計算機能有效地處理人類語言嗎?如果這很難,為什么?如果這是可能的,怎么做?這本書向讀者介紹計算語言學和自動自然語言處理的迷人科學,它結合了語言學和人工智能。這本書的主要部分致力于解釋語言處理器的內部工作,語言處理器是一個軟件模塊,負責將自然語言輸入翻譯成傳統人工智能應用程序直接可用的表示,反之亦然,負責將它們的答案翻譯成人類語言。這本書的整體重點是精心闡述的,盡管——由于許多歷史原因——在文獻中被稱為意義文本理論的計算語言學模型中迄今鮮為人知。為了便于比較,還詳細考慮了其他模型和形式。這本書主要面向對西班牙語自然語言處理技術的應用感興趣的研究人員和學生。特別地,書中給出的大多數例子都涉及西班牙語材料——這是本書區別于其他自然語言處理書籍的一個特點。然而,我們的主要闡述是足夠普遍的,適用于廣泛的語言。具體來說,考慮到這本書的許多讀者將以西班牙語為母語。為他們提供了一些關于英語術語的評論,以及一本關于書中使用的技術術語的英-西班牙語簡短詞典。不過,閱讀這本英文書會幫助說西班牙語的讀者熟悉有關該主題的科學文獻中使用的風格和術語。
知識表示和推理是人工智能挑戰的核心: 要充分理解智能和認知的本質,使計算機能夠表現出類似人類的能力。早在1958年,約翰·麥卡錫(John McCarthy)就考慮過可以運用常識的人工智能系統。從這些早期工作中,研究人員確信(人工)智能可以被形式化為具有明確知識表征的符號推理,而研究的核心挑戰是弄清楚如何在計算機中表示知識,并使用它的算法來解決問題。
多年以后,這本書調研了構成知識表示和推理領域的大量科學和工程見解。在三個方面取得了進展。首先,研究人員探索了知識表示和推理的一般方法,解決了跨越應用領域的基本問題。其次,研究人員開發了專門的知識表示和推理方法來處理核心領域,如時間、空間、因果關系和行動。第三,研究人員處理了知識表示和推理的重要應用,包括查詢回答、規劃和語義網。因此,本書分為三個部分來涵蓋這些主題。
//www.elsevier.com/books/handbook-of-knowledge-representation/van-harmelen/978-0-444-52211-5
第一部分主要介紹人工智能系統中表示知識的一般方法。它從經典邏輯和定理證明的背景開始,然后轉向擴展經典邏輯的新方法——例如,處理定性的或不確定的信息——并改進其計算可處理性。
第二部分探討了用知識的一些核心領域(包括時間、空間、因果關系和行動)來表示和推理的特殊挑戰。這些挑戰在應用程序領域中普遍存在,因此解決方案必須是通用的和可組合的。
第三部分介紹了知識表示和推理的重要應用。應用領域涵蓋了人工智能的廣度,包括問題回答、語義網、計劃、機器人和多智能體系統。每一項應用都廣泛借鑒了第一部分和第二部分中所述的研究結果。
此外,這25章,組織在三個部分“一般方法”,“專門的表示和“應用”,提供了一個獨特的調研,最好的知識表示已經取得,由幫助塑造領域的研究人員寫。我們希望學生,研究人員和從業者在所有領域的人工智能和認知科學將發現這本書是一個有用的資源。
當看到這些材料時,一個明顯的問題可能會出現:“為什么還要寫一本深度學習和自然語言處理的書呢?”一些優秀的論文已經出版,涵蓋了深度學習的理論和實踐方面,以及它在語言處理中的應用。然而,從我教授自然語言處理課程的經驗來看,我認為,盡管這些書的質量非常好,但大多數都不是針對最有可能的讀者。本書的目標讀者是那些在機器學習和自然語言處理之外的領域有經驗的人,并且他們的工作至少部分地依賴于對大量數據,特別是文本數據的自動化分析。這些專家可能包括社會科學家、政治科學家、生物醫學科學家,甚至是對機器學習接觸有限的計算機科學家和計算語言學家。
現有的深度學習和自然語言處理書籍通常分為兩大陣營。第一個陣營專注于深度學習的理論基礎。這對前面提到的讀者肯定是有用的,因為在使用工具之前應該了解它的理論方面。然而,這些書傾向于假設一個典型的機器學習研究者的背景,因此,我經常看到沒有這種背景的學生很快就迷失在這樣的材料中。為了緩解這個問題,目前存在的第二種類型的書集中在機器學習從業者;也就是說,如何使用深度學習軟件,而很少關注理論方面。我認為,關注實際方面同樣是必要的,但還不夠。考慮到深度學習框架和庫已經變得相當復雜,由于理論上的誤解而濫用它們的可能性很高。這個問題在我的課程中也很常見。
因此,本書旨在為自然語言處理的深度學習搭建理論和實踐的橋梁。我涵蓋了必要的理論背景,并假設讀者有最少的機器學習背景。我的目標是讓任何上過線性代數和微積分課程的人都能跟上理論材料。為了解決實際問題,本書包含了用于討論的較簡單算法的偽代碼,以及用于較復雜體系結構的實際Python代碼。任何上過Python編程課程的人都應該能夠理解這些代碼。讀完這本書后,我希望讀者能有必要的基礎,立即開始構建真實世界的、實用的自然語言處理系統,并通過閱讀有關這些主題的研究出版物來擴展他們的知識。
//clulab.cs.arizona.edu/gentlenlp/gentlenlp-book-05172020.pdf
管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
這本書以一種結構化的、直觀的、友好的方式學習c++編程語言。這本書教授現代c++編程語言、c++標準庫和現代c++標準的基礎知識。不需要以前的編程經驗。
c++是一種不同于其他語言的語言,它的復雜性令人驚訝,但在許多方面都非常優美和優雅。它也是一種不能通過猜測來學習的語言,是一種很容易出錯的語言。為了克服這一點,每個部分都充滿了現實世界中逐漸增加復雜性的例子。面向絕對初學者的現代c++教的不僅僅是用c++ 20編程。它提供了一個可在其上進行構建的堅實的c++基礎。
作者帶您了解c++編程語言、標準庫和c++ 11到c++ 20標準基礎知識。每一章都附有適量的理論和大量的源代碼示例。
您將使用c++ 20個特性和標準,同時還將比較和查看以前的c++版本。您將使用大量相關的源代碼示例來實現此目的。
你將學到什么
這本書是給誰的
這本受歡迎的教科書的第一版,當代人工智能,提供了一個學生友好的人工智能介紹。這一版完全修訂和擴大更新,人工智能: 介紹機器學習,第二版,保留相同的可訪問性和解決問題的方法,同時提供新的材料和方法。
該書分為五個部分,重點介紹了人工智能中最有用的技術。書的第一部分涵蓋了基于邏輯的方法,而第二部分著重于基于概率的方法。第三部分是涌現智能的特點,探討了基于群體智能的進化計算和方法。接下來的最新部分將提供神經網絡和深度學習的詳細概述。書的最后一部分著重于自然語言的理解。
適合本科生和剛畢業的研究生,本課程測試教材為學生和其他讀者提供關鍵的人工智能方法和算法,以解決具有挑戰性的問題,涉及系統的智能行為在專門領域,如醫療和軟件診斷,金融決策,語音和文本識別,遺傳分析等。
?介紹
這本書在保持非常務實的教導和結果導向付出很大的精力。構建聊天機器人不只是完成一個教程或遵循幾個步驟,它本身就是一種技能。這本書肯定不會用大量的文本和過程讓你感到無聊;相反,它采用的是邊做邊學的方法。到目前為止,在你的生活中,你肯定至少使用過一個聊天機器人。無論你是不是一個程序員,一旦你瀏覽這本書,你會發現構建模塊的聊天機器人,所有的奧秘將被揭開。建立聊天機器人可能看起來很困難,但這本書將讓你使它如此容易。我們的大腦不是用來直接處理復雜概念的;相反,我們一步一步地學習。當你讀這本書的時候,從第一章到最后一章,你會發現事情的進展是多么的清晰。雖然你可以直接翻到任何一章,但我強烈建議你從第一章開始,因為它肯定會支持你的想法。這本書就像一個網絡系列,你在讀完一章之后就無法抗拒下一章的誘惑。在閱讀完這本書后,你所接觸到的任何聊天機器人都會在你的腦海中形成一幅關于聊天機器人內部是如何設計和構建的畫面。
這本書適合誰?
這本書將作為學習與聊天機器人相關的概念和學習如何建立他們的一個完整的資源。那些將會發現這本書有用的包括: Python web開發人員希望擴大他們的知識或職業到聊天機器人開發。 學生和有抱負的程序員想獲得一種新的技能通過親身體驗展示的東西,自然語言愛好者希望從頭開始學習。 企業家如何構建一個聊天機器人的偉大的想法,但沒有足夠的技術關于如何制作聊天機器人的可行性信息。 產品/工程經理計劃與聊天機器人相關項目。
如何使用這本書?
請記住,這本書的寫作風格和其他書不一樣。讀這本書的時候要記住,一旦你完成了這本書,你就可以自己建造一個聊天機器人,或者教會別人如何建造一個聊天機器人。在像閱讀其他書籍一樣閱讀這本書之前,務必記住以下幾點:
內容概要
簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。
您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。