亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

雖然機器學習的專業知識并不意味著你可以創建自己的圖靈測試證明機器人(就像電影《機械總動員》中那樣),但它是人工智能的一種形式,是快速大規模識別機會和解決問題的最令人興奮的技術手段之一。任何掌握了機器學習原理的人都將掌握我們科技未來的很大一部分,并在職業領域開辟令人難以置信的新方向,包括欺詐檢測、優化搜索結果、服務實時廣告、信用評分、建立精確而復雜的定價模型等等。

與大多數機器學習書籍不同的是,完全更新的第二版《傻瓜機器學習》并不假設你有多年使用編程語言(如Python)的經驗,但讓你入門,涵蓋了入門的材料,將幫助你建立和運行你需要執行實際任務的構建模型。它揭示了推動機器學習的潛在的——迷人的——數學原理,同時也表明,你不需要是一個數學天才,就可以構建有趣的新工具,并將它們應用到你的工作和學習中。

  • 了解人工智能和機器學習的歷史
  • 使用Python 3.8和TensorFlow 2。x(及R下載)
  • 構建并測試您自己的模型
  • 使用最新的數據集,而不是在其他書中找到的陳舊的數據
  • 將機器學習應用于實際問題
  • 無論你想為大學學習或提高你的業務或職業表現,這本機器學習指南是您最好的機器學習介紹,讓您快速使用這個驚人的和快速發展的技術,影響世界各地的更好的生活。

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

「本書提供許多絕佳的機器學習實用案例。有別于工具書或理論證明,本書著重于實際問題處理,因此具備程式設計背景及對機器學習有興趣的讀者們均可輕松入門。」

  • Max Shron, OkCupid

如果你是平時喜歡上網搜集各種資料的程式設計師,想尋找并學習資料分析的方法與工具,本書將會是您了解機器學習最好的起點。在Machine Learning領域中,包含各種分析問題的工具與方法,可以讓我們很方便地架構出一套自動分析資料系統,使電腦可以自動分析。不過這些方法的背后,通常都蘊含著艱澀、難懂的數學理論,因而提高了學習門檻。有鑒于此,本書作者Drew Conway和John Myles準備了許多實用案例。在本書中,他們將以生動活潑的方式,使用案例導向方式,透過生活實例,帶領我們一起學習這些Machine Learning工具和統計工具的實際應用。經由這些過程學習機器學習領域的核心與價值,而非傳統數學導向的介紹方式。

本書采用實例導向、問題導向的介紹方式,在每一個章節中,透過實際問題,介紹機器學習典型問題與解決方法。其中包含:分類問題、預測問題、最佳化問題、推薦系統建置問題...等,在書中都會一一介紹。本書所有程式均以R語言撰寫,于每個章節中將學到:如何以R語言分析資料,并撰寫簡易機器學習演算法。《機器學習駭客秘笈》本書,是專為機器學習領域的初學者所寫的,無論是商業、政府機關或學術界...等都適用。

chapter 01使用R語言 chapter 02資料探索 chapter 03文本分類:垃圾郵件判斷 chapter 04項目排序:優先收件匣 chapter 05回歸分析:預測網頁瀏覽人次 chapter 06正則化:文本回歸 chapter 07最佳化:破解密碼 chapter 08 PCA:建立股價指數 chapter 09 MDS:視覺化呈現美國參議員相似度 chapter 10 kNN:推薦系統 chapter 11分析社群關系圖 chapter 12模型比較

付費5元查看完整內容

目錄

第一章 為什么機器學習至關重要。 本章描繪了人工智能和機器學習的發展全貌——從過去到現在,再到未來。

第二章 監督學習(一)。 本章通過例題介紹了線性回歸、損失函數、過擬合和梯度下降。

第三章 監督學習(二)。 本章介紹了兩種分類方法:邏輯回歸和SVM。

第四章 監督學習(三)。 本章介紹了非參數方法:k近鄰估計、決策樹、隨機森林。以及交叉驗證、超參數調整和集成模型的相關知識。

第五章 無監督學習。 本章介紹了聚類:K-means、層次聚類;降維:主成分分析(PCA)、奇異值分解(SVD)。

第六章 神經網絡與深度學習。 本章介紹了深度學習的工作原理、應用領域和實現方法,并回顧了神經網絡是如何從人類大腦中汲取靈感的。此外,本章還涉及卷積神經網絡(CNN)、遞歸神經網絡(DNN)以及神經網絡應用案例等內容。

第七章 強化學習。 本章介紹了強化學習的Exploration和Exploitation(探索-利用),包括馬爾可夫決策過程、Q-learning、策略學習和深度強化學習。

附錄: 最佳機器學習資源。 一份用于學習機器學習的資源清單。

前言

Machine Learning for Humans是國外機器學習愛好者之間流傳甚廣的一本電子書,它最先是Medium上的連載文章,后因文章質量出眾、閱讀價值高,作者在建議下把文章整理成電子書,供讀者免費閱讀。本書的作者Vishal Maini是耶魯大學的文學學士,目前已入職DeepMind;另一名作者Samer Sabri同樣畢業于耶魯大學,目前正在加州大學圣迭戈分校的計算機學院攻讀碩士學位。

哪些人應該讀一讀?

希望快速跟上機器學習發展潮流的開發者;

希望掌握機器學習入門知識并參與技術開發的普通讀者;

所有對機器學習感興趣的讀者。

本書向所有人免費開放閱讀。書中雖然會涉及概率論、統計學、程序設計、線性代數和微積分等基礎知識,但沒有數學基礎的讀者也能從中獲得啟發。

本書旨在幫助讀者在2—3個小時內迅速掌握機器學習高級概念,如果您想得到更多關于線上課程、重要書籍、相關項目等方面的內容,請參考附錄中的建議。

付費5元查看完整內容

Java—從第一步到第一個應用程序

了解Java是任何程序員必須具備的編程技能。它被廣泛應用于各種編程項目中——從企業應用和移動應用到大數據、科學和金融應用。根據開發人員的數量、編寫的代碼行數和實際使用情況,該語言在最流行的語言調查中經常排名第一。它也是美國大學預修計算機科學課程的首選語言

本指南提供了一個易于遵循的路徑,從理解編寫Java代碼的基礎知識到將這些技能應用到實際項目中。這本書分為八本涵蓋Java核心方面的迷你書,介紹了Java語言和面向對象編程的基礎知識,然后開始構建web應用程序和數據庫。

  • 了解Java基礎知識
  • 探索面向對象編程
  • 學習字符串、數組和集合
  • 了解文件和數據庫

一步一步的指導,以確保您不會迷失在任何一點的過程中。

付費5元查看完整內容

機器學習方法以有限的資源快速地從大量的數據中提取價值。它們是在廣泛的工業應用中建立起來的工具,包括搜索引擎、DNA測序、股票市場分析和機器人移動,它們的使用正在迅速蔓延。了解這些方法的人可以選擇有回報的工作。這個動手實踐書冊為計算機科學學生打開這些機會。它是專為具有有限的線性代數和微積分背景的大四本科生和碩士生設計的。它在圖模型的框架內開發了從基本推理到高級技術的所有內容。學生們學到的不僅僅是一系列的技巧,他們還會發展分析和解決問題的技巧,這些技巧使他們能夠適應真實的世界。許多例子和練習,以計算機為基礎和理論,包括在每一章。為學生和教師的資源,包括一個MATLAB工具箱,可在網上獲得。

付費5元查看完整內容

本文介紹了一階優化方法及其在機器學習中的應用。這不是一門關于機器學習的課程(特別是它不涉及建模和統計方面的考慮),它側重于使用和分析可以擴展到具有大量參數的大型數據集和模型的廉價方法。這些方法都是圍繞“梯度下降”的概念而變化的,因此梯度的計算起著主要的作用。本課程包括最優化問題的基本理論性質(特別是凸分析和一階微分學)、梯度下降法、隨機梯度法、自動微分、淺層和深層網絡。

付費5元查看完整內容

機器學習(ML)是一組用于發現數據關系的編程技術。使用ML算法,您可以對數據進行聚類和分類,以執行建議或欺詐檢測之類的任務,并對銷售趨勢、風險分析和其他預測進行預測。機器學習曾經是學術數據科學家的領域,現在已經成為主流的業務流程,而像易于學習的R編程語言這樣的工具將高質量的數據分析交到任何程序員的手中。《使用R、tidyverse和mlr的機器學習》將教會您廣泛使用的ML技術,以及如何使用R編程語言及其強大的工具生態系統將它們應用于您自己的數據集。這本書會讓你開始!

對這項技術

機器學習技術準確而有效地識別數據中的模式和關系,并使用這些模型對新數據進行預測。ML技術甚至可以在相對較小的數據集上工作,使這些技能成為幾乎所有數據分析任務的強大盟友。R語言的設計考慮了數學和統計的應用。小型數據集是它的最佳選擇,它的現代數據科學工具(包括流行的tidyverse包)使R成為ML的自然選擇。

關于這本書

《使用R、tidyverse和mlr的機器學習》將教會您如何使用強大的R編程語言從數據中獲得有價值的見解。作者兼R專家Hefin Ioan Rhys以其引人入勝的、非正式的風格為ML基礎知識打下了堅實的基礎,并向您介紹了tidyverse,這是一套專門為實用數據科學設計的強大的R工具。有了這些基礎知識,您將更深入地研究常用的機器學習技術,包括分類、預測、約簡和聚類算法,并將每種技術應用于實際數據,從而對有趣的問題進行預測。

使用tidyverse包,您將轉換、清理和繪制您的數據,并在工作中使用數據科學最佳實踐。為了簡化您的學習過程,您還將使用R的mlr包,這是一個非常靈活的接口,用于各種核心算法,允許您以最少的編碼執行復雜的ML任務。您將探索一些基本概念,如過擬合、欠擬合、驗證模型性能,以及如何為您的任務選擇最佳模型。富有啟發性的圖片提供了清晰的解釋,鞏固了你的新知識。

無論您是在處理業務問題、處理研究數據,還是僅僅是一個有數據頭腦的開發人員,您都可以通過本實用教程立即構建自己的ML管道!

里面有什么

  • 常用ML技術
  • 使用tidyverse包來組織和繪制數據
  • 驗證模型的性能
  • 為您的任務選擇最佳的ML模型
  • 各種實際的編碼練習
  • ML的最佳實踐
付費5元查看完整內容

掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。

使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。

第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。

第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。

第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。

實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!

你將學習:

  • 執行端到端機器學習項目和系統
  • 使用行業標準、開放源碼、健壯的機器學習工具和框架實現實踐示例
  • 回顧描述機器學習和深度學習在不同領域和行業中的應用的案例研究
  • 廣泛應用機器學習模型,包括回歸、分類和聚類。
  • 理解和應用深度學習的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生

目錄:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

付費5元查看完整內容

機器學習的核心是有效地識別數據中的模式和關系。許多任務,例如查找詞匯之間的關聯以便您能夠做出準確的搜索建議,或者在社交網絡中定位具有相似興趣的個人,很自然地以圖Graph的形式表達出來。圖驅動機器學習教你如何使用基于圖形的算法和數據組織策略來開發高級的機器學習應用程序。

對這項技術

對于任何涉及到大型數據集中的模式匹配的任務,基于圖的機器學習都是一個非常強大的工具。應用程序包括安全問題,如識別欺詐或檢測網絡入侵,應用程序領域,如社交網絡或自然語言處理,以及更好的用戶體驗,通過準確的推薦和智能搜索。通過將數據組織和分析為圖形,您的應用程序可以更流暢地使用以圖形為中心的算法(如最近鄰算法或頁面排名算法),在這些算法中,快速識別和利用相關關系非常重要。現代圖形數據存儲(如Neo4j或Amazon Neptune)是支持圖形機器學習的現成工具。

關于這本書

圖驅動機器學習向您介紹圖技術概念,強調圖在機器學習和大數據平臺中的作用。您將深入了解各種技術,包括數據源建模、算法設計、鏈接分析、分類和集群。在掌握核心概念之后,您將探索三個端到端項目,它們將演示體系結構、最佳設計實踐、優化方法和常見缺陷。作者亞歷山德羅·內格羅在構建基于圖形的機器學習系統方面的豐富經驗在每一章中都有所體現,你可以從他與真實客戶合作的實例和具體場景中學習!

里面有什么

  • 機器學習項目的生命周期
  • 三端到端應用程序
  • 大數據平臺中的圖形
  • 數據源建模
  • 自然語言處理、推薦和相關搜索
  • 優化方法
付費5元查看完整內容

書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。

作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。

大綱介紹:

  • 介紹
  • PAC學習框架
  • rademacher復雜度和VC維度
  • 支持向量機
  • 核方法
  • Boosting
  • 線上學習
  • 多類別分類
  • 排序
  • 回歸
  • 算法穩定性
  • 降維
  • 強化學習

作者主頁//cs.nyu.edu/~mohri/

付費5元查看完整內容
北京阿比特科技有限公司