趨勢包括以下宏觀趨勢

  • 日益增強的互聯性、多極化和全球競爭
  • 不斷變化的氣候的影響
  • 技術變革和數字化的影響
  • 傳統和新穎領域的模糊化
  • 國際準則和價值觀的轉變。

最重要的是,沒有一個單一或主要的趨勢推動著變化或復雜性;相反,最令人擔憂的是多種因素的融合及其不可預測的相互作用。這種認識為進一步研究這些趨勢影響國際體系復雜性水平和特征的具體機制提供了基礎,從而為在這一領域開展工作的 C2 帶來了新的挑戰。

復雜性的表現

上述 PESTLE-M 趨勢為未來組織應對 C2 帶來了一系列困境和壓力,包括但不限于

  • 不確定性
  • 模糊性
  • 多義性
  • 信息超載
  • 認知偏差
  • 面對瞬息萬變的事件,決策癱瘓或節奏不足
  • 難以確保決策(包括人工智能)或信任決策所依據的數據、邏輯和假設
  • 難以調動所有必要的權力杠桿,或協調參與制定和執行特定戰略或行動計劃的大量不同參與者(如跨政府合作伙伴、行業、國際盟友、公民)。

此外,無論是理論家還是實踐者,在處理包含非線性動態的問題時,都缺乏有力的措施來衡量所做決定或采取的行動的有效性。因此,很難確切地說未來作戰環境中的復雜性是否在客觀上不斷增加(而不是以不同的形式出現),但對軍隊應處理的復雜任務的政治期望與當前 C2 方法的執行能力之間顯然存在巨大差距。當前的學術理論為決定如何在復雜環境中配置 C2 提供了一個方法工具包的初步輪廓和一些指導原則,但并沒有提供靈丹妙藥。該理論強調審議分析方法,即讓不同利益相關者參與共同設計、借鑒多學科和知識體系的見解,并在分析和決策過程中建立靈活性,以便根據反饋意見不斷迭代和改進的方法。

未來 C2 的實際考慮因素

要應對復雜的自適應系統,就必須摒棄當前的線性 C2 流程和等級結構,盡管在處理非復雜任務和問題時,更傳統的方法可能仍然有用。在競爭激烈的世界中,英國既需要培養能夠對他人施加建設性影響的特性和能力(例如,將復雜性強加給對手的 C2),也需要培養能夠增強自身駕馭復雜性能力的特性和能力。

要影響敵對行動者的觀念、決策和行為,首先要深入了解其 C2 結構、流程和文化。根據這種了解,英國國防需要一套動能和非動能杠桿,對敵方的 C2 施加建設性影響,包括施加復雜性。除了敵對行動者,英國國防部還需要進一步了解如何對 PAG、盟友、合作伙伴、工業界、學術界、公民和對 C2 采取截然不同方法的其他人施加建設性影響。

在增強英國自身應對復雜性的能力方面,未來的 C2 系統和組織必須促進靈活性、復原力以及學習和適應能力等特性。整個決策周期都需要變革。例如,傳感器和通信技術的進步為獲取更多深度和廣度的數據提供了機會,包括有關復雜問題的數據。因此,提高認知能力對于理解所有這些數據至關重要,既要利用人類和機器的優勢,又要減少各自的缺點。要改變決策方法,還需要改變領導風格,以培養更善于駕馭復雜適應系統的決策者。在做出決策或計劃后,提高跨部門或跨層級的能力,在實施階段更好地整合活動或匯聚效應,對于抵消英國的局限性(如在質量方面)至關重要。

同樣,整合也不是萬全的;如果國防缺乏足夠深度的力量和能力,無法在充滿敵意的威脅環境中采取可信行動或維持高節奏行動,那么即使是最高效的指揮控制系統也無法在未來取得成功。此外,還需要采取防御措施以及恢復和失效模式,以阻止或減輕敵方破壞 C2 系統和組織的努力所造成的影響。鑒于所面臨的威脅,以及英國國防可能需要解決的不同形式的復雜問題,很可能會同時出現多種并行的 C2 模式,而不是單一的方法。應對復雜性意味著不斷學習、適應、創新和開放求變。因此,必須從一開始就將效果衡量標準、信號和變革機制納入計劃以及 C2 系統和組織,使其能夠隨著時間的推移不斷學習和調整,以應對各種情況。至關重要的是,未來 C2 系統和組織的設計只是挑戰的一部分--它們還必須得到更廣泛的國防企業緊急改革的支持,以確保獲得所需的使能因素(人員、技術等)。從 C2 的角度來看,這本身就是一個挑戰,因為改變這個企業--一個復雜的適應性系統--本身就是一個棘手的問題。

結論和下一步行動

學術理論家和政府、軍事或工業從業人員對復雜性或復雜適應系統的理解并不全面,而這正是未來 C2 運行環境的特點。雖然文獻提供了處理復雜性的有用方法和工具,以及未來 C2 的一些初步設計考慮,但英國 C2(本身就是一個社會技術系統)的現代化和轉型將是一項高度復雜的工作。這意味著要與不斷發展的作戰環境、不斷變化的威脅和技術環境共同適應,從而進行迭代和不斷學習。因此,最緊迫的挑戰或許是,考慮到 C2 系統在未來面對復雜性時取得成功所需的轉型(技術、結構、流程、文化、教育等)的程度和性質,了解如何在一段時間內最好地引導這一過程。

自相矛盾的是,要克服實現以應對復雜性為目標的 C2 系統所面臨的障礙,可能需要英國國防部已經表現出其所尋求建立的系統的許多特征。面對這樣的循環邏輯,英國國防部可能需要某種外部沖擊來迫使其進行創造性的破壞,或者利用(或不顧)更傳統、線性的 C2 方法來啟動自身的激進改革努力,并隨著時間的推移,隨著變化的到來而進行調整。

付費5元查看完整內容

美國空軍越來越關注人工智能(AI)在增強作戰各方面能力方面的潛力。在這個項目中,空軍要求蘭德公司的研究人員考慮人工智能無法做到的事情,以了解人工智能在作戰應用中的局限性。

研究人員沒有試圖確定人工智能的一般限制,而是選擇并調查了四個具體的作戰應用作為潛在用例:網絡安全、預測性維護、兵棋推演和任務規劃。選擇這些應用是為了代表各種可能的用途,同時突出不同的限制因素。在可以獲得足夠數據的三個案例中進行了人工智能實驗;剩下的兵棋推演案例則廣泛探討了如何應用或不能應用人工智能。

本報告是五卷系列中的第一卷,總結了所有應用案例的研究結果和建議。報告面向政策制定者、采購專業人員以及對將人工智能應用于作戰普遍感興趣的人員。

研究問題

  • 哪些作戰應用可作為潛在用例?
  • 訓練和測試人工智能系統需要哪類數據?
  • 人工智能算法有哪些局限性?

主要結論

  • 要識別適應性威脅,數據必須是最新的。分布偏移會降低模型性能,這是無法避免的,尤其是對于高維數據。
  • 不能依靠人工智能分類算法來學習沒有教過的東西。人工智能無法預測或識別新型網絡攻擊。
  • 數據必須可訪問且條件良好。相關的物流數據保存在多個數據庫中,通常條件不佳。如果沒有自動化的數據管道,就無法獲取足夠的數據來實現人工智能。
  • 和平時期的數據不能替代戰時數據。人工智能無法彌補適當數據的匱乏。
  • 數字化必須先于人工智能的發展。大多數兵棋推演不是在數字化環境中進行的,也不會生成電子數據。數字化是人工智能數據管道的先導。
  • 需要新型數據。要實現人工智能,就需要人機交互(HCI)技術來捕捉兵棋推演中目前尚未捕捉到的方面。
  • 人工智能遠未達到人類智能水平。因此,它不能代替人類,也不能應用人類的判斷。
  • 要應對適應性威脅,數據必須是最新的。必須根據最新情況刷新模型,才能在動態威脅面前生存下來。
  • 人工智能在戰術上很聰明,但在戰略上卻很幼稚。它往往通過進入對手的 "觀察、定位、決策、行動 "循環而取勝,而不是通過提出一個巧妙的大戰略。
  • 與傳統優化方法相比,人工智能的準確性較低。但它的解決方案可能更穩健,也能更快達成。

建議

  • 空軍部(DAF)應進行數據集細分測試,以確定人工智能系統分布偏移的重要性,并確定大致的衰減率和人工智能保質期。
  • DAF 應進行人工智能試驗,以改進戰備備件包 (RSP) 的需求預測,并將概念驗證模型擴展到所有飛機。這可能需要在逐個部件、逐個平臺的基礎上進行。
  • DAF 應考慮使用人工智能來解決更大的運籌問題,即選擇將哪些部件發送到哪里。
  • DAF 應建立一個數據操作管道,以便對多個部件和平臺的飛機維護和 RSP 進行有效的回顧性分析。
  • DAF 應將用于開發兵棋推演 AI 應用的資源集中在最有前途的領域:那些調查替代條件或用于評估有明確標準的領域;那些已經納入數字基礎設施(包括人機交互技術)的領域;以及那些定期重復的領域。
  • 發展議程應更多地使用數字游戲基礎設施和人機交互技術,特別是在為系統探索和創新而設計的游戲中,以收集數據支持人工智能的發展。
  • DAF 應更廣泛地利用人工智能能力來支持未來的兵棋推演工作。
  • 國防和安全部隊應考慮如何利用人工智能為面臨突發狀況的無人機制定快速反應政策。
  • DAF 應投資開發工具,將強化學習應用于現有的任務規劃模型和模擬中,如仿真、集成和建模高級框架(AFSIM)。
付費5元查看完整內容

2010 年后,用于兵棋推演的人工智能(AI)技術突飛猛進,激發了人們對這一技術可能給兵棋推演帶來的益處的濃厚興趣。倡導者認為,人工智能可能使兵棋推演更有效,或使兵棋推演應用于新問題成為可能。本報告評估了將人工智能技術應用于兵棋推演的局限性,以及未來在兵棋推演中有效應用人工智能的投資機會。

為此,按類型或目的(系統探索、創新、替代條件和評估)以及按時間階段任務(準備、游戲、裁決和解釋)對兵棋推演進行了分類。這些框架用于評估在特定條件下將人工智能應用于特定類型兵棋推演各個方面的技術可行性和成本效益。

本報告是五卷系列中的第四卷,論述了如何在網絡安全、預測性維護、兵棋推演和任務規劃這四個不同領域運用人工智能來協助作戰人員。它面向那些對兵棋推演、人工智能在兵棋推演中的應用歷史以及更廣泛的人工智能應用感興趣的人。

研究問題

  • 應用人工智能技術對哪類兵棋推演最有益?
  • 目前的人工智能技術在兵棋推演中的應用受到哪些方面的限制?
  • 為了在兵棋推演中卓有成效地應用人工智能技術,各組織可以采取哪些潛在措施?

主要結論

  • 與系統探索或創新游戲相比,人工智能在替代條件或評估游戲中可能更有用。
  • 對于那些在裁決過程中已經讓計算模型發揮重要作用的游戲,或者產生大量必須裁決的數字信息的游戲,人工智能可能證明特別有用。
  • 對于數字基礎設施有限或不與計算模型互動的游戲,人工智能的前景似乎不太樂觀。
  • 人工智能可能對非機密的培訓研討會有益,先進的人機交互(HCI)可以識別話語和決策的模式。
  • 對于需要先進的人機交互技術進行數據采集、模型和資產互動的保密游戲來說,利用人工智能不太可行。
  • 人工智能對于零和、武力對武力沖突的重復建模比對于一次性游戲或為特定目的進行的次數非常有限的游戲更有吸引力。

建議

  • 各組織應將資源集中在最有希望開發兵棋推演人工智能應用的領域。這包括:調查替代條件或用于- - 評估的領域,有明確界定的問題和標準;已納入數字基礎設施的領域,包括人機交互技術;以及定期重復的領域,如部隊對部隊的沖突。
  • 各組織應更多地使用數字游戲基礎設施和人機交互技術,特別是在為系統探索和創新而設計的游戲中。兵棋推演任務的數字化必須先于人工智能的應用。人機交互技術可以而且應該用來收集有關話語和決策的數據,以支持人工智能的發展。
  • 各組織應在戰略研究中運用人工智能能力,更廣泛地支持未來的兵棋推演工作,并將項目從可能轉向可行。這些研究包括情景生成和案例識別,以找到值得兵棋推演關注的挑戰條件,以及情感或立場分析,以支持兵棋推演的定性研究。
付費5元查看完整內容

利用人工智能已成為美國防部的優先事項。2018 年《美國國防戰略》呼吁美國防部通過投資人工智能應用,在一定程度上獲得軍事競爭優勢。依賴預測能力和數據豐富的職業領域被視為人工智能解決方案的主要候選者。本文將討論空軍承包界如何利用人工智能的現有能力,以增強人類決策者執行任務的能力。利用人工智能應用的能力不僅能加強業務決策,還能支持為空軍部節省可量化資金的舉措。為了充分利用這一優勢,該職業領域將需要一個人工智能總體戰略愿景、一支具有人工智能思維的員工隊伍,以及空軍各合同組織的共同工作。

鑒于空軍可以從以前的合同中獲取數據,并依靠分析為任務合作伙伴提供建議并支持業務決策,空軍合同部門應考慮擴大人工智能的使用范圍,以增強整個企業中人類決策者的能力。

利用人工智能已成為國防部的優先事項。2018 年《國防戰略》呼吁國防部通過投資人工智能應用,在一定程度上獲得軍事競爭優勢。依賴預測能力和數據豐富的職業領域被視為人工智能解決方案的主要候選者。

空軍承包職業領域利用數據做出業務決策,為政府實現最佳價值。人工智能提供了一種利用數據的方法,可以增強并潛在地提高人類的決策能力。機器學習和自然語言處理等技術提供了從現有合同數據中整合、分析和解釋意義的能力。雖然目前的人工智能工作已經實施,但職業領域仍有許多領域可以利用當前的技術。

結論:

空軍合同部門的定位是利用人工智能的現有能力,增強人類決策者執行任務的能力。利用人工智能應用的能力不僅能加強業務決策,還能支持為空軍部節省可量化資金的舉措。為了充分利用這一優勢,該職業領域將需要一個人工智能總體戰略愿景、一支具有人工智能意識的員工隊伍以及空軍各承包組織的共同努力。

付費5元查看完整內容

俄羅斯決策者普遍認為人工智能是進一步發展軍事的幾項關鍵技術之一。雖然人們普遍認為人工智能可以提高許多軍事任務的效率,但對人工智能的使用及其潛在后果也存在各種擔憂,包括責任問題和人工智能在目標設定功能方面的表現。

就核企業而言,作者們探討了如何應用人工智能來改進與核武器有關的各種任務,從后勤管理和診斷到設施守衛,不一而足。重要的是,這些不同的潛在案例并不一定意味著 RVSN 的實際應用,而是反映了人們對概念化新技術如何惠及每項具體任務的普遍興趣。雖然這些討論經常提到人工智能系統需要可靠,但通常沒有明確分析其與核指揮控制和高層決策的聯系。

關于早期預警和指揮控制系統,不同作者普遍認為仍應由人類進行全面控制,盡管有些作者承認這些系統的完全自動化可能是可行的,不應將其排除在外。

在有關軍備控制的辯論中,人工智能仍未被普遍認為是一個重要因素。不過,那些承認人工智能作用的作者往往認為它是一種破壞穩定的力量。因此,一些人認為人工智能應被納入軍備控制議程,盡管除了基本的建立信任措施和核國家之間交換意見外,關于控制人工智能的可能協議還沒有明顯清晰的愿景。然而,一些人工智能武器可能會被納入傳統的軍備控制協議。

為推動五常之間就人工智能融入核C2、部隊結構和決策進行對話,應考慮以下建議:

1.人工智能相關術語詞匯表: 目前似乎缺乏共同語言,這不僅使有關該議題的國際討論復雜化,也使內部討論復雜化。各國可著手解決這一問題,編制一份有助于相互理解的共同術語匯編。一個可行的辦法是擴充現有的 "五常關鍵核術語匯編",新增人工智能相關術語或更廣泛的指揮與控制安全相關術語。

2.'恐懼映射':許多關于人工智能的辯論,特別是與核武器和一般戰爭有關的辯論,都充滿了對可能發生的最壞情況的恐懼(例如,人工智能系統中的錯誤或對人工智能系統的攻擊可能引發核戰爭)。各國可通過繪制這些與核 C2 和決策有關的恐懼來解決這一問題。這就需要集思廣益,找出所有可能的恐懼和擔憂,然后加以剖析,分析如何避免預期的危險。

3.不干涉的可行性:在蘇聯/俄羅斯與美國的雙邊軍控中,不干涉國家技術手段由來已久。近十年來,專家們考慮是否可以擴大不干涉承諾的范圍,以明確應對網絡攻擊;涵蓋太空中的非軍事資產;以及納入更多國家。各國應討論不干涉的理念是否可適用于核事業中使用的人工智能,例如哪些類型的目標應禁止網絡攻擊。

4.輔助功能與關鍵系統之間的依賴關系: 雖然在指揮和控制中使用人工智能可能是各國最關心的問題,但這遠不是這些技術可能改變核企業的唯一方式。各國應探討將人工智能技術融入輔助系統在多大程度上會對核指揮與控制的關鍵功能產生影響,以及如何降低可能的風險。

5.其他領域的人工智能風險評估和審計: 各國應借鑒其他領域的做法,這些領域的風險評估和人工智能安全審計更為成熟。特別是,它們應調查如何建立對這一過程的信心、其透明度和可解釋性。這可以為關于如何測試和評估人工智能系統的一般性討論創造空間,以及其他領域的經驗教訓在多大程度上可以為核決策思維提供參考。

6.人工智能的穩定用途:雖然有關戰略穩定的辯論傾向于將人工智能技術視為破壞穩定的因素,但各國應探討人工智能的使用可對它們之間的關系產生穩定作用的方式。

7.人工智能常規武器對核力量和 C2 的影響:俄羅斯文獻中提出的擔憂之一是,人工智能無人機可能被用來瞄準核力量或 C2 基礎設施。各國應分析這在多大程度上會成為額外的不穩定因素,以及如何加以解決。

8.定期交流: 各國應同意定期舉行會議,討論人工智能與核C2和決策互動的相關問題,此外,各國應嘗試將人工智能從業人員納入此類交流,以提供更具實質性的對話。

付費5元查看完整內容

人工智能和增強認知(AI;包含兩者)已經為美國空軍(USAF)的重要職能提供了指導。到 2030 年,人工智能將滲透到空軍的所有任務領域。正如美國空軍明確指出的,對美國空軍科學至關重要的是,"未來不會自己發明自己"。據此,本報告的目標是幫助設想和指導美國空軍發明未來的人工智能。因此,需要的是充分利用人工智能并推動其發展的研發工作,以及如何提升空軍在所有任務領域保護國家的能力。

美國空軍豐富的技術歷史可追溯到幾十年前(如 McCulloch & Pitts,1943 年;Rosenblatt,1958 年;Rummelhart 等人,1985 年;Hopfield,1988 年),但隨著計算能力的進步,許多技術已迅速發展(LeCun 等人,1998 年;Hassabis 等人,2017 年),它們已經或即將在作戰環境中無處不在。2030 年,它們很可能成為美國空軍武器裝備的核心。從自主無人機到人類可穿戴設備,智能機器及其與人類的接口正在接近徹底改變我國空軍兵力作戰環境的臨界點。我們將這一最新趨勢稱為 人工智能加速。

必須認識到的是,美國不一定在所有相關技術方面都處于領先地位。這是一個重大弱點,也是一個需要克服的差距。我們的對手和盟友都注意到了人工智能加速的趨勢。例如,俄羅斯總統弗拉基米爾-普京曾指出,"誰成為這一領域的領導者,誰就將成為世界的統治者"。(美國有線電視新聞網,2017 年 9 月 2 日)。法國總統埃馬紐埃爾-馬克龍(Emmanuel Macron)承諾法國將進行新的重大投資,"為......人工智能研究提供資金"(Rabesandratana,2018 年)。在中國,人工智能研發得到了精心培育,與此同時,中國對外國企業轉讓科學數據制定了逐步限制性措施(Ding,2018 年)。國家主席習近平說 "我們要加快把中國建設成為先進制造業強國,推動實體經濟同互聯網、大數據、人工智能等先進技術深度融合"。(路透社,2017 年 10 月 18 日)。

為了彌補這一差距,100 多位頂尖的學術界、工業界和政府科學家為這項研究做出了貢獻,強調了'人工智能加速'可能如何塑造 2030 年的美國空軍。這些專家在 2018 年第二季度以 "NSF Ideas Lab "的形式進行了在線討論,其中一部分專家(本報告的作者)還進行了面對面的討論,這種形式由 Knowinnovation(KI)促成,該組織在通過面對面和虛擬互動促進創新和跨學科科學進步方面擁有豐富的經驗。

本報告整合了這些跨學科互動中產生的想法,并以美國空軍及其作戰人員為背景,重點關注三個關鍵領域:機器、人機和人類。下面我們將對這些術語進行操作性定義,并在圖 1(第 16 頁)中加以說明。

圖 1:各層次人機交互示意圖(報告的概念性組織結構)

機器

顯然,我們需要開發能夠自主運行、降低風險、與人類并肩作戰,并能在空中和太空極端環境中長期運行的機器和算法。機器將取代并在某些情況下改變現有的能力。為了應對快速發展、高度動態的賽博空間可能帶來的范式轉變破壞,美國空軍需要采取積極主動的姿態,包括在政府和私營部門研究投資的基礎上,不斷螺旋式發展新系統。專家們一致認為,變化不會沿著現有的趨勢線發生。賽博空間正在迅速發展,因此高度動態的環境和快速變化很可能會打破人們的預期。專家們一致認為,關鍵是要投資研究,開發適應性強、靈活、穩健、使用安全和不受威脅的系統,并評估哪些系統對于在美國采購至關重要。

人機

在 2030 年的地平線上,美國空軍在人工智能加速組織結構突變的精心領導下,有可能實現人機協同的變革性增強,從而大幅提高作戰人員的認知和協作能力,包括但不限于態勢感知、決策速度、作戰和組織靈活性。這將包括盡早采用先進的人機和腦機接口;普遍集成可穿戴、微型和納米電子傳感器,用于生理、心理和神經監測、反饋和閉環實時干預,這些傳感器將與特定機器或更廣泛的指揮系統相連接,在極端環境中尤為寶貴; 人類與信息或機器人機器之間的團隊合作一體化;創建映射網絡空間的虛擬世界,允許人類以空間和信息直觀的方式進行部署;以及與專家數字助理、云連接信息系統的日常互動,這些系統具有自然語言處理能力,大大縮短了人類與他們業務所需信息之間的距離。在這些主題中,大家對人機協作的幾大主題達成了共識。

I) 人機融合提高個人績效:這一領域提出了提高人類績效的新興技術,包括認知、行為和健康。

II) 人機協同:這一領域指出了人機混合團隊協同工作的新興模式。

III) 對人機協作性能的全系統監控:這一領域強調了對這些新技術進行仔細、持續和動態監督的重要性。

人類

專家組一致認為,人類特工是美國空軍所有任務領域取得成功不可或缺的組成部分。到 2030 年,在美國空軍的所有行動中,從后勤到維護或控制作戰機器,人類都將理所當然地與人工智能互動。此外,將有大量空軍兵力人員在神經技術進步帶來的增強認知模式下履行職責。人工智能的加速發展無疑將塑造未來的勞動力隊伍。鑒于作戰環境的快速演變,專家組重點關注的是,2030 年所需要的軍官屬性可能與 20 世紀所看重的屬性大不相同。

大家一致認為,必須建立對如何在開發和采用人工智能加速技術方面培訓和培養當前和下一代空軍兵力的認識。這需要系統層面的整合,以及現役人員與研發和采購界之間的互動。例如,通過讓現役人員參與人工智能系統的設計,可以在一定程度上實現有效采用。空軍人員應征入伍后,必須接受相關技能培訓,以應對未來美國兵力的挑戰。因此,了解如何在人工智能滲透的作戰環境中提高和保持人的性能,如耐力、巔峰認知、保持任務狀態等,對于為 2030 年的作戰做好準備至關重要。

橫切問題

該小組確定了許多貫穿各領域的關鍵問題。這些問題包括美國空軍面臨的戰略突襲、道德、法律、社會和能源挑戰。就戰略出其不意而言,本報告的挑戰范圍僅限于可以預見到對手會出現的人工智能技術進步。在倫理、法律和社會問題方面,人們明確認識到,美國空軍自愿采取的限制措施很可能不會成為其他國家的限制。最后,大家一致認為,能源供應和 "質量 "可能是人工智能進步的一個重大制約因素,特別是在美國空軍必須在動態和偏遠環境中工作的情況下。

建議

美國空軍應與其他聯邦科學機構(如國家科學基金會)以及美國國防部和情報部門的其他部門協調其在人工智能加速領域的研發投資。

美國空軍應在全球范圍內掃描研發投資,以深入了解可能代表未來作戰挑戰的外國政府計劃和能力。

美國空軍應組織一個由來自學術界和工業界的頂尖研究人員組成的人工智能加速咨詢委員會,隨著科學基礎各學科的不斷進步,為美國空軍領導層提供信息和建議。

美國空軍應通過構建平臺技術、數據架構、算法和集成能力,為解決方案搭建支架,為人工智能應用奠定基礎。

美國空軍應設立執行數據架構師職位,以監督人工智能的整合,以及從設備到后勤和人力資產的集中信息資源的收集和安全化。

結論

人工智能加速將塑造美國空軍(USAF)2030 年的戰備態勢。專家組達成的共識是,空軍應加快開發和采購計算與神經技術方面的系統系列,從而在整個相關作戰環境中實現指揮、控制、通信、計算機和情報(C4I)方面的巨大進步。這一系列系統分為三個方面: 1)追趕現有的商業技術(采用);2)對最相關的技術突破(如人工智能)進行核心投資;3)對填補前者突出所留下的空白的技術(如量子計算)進行外圍投資。

這樣的未來美國空軍將需要能夠卸載或放大人類性能的機器、人機和人機界面。這不僅包括意圖,還包括對來自傳感器流的反饋做出響應的能力,即使是在高級別作戰環境所產生的極端條件下。整個人工智能生態系統將需要為無人機和代理(包括蜂群)提供真正的自主操作,其操作領域既包括美國空軍熟悉的領域,也包括迄今為止美國空軍從未經歷過的領域。這不僅包括大氣層,還包括 "內部空間"(即網絡領域),更重要的是,甚至包括更高層次的大氣層以及低地軌道和深空。此外,還需要應對這些環境中隨之而來的能源限制。最后,這個系統之系統需要具備足夠的防御能力(也許是生物啟發),以抵御同行競爭對手的退化和攻擊。

美國空軍能否在 2030 年的軍事環境中取得成功,不僅取決于人工智能的加速,還取決于指揮和控制能否靈活應對戰略突襲。這種臨界點可能出現在空間技術領域(如太空電梯),也可能出現在人工智能領域的顛覆性發展。例如,"通用人工智能"(定義為能夠對任何智力任務進行人類水平認知的人工智能)的成功開發和實施掌握在國內同行競爭者手中,將使美國空軍處于明顯的劣勢。這種進步的軍事抵消將取決于美國空軍對技術前景的持續認識--不僅在航空航天領域,而且在認知與計算的交叉領域,因為它適用于人工智能。

付費5元查看完整內容

1 人機協作的重要性和重要啟示

機器在21世紀的戰場上變得無處不在,現代軍隊必須接受人機協作(HMT),否則就有可能將軍事優勢拱手讓給有效利用人工智能(AI)和自主性的競爭對手。本報告調查了人工智能日益融入軍事行動的影響,尤其側重于了解美國國防部(DOD)采用 HMT 概念的參數、優勢和挑戰。

HMT的定義和組成部分

HMT 是指將人工智能和自主系統與人類決策者、分析師、操作員和看守人員一起使用。HMT 將智能人類和機器的能力結合在一起,共同實現軍事目標。HMT 的核心是一種包含四個同等重要要素的關系:

  • 人: 為機器提供輸入、對機器進行測試并利用其輸出的操作員;

  • 機器: 從人工智能和機器學習(ML)算法到無人機群,機器擁有一定程度的決定權,并支持特定的任務;以及

  • 交互: 人類和機器為完成共同任務而進行交互的方式。

  • 界面: 人類與機器互動的機制和顯示方式。

1.1 關鍵要點

從 HMT 的三個軍事應用角度來看,作者得出以下結論。

  • HMT 具有改變戰爭和解決關鍵作戰挑戰的潛力: 人工智能和 HMT 有可能通過增強態勢感知、改進決策、擴大人類操作員的射程和殺傷力,以及在多領域作戰中獲得并保持優勢,從而改變沖突和非戰斗行動。HMT 還能提高后勤、維持和后臺管理等許多輔助功能的效率,降低這些流程的成本和時限,并將人類解放出來,在這些任務領域執行價值更高的任務。

  • 美國防部須擴展其對 HMT 的定義:HMT 的定義應予以擴展,以包括人類與自主非乘員系統和人工智能體的交互廣度,包括那些沒有物理形態的系統(如決策支持軟件)。將定義擴展到人類與機器人之間的互動之外,可使國防部實現 HMT 的廣泛用例--從在高強度戰爭中使用致命武器系統和無人機群,到利用算法融合數據和實現信息領域的虛擬連接。

  • HMT 的開發和應用必須優先考慮以人為本的團隊合作: 人工智能的發展速度驚人,推動了機器能力的潛在飛躍,并對確保人工智能體的安全性、可靠性和可信度提出了更高要求。必須同樣重視培養人類操作員的能力、舒適度和信任度,以有效利用 HMT 的價值,確保人類始終處于人機團隊的中心位置。

  • 美國防部須從概念走向實踐:人機協作作為一種概念,在國防部的某些部門正獲得越來越大的發展勢頭。然而,更多采用人工智能和 HMT 的倡導者強調,有必要將對話從概念轉向實際--將能力開發過渡到 HMT 能力的實時測試和使用,海軍通過第 59 特遣部隊進行的人工智能試驗就證明了這一點--以更好地闡明和展示 HMT 可帶來的作戰優勢。

圖 1:HMT 三層價值的高級描述。

  • 增強態勢感知,加快決策制定(包括檢測模式和異常現象)

  • 增加操作員和高價值平臺的操作范圍和生存能力

  • 降低整個國防部活動的成本和時限,包括但不限于存在、威懾、作戰和消耗

注:這些價值已經在美國防部的某些部門得到承認和認可,盡管隨著與 HMT 相關的技術和概念的進步,這些價值可能會得到加強或擴大。資料來源 Tate Nurkin,圖片來自 Vecteezy 和大西洋理事會。

  • 實驗是建立信任的關鍵: 在迭代的真實世界實驗中,人類開發出新的操作概念,測試機器隊友的極限,并更好地了解機器在各種環境中的突破點、優勢和劣勢,這對加快 HMT 的采用將起到關鍵作用。這種意識對人類操作員也至關重要,因為他們需要培養對人工智能隊友的信任,從而有效利用 HMT 的潛力。
  • 美國防部須解決采用人工智能所面臨的官僚主義挑戰: 國防部規避風險的文化和各自為政的官僚作風正在減緩 HMT 概念和能力的獲取、實驗和采用。要克服這些挑戰,就必須提高 HMT 能力采購流程的敏捷性和靈活性、迭代實驗、承擔風險的激勵機制以及整個兵力的數字掃盲。

2 人機協作的應用

HMT 最常被狹義地設想為人類與一個到數百個或更多自主非乘員系統進行交互的過程。就其最基本的形式而言,這種對 HMT 的設想并不新鮮:人類與智能機器的合作已有數十年歷史--1997 年,超級計算機 "深藍 "在國際象棋比賽中擊敗世界冠軍加里-卡斯帕羅夫(Gary Kasparov)就是早期機器人才的縮影--軍方長期以來一直在測試各種概念,以推動這一關鍵能力的發展。然而,最近人工智能和機器人技術的發展速度令人印象深刻,促使人們越來越多地考慮這些技術所能帶來的新能力、效率和優勢。

忠誠僚機概念是 HMT 這種表現形式經常被引用的一個例子,在這個概念中,人類飛行員控制著一些相對廉價、模塊化、可隱蔽的自主無人駕駛航空系統(UAS)的任務分配和操作。這些僚機可在載人飛機前方飛行,執行一系列任務,包括電子攻擊或防御、情報、監視和偵察(ISR)或打擊,或作為誘餌吸引其他資產的火力,"點亮 "敵方防空系統。

不僅美國,大多數現代國家的軍隊都對 HMT 的這種表現形式越來越感興趣。除美國外,澳大利亞、中國、俄羅斯、英國、土耳其和印度都至少有一個積極的忠誠僚機發展計劃,而第六代戰斗機全球空中作戰計劃(英國、意大利、日本)、下一代空中主宰計劃(美國空軍和海軍)和未來空中作戰系統(德國、法國、西班牙)都涉及強調HMT和機-機協同的空中力量系統概念。

雙腿小隊支援系統是海軍陸戰隊作戰實驗室正在測試的實驗性技術。該系統經過編程,可跟隨操作員穿越地形,攜帶水和食物等重物。圖片來源:美國海軍陸戰隊

盡管這類 HMT 對新興軍事能力非常重要,并將繼續發揮重要作用,但對 HMT 的討論應包括人類與智能體(根據其環境、經驗和輸入進行學習并做出判斷)互動的全部范圍,包括與不具備實體形式的算法進行的絕大多數互動。Maven項目(Project Maven)就是一個例子,說明國防部和現在的國家地理空間情報局如何利用這類 HMT 從各種形式的媒體和收集到的情報中自主探測、標記和追蹤感興趣的物體或人類,從而使人類分析師和操作員能夠優先關注他們的重點領域。

除圖像分析和目標識別外,非物理形式的 HMT 還能支持一系列重要任務,如威脅探測、數據處理和分析。在速度、復雜性和可用數據顯著增加的作戰環境中,這對提高軍事效率至關重要。它們還能提高后勤和維持、培訓以及后臺行政任務的效率,從而降低成本并縮短執行時間。

通過將人工智能的處理能力和決策支持能力與人類的社會智能和判斷力相結合,并在某些情況下與具有不同自主程度的非乘員系統的兵力倍增效應相結合,HMT 可以為美國及其盟友和合作伙伴提供多層次的重疊優勢,包括圖 1 中列出的那些高級優勢。

作為 "加速采用人工智能和創建一支適合我們時代的兵力 "的更廣泛努力的一部分,國防部對 HMT 當前和未來多層次價值的認識有所提高。盡管如此,整個五角大樓在采用人工智能和 HMT 方面仍面臨一些長期挑戰。為了加速和深化 HMT 的采用,國防部必須致力于采用一種方法,將開發工作與私營部門的參與結合起來,為采購官員在整個國防企業中推廣 HMT 解決方案創造靈活性。這種方法必須輔以以下措施:

  • 繼續并更加重視在人類和機器合作伙伴之間建立信任;
  • 帶頭建立道德和安全方面的最佳實踐和規范;
  • 積極迭代實驗;
  • 清晰一致的信息傳遞

這些要素對于實現 HMT 在未來多領域戰斗中的價值和優勢至關重要。

表 1: 各 HMT 用例的優勢概述

  • 反介入區域拒止 (A2/AD) 沖突:

    • 使用大量消耗性和可隱蔽系統,穿透 A2/AD 環境,維持兵力,擴大在 A2/AD 警戒線外行動的載人平臺的作用范圍。
    • 在數據豐富的環境中查找、固定和跟蹤關鍵節點和威脅。
    • 提供邊緣態勢感知。
  • 感知和目標定位

    • 通過數據處理和融合增強態勢感知和威脅探測,提高態勢感知和威脅探測能力,確保以最快的速度做出決策。
    • 找到人類分析師和操作員不知道的關聯。
    • 支持人類跨領域識別目標和確定優先次序。
    • 向人類決策者推薦最適用的動能或非動能武器來打擊目標,從而提高效果的精確性。
  • 存在、優先順序和威懾力

    • 通過使用包含多個無人系統的 ISR 網,擴大高價值有人資產的范圍。
    • 在地理位置分散的戰區識別活動模式的異常和中斷。
    • 根據人工智能驅動的評估,確定威脅的優先級,確保高效的資源分配。
    • 在真實環境中進行積極的迭代實驗,可在操作員與其機器合作伙伴之間建立信任。

用于情報和規劃活動的大型語言模型:2023 年 3 月發布的 Chat GPT-4 引發了關于美國防部如何利用類似大型語言模型(LLM)工具支持情報活動的討論。可以理解的是,有人擔心 LLM 目前的復雜程度及其 "幻覺 "傾向--編造不正確的信息--會使廣泛使用或依賴這些工具為時過早,甚至適得其反。不過,使用 LLMs 進行試驗將有助于更好地了解這些工具在哪些方面以及如何實現增值,尤其是當它們變得更加可靠時。2023 年 4 月“石上戰爭”(War on the Rocks)詳細介紹了美國海軍陸戰隊高級作戰學院如何利用兵棋推演來探索 LLM 如何協助人類進行軍事規劃。這些系統被用來提供、連接和可視化不同層次的信息和分析--例如對區域經濟關系的戰略層面的理解,以及對特定國家動態的更有針對性的分析--然后規劃人員利用這些信息和分析來完善可能的行動方案,并更好地理解對手的體系。

建議和結論摘要

HMT 為二十一世紀的軍隊提供了多項優勢。因此,國防部必須投入足夠的時間和資源,以應對上述采用方面的挑戰。要促進 HMT 的采用,就必須將新理念、新程序和新激勵措施結合起來,并加強目前正在進行的、前景看好的加速采用工作,特別是與以下領域相關的工作:

  • 開發一種全事業范圍的 HMT 應用方法,該方法建立在設立首席數字和人工智能辦公室等中央機構的基礎上,并為其提供充足的資金和授權,以確保整個國防部在需求、能力、基礎設施和戰略開發以及采購和供應商參與方面相輔相成。

  • 在復制現實世界作戰環境挑戰的環境中進行快速、迭代和積極的實驗,將有助于人類測試和了解 HMT 技術的突破點,從而促進技術的采用。不同程度的實驗還能建立人類對其人工智能隊友的信任,這是優化 HMT 價值所必需的。

  • 通過改革融化 "冰凍的中間層",這些改革可提高對快速行動的激勵,調整國防部和國會的改革優先事項,并加強努力,以確保在整個企業而不是逐個軍種或逐個司令部采用 HMT。大西洋理事會國防創新采用委員會提出了幾項適用于獲取和采用 HMT 能力的具體建議。

  • 在未來作戰環境中,作戰速度、可用數據量和威脅的復雜性都將大幅提高,闡明并展示 HMT 的多層次價值,以贏得對競爭對手和潛在對手的優勢。

  • 繼續在機構和道德問題上發揮領導作用,優先考慮以合乎道德和負責任的方式開發和使用值得信賴的人工智能,并將人類--人類的判斷力--置于人機團隊的中心位置。美國政府和私營部門應重新審視和更新有關機構和倫理的指導方針,以反映當代技術發展趨勢和能力。

  • 制定戰略信息,強調人機團隊的價值和安全性,供美國防部和國會利益相關者以及更廣泛的美國社會使用。

美國在人工智能方面的進步并非發生在真空中;如果五角大樓遲遲不大規模采用 HMT,就有可能將軍事優勢拱手讓給像中國這樣將人工智能視為安全要務的戰略競爭對手。機器和智能體在二十一世紀的戰場上無處不在,國防部有責任展示、交流和實現 HMT 對實現未來任務和國家目標的價值。

一名軍官將 XRS-150 X 射線發生器放在模擬墜落的無人駕駛航空系統前。圖片來源:美國空軍國民警衛隊

付費5元查看完整內容

隨著機器學習應用越來越能夠執行安全關鍵功能,海軍部將開始把它們集成到有人和無人平臺中。不過,在海軍部(DON)目前的測試與評估(T&E)框架下,DON試圖測試的機器學習算法將沒有適當的工件來表明算法將以安全和合乎道德的方式可靠地執行任務。本研究介紹了海軍部適航性的基本原理和當前的 T&E 框架,然后回顧了一個代理測試項目,以研究如何調整當前的海軍部 T&E 框架,為機器學習算法的實戰提供更多保證。

這項研究為海軍航空事業(NAE)內的利益相關者提供了對當前已有或正在開發的工具、方法和框架的了解,如果對這些工具、方法和框架進行調整,就能為使用機器學習來完成目前由人類操作員完成的任務的系統提供額外的學習保證。本文的主要目的已經達到,即掌握了基礎知識,并將在未來一年內通過實際測試加以驗證。驗證將通過研究使用案例來完成,具體來說,就是無人機系統(UAS)與有人駕駛平臺之間的自主空對空加油(A3R),以及如何將保障領域的新能力應用到測試計劃、執行和分析過程中。次要目標是掌握完成初始測試和評估的流程,使這些程序可用于并擴展到未來可能適合自主系統的任務集。隨著對這一特定使用案例的初步測試和評估的進行,將會學到更多的知識,而一旦掌握了這些知識,將有助于為今后海軍對自主平臺的所有測試和評估奠定基礎。

付費5元查看完整內容

機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。

持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。

本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。

合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。

CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。

在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。

從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。

在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。

付費5元查看完整內容

研究問題

RAS-AI,更具體地說,人機協作(HMT)對皇家海軍的未來勞動力有什么影響?

澳大利亞皇家海軍(RAN)正在對其部隊進行現代化改造,以更好地應對澳大利亞在印度-太平洋地區面臨的日益增長的挑戰。本報告概述了機器人、自主系統和人工智能(RAS-AI)對國防人員的各種影響,為皇家海軍正在進行的促進RAS-AI整合的工作提供參考。

作者對相關的公開來源的學術和灰色文獻進行了審查,重點是為RAN確定可能的教訓。分析集中在RAS-AI對國防勞動力和技能的總體影響上,特別關注人機協作(HMT)對國防勞動力的影響。

研究結果強調了有效采用HMT所需的根本性的不同和新穎的工作方式。將HMT納入勞動力隊伍需要對復雜的人員網絡進行靈活管理,并不斷調整現有結構和概念。

本報告是為支持2020年發布的RAN的RAS-AI戰略2040而進行的工作的延續。蘭德公司被要求提供政策分析和建議,以支持制定一個可操作的RAS-AI運動計劃,協助RAS-AI的實施工作。研究小組已經研究了三個具體領域,以支持制定一個可操作的計劃:軍事創新,海上RAS-AI的任務和技術評估,以及HMT。這項工作應該為皇家海軍、澳大利亞其他國防部門和國防部更廣泛地了解HMT對皇家海軍未來員工隊伍的影響。

研究成果

  • 在RAN中實現HMT的正常化將需要對國防人員進行靈活的管理,并不斷調整現有的結構和概念。

  • HMT需要在認知方面進行轉變,就像培訓和感知一樣。

  • HMT的目標是優化互動,發揮人和機器的優勢。

  • HMT包含了廣泛而復雜的問題,無法將其歸類為一個不可避免的原則、活動和資源的清單。

  • 了解和考慮人機互動(HMI)的范圍是不可或缺的。

  • 新技術的發展應該與實際問題/需求相一致。

  • 人機交互所需的技能/屬性可能在傳統上并不被國防部所重視。

  • 組織學習必須被接受,以提供這種挑戰性的能力。

  • HMT不僅應該作為一種有效的軍事作戰能力,而且還應該作為一種同步的訓練能力來利用。

  • HMT的成功需要在整個員工隊伍中得到顯著提升。

  • HMT需要識別人類和機器的長處和短處,并利用優勢,使其大于各部分之和。

  • HMT的重點應該是要解決的問題,適當的比例和HMI的模式,以及找到努力回報的最佳點。

  • RAS-AI的性能必須使它們在使用它們的人中灌輸一種信任、安全和可靠的感覺。

  • 從設計的那一刻起,就必須主動關注HMT范式的概念和道德的復雜性。

付費5元查看完整內容
北京阿比特科技有限公司