亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

低秩稀疏矩陣優化問題是一類帶有組合性質的非凸非光滑優化問題. 由于零模與秩函數 的重要性和特殊性, 這類 NP-難矩陣優化問題的模型與算法研究在過去?幾年里取得了長足發 展. 本文從稀疏矩陣優化問題、低秩矩陣優化問題、低秩加稀疏矩陣優化問題、以及低秩張量 優化問題四個方面來綜述其研究現狀; 其中, 對稀疏矩陣優化問題, 主要以稀疏逆協方差矩陣估 計和列稀疏矩陣優化問題為典例進行概述, 而對低秩矩陣優化問題, 主要從凸松弛和因子分解 法兩個角度來概述秩約束優化和秩 (正則) 極小化問題的模型與算法研究. 最后,總結了低秩 稀疏矩陣優化研究中的一些關鍵與挑戰問題, 并提出了一些可以探討的問題。

//bicmr.pku.edu.cn/~wenzw/paper/review_lowrank20200321.pdf

付費5元查看完整內容

相關內容

圖在許多應用中被廣泛用于表示復雜數據,如電子商務、社交網絡和生物信息學。高效、有效地分析圖數據對于基于圖的應用程序非常重要。然而,大多數圖分析任務是組合優化(CO)問題,這是NP困難。最近的研究集中在使用機器學習(ML)解決基于圖CO問題的潛力上。使用基于ML的CO方法,一個圖必須用數值向量表示,這被稱為圖嵌入。在這個調查中,我們提供了一個全面的概述,最近的圖嵌入方法已經被用來解決CO問題。大多數圖嵌入方法有兩個階段:圖預處理和ML模型學習。本文從圖預處理任務和ML模型的角度對圖嵌入工作進行分類。此外,本文還總結了利用圖嵌入的基于圖的CO方法。特別是,圖嵌入可以被用作分類技術的一部分,也可以與搜索方法相結合來尋找CO問題的解決方案。最后對未來的研究方向做了一些評論。

付費5元查看完整內容

這是對常微分方程的介紹。摘要討論了一階標量方程、二階線性方程和線性方程組的解的主要思想。利用冪級數法求解變系數二階線性方程組。本文引入拉普拉斯變換方法求解具有廣義源函數的常系數方程。簡要介紹邊值問題、特征值-特征函數問題和傅立葉級數展開。本文采用分離變量的方法,通過求解無窮多個常微分方程得到偏微分方程的解

付費5元查看完整內容

近年來, 隨著海量數據的涌現, 可以表示對象之間復雜關系的圖結構數據越來越受到重視并給已有的算法帶來了極大的挑戰. 圖神經網絡作為可以揭示深層拓撲信息的模型, 已開始廣泛應用于諸多領域,如通信、生命科學和經濟金融等. 本文對近幾年來提出的圖神經網絡模型和應用進行綜述, 主要分為以下幾類:基于空間方法的圖神經網絡模型、基于譜方法的圖神經網絡模型和基于生成方法的圖神經網絡模型等,并提出可供未來進一步研究的問題.

//engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext

圖是對對象及其相互關系的一種簡潔抽象的直觀數學表達. 具有相互關系的數據—圖結構數據在眾多領域普遍存在, 并得到廣泛應用. 隨著大量數據的涌現, 傳統的圖算法在解決一些深層次的重要問題, 如節點分類和鏈路預測等方面有很大的局限性. 圖神經網絡模型考慮了輸入數據的規模、異質性和深層拓撲信息等, 在挖掘深層次有效拓撲信息、 提取數據的關鍵復雜特征和 實現對海量數據的快速處理等方面, 例如, 預測化學分子的特性 [1]、文本的關系提取 [2,3]、圖形圖像的結構推理 [4,5]、社交網絡的鏈路預測和節點聚類 [6]、缺失信息的網絡補全 [7]和藥物的相互作用預測 [8], 顯示了令人信服的可靠性能.

圖神經網絡的概念最早于 2005 年由 Gori 等 [9]提出, 他借鑒神經網絡領域的研究成果, 設計了一種用于處理圖結構數據的模型. 2009 年, Scarselli 等 [10]對此模型進行了詳細闡述. 此后, 陸續有關于圖神經網絡的新模型及應用研究被提出. 近年來, 隨著對圖結構數據研究興趣的不斷增加, 圖神經網絡研究論文數量呈現出快速上漲的趨勢, 圖神經網絡的研究方向和應用領域都得到了很大的拓展.

目前已有一些文獻對圖神經網絡進行了綜述. 文獻 [11]對圖結構數據和流形數據領域的深度學習方法進行了綜述, 側重于將所述各種方法置于一個稱為幾何深度學習的統一框架之內; 文獻[12]將圖神經網絡方法分為三類: 半監督學習、無監督學習和最新進展, 并根據發展歷史對各種方法進行介紹、分析和對比; 文獻[13]介紹了圖神經網絡原始模型、變體和一般框架, 并將圖神經網絡的應用劃分為結構場景、非結構場景和其他場景; 文獻[14]提出了一種新的圖神經網絡分類方法, 重點介紹了圖卷積網絡, 并總結了圖神經網絡方法在不同學習任務中的開源代碼和基準.

本文將對圖神經網絡模型的理論及應用進行綜述, 并討論未來的方向和挑戰性問題. 與其他綜述文獻的不同之處在于, 我們給出新的分類標準, 并且介紹圖神經網絡豐富的應用成果. 本文具體結構如下: 首先介紹三類主要的圖神經網絡模型, 分別是基于空間方法的圖神經網絡、基于譜方法的圖神經網絡和基于生成方法的圖神經網絡等; 然后介紹模型在節點分類、鏈路預測和圖生成等方面的應用; 最后提出未來的研究方向.

付費5元查看完整內容

交互式信息檢索:模型、算法和評估

由于信息檢索(IR)通常是一個交互過程,因此研究交互式信息檢索(IIR)是很重要的,在IIR中,我們將嘗試建模和優化整個交互式檢索過程(而不是單個查詢),同時考慮用戶可能與搜索引擎交互的許多不同方式。本教程系統地回顧了IIR的研究進展,重點介紹了IIR的模型、算法和評估策略的最新進展。首先對IIR的研究進行了廣泛的概述,然后介紹了使用合作博弈框架進行IIR的形式化模型,并涵蓋了決策理論模型,如接口卡模型和IIR的概率排序原理。接下來,它提供了一個審查一些代表特定的信息檢索的技術和算法,如各種形式的反饋技術和多樣化的搜索結果,然后討論了應該如何評價一個信息檢索系統和多種策略提出最近使用模擬的用戶評價信息檢索。本教程最后簡要討論了IIR中的主要開放挑戰和一些最有前途的未來研究方向。

視頻地址:

//sigir-preview.baai.ac.cn/vod-0726/tut0008.mp4

付費5元查看完整內容

凸優化作為一個數學問題已經被研究了一個多世紀,并在許多應用領域的實踐中應用了大約半個世紀,包括控制、金融、信號處理、數據挖掘和機器學習。本文主要研究凸優化的幾個問題,以及機器學習的具體應用。

付費5元查看完整內容

【導讀】深度學習中的優化問題是非常關鍵的。今年國立臺灣大學教授、IEEE Fellow、ACM Fellow、AAAI Fellow,也是大名鼎鼎LIBSVM作者林智仁教授開設了《深度學習優化方法》課程,講解深度學習涉及到非常難的非凸優化問題,研究了深度學習優化方法的實現,值得跟蹤學習。

//www.csie.ntu.edu.tw/~cjlin/courses/optdl2020/

Chih-Jen Lin,現任臺灣大學計算機科學系特聘教授。1993年獲國立臺灣大學學士學位,1998年獲密歇根大學博士學位。他的主要研究領域包括機器學習、數據挖掘和數值優化。他最著名的工作是支持向量機(SVM)數據分類。他的軟件LIBSVM是最廣泛使用和引用的支持向量機軟件包之一。由于他的研究工作,他獲得了許多獎項,包括ACM KDD 2010和ACM RecSys 2013最佳論文獎。因為他對機器學習算法和軟件設計的貢獻,他是IEEE fellow,AAAI fellow,ACM fellow。更多關于他的信息可以在

目錄內容:

  • 正則化線性分類
  • 全連接網絡優化問題
  • 卷積神經網絡優化問題
付費5元查看完整內容
北京阿比特科技有限公司