數據驅動學習是使機器人學習技能的強大范式。當前的主要方法涉及通過遙操作或仿真收集大量機器行為數據,然后訓練策略。為了使這些策略能夠在多樣化的任務和場景中推廣,構建豐富的初始數據集的負擔很大,這受到收集示范所需的人力勞動或仔細設計仿真資產和場景的瓶頸限制。我們能否讓機器人學習如何收集自己的數據以實現持續改進?本論文旨在解決這一探索問題,指導智能體如何行動,從而發現有用的行為。 我們首先考慮如何在缺乏獎勵或示范的情況下定義探索目標。為了探索新目標,我們的關鍵見解是,識別導致某個未知目標狀態的動作序列比直接生成未知目標更容易。這得益于訓練一個可以用來測量動作序列不確定性的世界模型。為了在現實世界中進一步提高效率,我們將環境和智能體中心的探索解耦。前者與激勵導致物體視覺特征變化的動作相關,這對操作任務通常是有益的;而后者則與機器人內部世界模型的不確定性相關。 接下來,我們詢問如何為多樣化任務啟用通用機器人探索者。我們的方法是利用人類視頻學習數據驅動的先驗知識來構建動作空間。我們學習視覺可及性,描述物體如何與手或末端執行器進行交互,從而為探索提供非常高效的搜索空間。此外,這個共享的可及性動作空間可以用來訓練一個聯合的人機世界模型。該模型首先在各種人類手執行任務的視頻上進行預訓練,然后用極少的機器人探索軌跡進行微調。我們還研究了如何使用給定獎勵函數的梯度信息高效地調整互聯網規模的視頻擴散模型,這可以為未來在機器人規劃中使用此類模型的應用提供支持。 我們考慮的第三個問題是如何為機器人探索者提供更大的自主性。我們使用移動操作系統,因為它們擴展的可行任務空間和重置能力允許在最小人類參與下進行持續實踐和改進。我們展示了一種配備臂的四足機器人,通過現實世界的強化學習學習移動椅子、清掃垃圾和豎立揚塵器,以及一種自定義的輪式系統,學習在校園內各棟建筑中開門。最后,與探索問題正交,我們討論如何利用低成本高保真遙操作和仿真中的程序化場景生成來擴展雙手靈巧操作的數據收集,以學習機器人手臂的神經運動規劃器。這是為了獲得更好的初始策略,以便機器人能夠進行探索。
機器人系統傳統上用于制造業中自動化重復任務,如焊接、噴漆和拾放操作。盡管機器人研究取得了巨大進展,傳統的裝配技能仍然是一個挑戰。在大多數情況下,復雜的裝配技能仍然嚴重依賴工程師的專業知識。此外,這些技能在面對新任務或變化時容易失敗,例如對象的形狀或大小。隨著客戶對更大產品多樣性的需求最近增加,這一點尤為重要。學習方法將在這種背景下變得突出,因為學習將負擔從人類轉移到機器人。與其試圖獲得周圍環境的精確模型或編程控制器,機器人可以通過經驗獲取動力學模型或直接學習最優控制策略。
強化學習(Reinforcement Learning, RL)賦予機器人通過與周圍環境互動自主找到最優行為的能力。將深度學習模型整合到RL中的方法被稱為深度強化學習(Deep Reinforcement Learning, DRL),已在多個領域取得顯著成就。然而,當應用于現實世界的機器人操作時,現代深度強化學習算法仍面臨許多挑戰。首先,機器人系統上的樣本獲取昂貴且繁瑣。加之,無模型深度強化學習算法通常樣本效率低下,即它們需要大量樣本。其次,現實世界的訓練引發安全問題。環境或工程師可能會施加一些約束,機器人必須始終滿足這些約束以確保安全。在探索階段,這些約束難以維持,因為這通常涉及隨機動作采樣。這兩個挑戰是阻礙深度強化學習集成到機器人控制系統中的基本問題。
本論文展示了如何可能提高樣本效率和實現安全學習,使RL在現實機器人任務中更具實用性。首先,通過使用操控原語(manipulation primitives)作為動作顯著提高了樣本效率。操控原語既簡單又足夠通用,可以推廣到各種任務。其次,將低層次反饋控制器納入RL提供了先驗知識,可以提高學習速度和策略性能。本研究的一個關鍵信息是,魯棒且高性能的低層次控制器可以進一步提高策略的魯棒性和性能。最后,論文探討了縮小現實差距的方法,這是模擬到現實強化學習中的基本問題。本研究提出了一種新的接觸減少方法,以提高模擬精度,促進復雜裝配任務的模擬到現實的轉移。
新的學習算法提高了我們僅通過觀察單個事件的過去觀察來獲取知識的能力,使我們能從觀察幾個相關事件中學習。這種在時間序列中利用共享有用信息的能力正在引起時間序列預測實踐的范式轉變。然而,基于機器學習的預測仍面臨著一些迫切的挑戰,這些挑戰限制了其可用性、有用性以及可實現的現實世界的影響,包括人類的可解釋性、利用結構化信息的能力、泛化能力和計算成本。本論文通過彌合機器學習和經典統計預測方法之間的差距來解決這些挑戰。我們按照以下方式組織了論文。我們介紹了時間序列預測任務,并附帶了現代預測模型、它們的優化以及預測評價方法的簡要回顧。在接下來的章節中,我們通過三個案例研究來介紹我們的方法。首先,我們將時序分解分析啟發的可解釋性能力增強到最先進的神經預測算法中,并在短期電價預測任務中展示了其應用。其次,我們通過一種新穎的受小波啟發的算法,在長期預測設置中提高神經預測的泛化和計算效率,該算法按順序組裝其預測,強調具有不同頻率和尺度的組件。第三,我們通過增強神經預測架構,使用一種專門的概率混合物,能夠在其構造中融入聚合約束,來解決分層預測任務,這是一個具有線性聚合約束的回歸問題。我們的方法在每個考慮的領域中都提高了現有技術的最高水平。
時間序列預測問題涉及到許多領域,從金融和經濟到健康保健分析。隨著數據生成的增加,預測需求已從需要預測少量時間序列演變為預測數千甚至數百萬個時間序列。從數據中提取可推廣的統計模式一直是生成預測的最可靠方法。這就是為什么機器學習已經成為了這項任務最成功的方法之一。在大數據環境下,深度學習(LeCun等人,2015)因為其在最近的預測競賽中的成功(Makridakis等人,2020a;Makridakis等人,2021)而變得越來越受歡迎,其已經改變了現有的最高水平。深度學習的優點包括:1.預測準確性:全局模型同時適應相關時間序列的歷史數據,允許其在它們之間分享信息;這有助于訓練高參數化和靈活的模型,這通常會轉化為更準確的預測,這種技術被稱為交叉學習(Makridakis等人,2020a)。相比于經典方法,該模型能夠為幾乎沒有歷史數據的項目提供預測。2.預測流程的簡化:深度學習框架能夠自動化數據集的特征化,同時其表示具有更長的記憶。使用全局模型大大簡化了數據管道,并使過程更高效。雖然訓練時間比其他方法更長,但深度學習技術在數據特征化過程中能夠補償這一點,這通常非常快。已經嘗試了許多方法和想法進行預測,成功程度各不相同。不同的算法有其優點和缺點,復雜性不同,發展機會和挑戰也不同。機器學習有巨大的潛力來提升預測系統,然而一些限制阻礙了其采用,其中我們認為最主要的是缺乏可解釋性,處理大量數據或長期預測時的計算可擴展性。受到機器學習預測系統的可解釋性和計算成本限制的驅動,在這篇論文中,我們以以下問題為指導進行工作:能否將經濟計量學和統計創新結合起來,以提高基于機器學習的預測的可用性、有用性和現實世界的影響?
隨著機器學習模型在各種應用中的部署越來越頻繁,我們越來越需要更好地理解、交互和調節它們的行為。解釋性機器學習是一個致力于這一需求的研究領域,其主要焦點最初在滿足有利于揭示有關模型預測的可能有用信息的算法屬性的方法論發展。然而,批評也強調了需要更為嚴謹地評估這些方法在不同用戶的具體任務中的應用。在這篇論文中,我們對該領域的方法論和應用方面做出了我們個人的貢獻。在方法論上,我們提出了一種有效的算法,通過影響力大的訓練數據點提供關于模型行為的重要信息。然后,我們提出了一種理論框架,以理解模型在性能和公平性指標上的權衡。接下來,從應用驅動的角度,我們討論了一個評估框架,測試現有的圖像顯著性方法是否適用于實際的假相關檢測任務。最后,受到學術同行評審中實際問題的啟發,我們展示了我們對新的和現有的方法在幫助人類用戶進行文檔匹配任務方面的效用的發現。
在計算機視覺和自然語言處理等實踐領域表現出色的復雜機器學習模型,越來越多地被用來協助人類進行高風險的決策,如醫療、金融、法律和社會應用。這種加速的采用使得人類用戶越來越需要更好地理解、調節和與這些模型交互。解釋性機器學習是一個致力于這一需求的廣泛研究領域。許多文獻中的工作側重于方法論的發展:開發新的滿足各種技術目標的方法,可以有效地從一個黑盒機器學習模型中引出重要和有用的信息。然而,這些方法使用的各種技術目標與引出的信息的實際“重要性”或“有用性”沒有明確的聯系,這本質上依賴于用戶使用信息進行某些下游任務。因此,基于具體應用對開發的方法進行評估,對于完全閉環開發具有實用價值的新方法至關重要。在這篇論文中,我們提出了對這個領域的方法論和應用重點方面的個人貢獻。
生物過程的基本理解是現代醫學和技術的主要支柱之一。生物機制是復雜的隨機系統,盡管經過了幾個世紀的嚴格科學研究,但我們對其仍知之甚少。近年來,機器學習(ML)已成為識別復雜數據集中感興趣模式的強大框架。然而,在生命科學的廣泛背景下,這類方法的影響仍然有限**。本研究旨在優化機器學習的實用性,加速基本生物問題的研究**。首先,我們提出從孤立的數據策劃轉向大規模多用途隊列的范式轉變,即使在人類實驗最嚴格的情況下也是如此。通過Brain TreeBank(一種與顱內神經記錄對齊的自然語言多模態數據集)揭示了這種方法的潛力。TreeBank提供了探測語言環境依賴性和大腦中表征的時空動態所需的分辨率和廣度。其次,我們主張機器學習可解釋性對加速生物學理解的重要性。我們開發了一種可解釋的通用工具,用于在多個分辨率下建模離散隨機過程并估計輸出確定性。我們通過在整個癌癥基因組中建模體細胞突變模式來展示該方法的實用性,并將其擴展到37種癌癥的突變率圖譜。該方法的置信區間和增加的敏感性確定了可能驅動編碼和非編碼區基因組癌癥生長的突變集。總之,這項研究展示了計算方法如何克服生物數據中獨特的挑戰以及生物問題如何推動計算方法的發展。
近年來,機器人領域發展迅速,機器人被用于越來越多的應用中,從制造業到醫療健康再到家務勞動。機器人技術的關鍵挑戰之一是使機器人能夠在非結構化和動態環境中執行復雜的操作任務。雖然機器人學習和控制已經取得了重大進展,但許多現有方法受到限制,因為它們依賴于預定義的運動基元或通用模型,而這些模型沒有考慮到個人用戶、其他合作智能體或交互對象的特定特征。為了在這些不同的環境中有效地工作,機器人需要能夠適應不同的任務和環境,并與不同類型的智能體進行交互,如人類和其他機器人。本論文研究學習方法,使機器人能夠適應他們的行為,以實現智能機器人行為。
在本文的第一部分中,我們專注于使機器人更好地適應人類。我們首先探索如何利用不同的數據源為人類用戶實現個性化。研究了人類如何喜歡用低維控制器(如操縱桿)遙控輔助機器人手臂。本文提出一種算法,可以有效地開發輔助機器人的個性化控制。這里的數據是通過最初演示機器人的行為,然后詢問用戶以從操縱桿收集他們相應的首選遙操作控制輸入來獲得的。探索了利用較弱的信號來推斷智能體的信息,如物理修正。實驗結果表明,人工修正是相互關聯的,共同推理這些修正可以提高精度。最后,研究了機器人如何通過推理和利用團隊結構更有效地與人類團隊合作和影響人類團隊,而不是只適應單個人類用戶。將該框架應用于兩種類型的群體動力學,即領導-跟隨和捕食者-被捕食者,并證明機器人可以首先開發一種群體表示,并利用這種表示成功地影響一個群體以實現各種目標。
在本文的第二部分,我們將研究范圍從人類用戶擴展到機器人智能體。本文解決了分散的機器人團隊如何通過只觀察其他智能體的行動來相互適應的問題。本文發現了團隊中存在無限推理循環的問題,并通過為機器人智能體分配不同的角色,如"發言人"和"聽眾",提出了解決方案。這種方法使我們能夠將觀察到的行動視為一個溝通渠道,從而實現分散團隊內的有效協作。在本文的第三部分,我們探討了如何通過開發定制的工具來適應不同的任務。強調了工具在確定機器人如何與物體交互方面的關鍵作用,使它們在為特定任務定制機器人方面變得重要。為解決這個問題,本文提出一個端到端的框架,通過利用可微物理模擬器來自動學習富接觸操作任務的工具形態學。最后,對全文進行了總結,并對未來的研究方向進行了展望。
在大型標注數據集上訓練的強大機器學習(ML)模型,推動了自然語言處理和計算機視覺等領域的令人印象深刻的進步。反過來,這些發展導致了ML在醫療健康、電子商務和預測性維護等領域的有效應用。然而,獲得訓練高容量機器學習模型所需的標注數據集,往往是機器學習有前途應用的瓶頸。本文研究了獲取領域知識的替代途徑,并開發了從弱監督中學習的方法,即不完美的和間接的監督形式。我將介紹三種形式的弱監督:成對聯動反饋、程序化弱監督和成對多模態數據。這些形式的信息通常很容易大規模獲取,我開發的方法減少了——在某些情況下消除了——對點真實感注釋的需要。我首先研究了成對監督的效用。我介紹了一種新的約束聚類方法,它使用少量的成對約束來同時學習核和聚類數據。該方法在大量多樣的公開數據集上優于相關方法。接下來,將不完全成對監督引入程序化弱監督標簽模型。我根據經驗表明,僅一個弱成對反饋源就可以顯著提高下游性能。通過引入與弱標簽相協調的輸入分布建模方法,進一步研究了程序化數據標記方法。本文首先介紹了一個框架,在觀察到的弱標簽的基礎上聯合學習標簽和端模型,顯示了端模型在下游測試集上的性能比之前的工作有所改進。接下來,介紹一種融合生成式對抗網絡和程序化弱監督標簽模型的方法,以使兩者都受益,由標簽模型性能和數據生成質量衡量。在本文的最后一部分,我解決了程序性弱監督的一個核心挑戰:專家需要提供標簽規則。首先,介紹了一個交互式學習框架,幫助用戶發現弱監督源,以高效的方式捕獲應用領域領域專家的知識。然后,我通過直接從非結構化自然語言描述中學習來研究完全省去標記功能的機會。特別是,我研究了如何將生物醫學文本與圖像配對用于自監督視覺-語言處理,產生數據高效的表示并實現零樣本分類,而不需要專家定義文本或圖像的規則。這些工作提供了新的方法和框架,以在機器學習模型中更有效地編碼和使用專家領域知識,減少了因需要手工真實注釋而產生的瓶頸。
//www.ri.cmu.edu/publications/learning-with-diverse-forms-of-imperfect-and-indirect-supervision/
機器學習被廣泛應用于各種不同的學科,以開發感興趣的變量的預測模型。然而,構建這樣的解決方案是一個耗時且具有挑戰性的學科,需要經過高度訓練的數據科學家和領域專家。作為回應,自動化機器學習(AutoML)領域旨在通過自動化減少人工工作量并加快開發周期。由于超參數在機器學習算法中無處不在,以及調優的超參數配置可以對預測性能產生影響,超參數優化是AutoML的一個核心問題。最近,深度學習的興起推動了神經架構搜索(NAS),這是一個專注于自動化神經網絡設計的超參數優化問題的專門實例。對于大規模調優問題,網格搜索和隨機搜索等簡單的超參數優化方法在計算上是難以處理的。因此,本文的重點是開發高效和有原則的超參數優化和NAS方法。
**在回答以下問題方面取得了進展,目的是開發更高效和有效的自動化機器學習算法。**1. 超參數優化(a)我們如何有效地使用早期停止來加速超參數優化?(b)如何利用并行計算來執行超參數優化,同時在順序設置中訓練單個模型所需的時間?(c)對于多階段機器學習管道,我們如何利用搜索空間的結構來減少總計算成本?
鑒于這些問題,本文分為兩個部分。第一部分側重于通過解決1a, 1b和1c問題在高效超參數優化方面取得的進展。第二部分側重于通過解決問題2a, 2b和2c,在理解和改進神經架構搜索的權重共享方面取得的進展。
利用有限的數據進行學習是深度學習的最大問題之一。目前,解決這個問題的流行方法是在大量數據上訓練模型,無論是否標記,然后在同一模態的感興趣的較小數據集上重新訓練模型。直觀地說,這種技術允許模型首先學習某種數據(如圖像)的一般表示。然后,學習這種特定模態的特定任務應該需要更少的數據。雖然這種被稱為“遷移學習”的方法在計算機視覺或自然語言處理等領域非常有效,但它不能解決深度學習的常見問題,如模型可解釋性或對數據的總體需求。本文探索了在數據約束設置中學習表達模型問題的不同答案。我們不再依賴大數據集來學習神經網絡的參數,而是用反映數據結構的已知函數來代替其中的一些參數。這些函數通常都是從內核方法的豐富文獻中提取出來的。實際上,許多核函數都可以解釋,并且/或允許使用少量數據進行學習。所提出方法屬于"歸納偏差"的范疇,可以定義為對手頭數據的假設,限制了學習過程中模型探索的空間。在本文的前兩章中,我們在序列(如自然語言中的句子或蛋白質序列)和圖(如分子)的上下文中證明了該方法的有效性。本文還強調了工作與深度學習最新進展之間的關系。本文的最后一章重點研究凸機器學習模型。這里,我們不是提出新的模型,而是想知道學習一個“好的”模型真正需要數據集中的哪些樣本比例。更準確地說,研究了安全樣本篩選的問題,即在擬合機器學習模型之前,執行簡單測試以丟棄數據集中沒有信息的樣本,而不影響最優模型。此類技術可用于壓縮數據集或挖掘稀有樣本。
魯棒的、通用的機器人可以在半結構化環境中自主地操縱物體,可以為社會帶來物質利益。通過識別和利用半結構化環境中的模式,數據驅動的學習方法對于實現這種系統至關重要,使機器人能夠在最少的人類監督下適應新的場景。然而,盡管在機器人操作的學習方面有大量的工作,但在機器人能夠廣泛應用于現實世界之前,仍有很大的差距。為了實現這一目標,本文解決了三個特殊的挑戰:半結構化環境中的感知、適應新場景的操作以及對不同技能和任務的靈活規劃。在討論的方法中,一個共同的主題是通過將“結構”,或特定于機器人操作的先驗,合并到學習算法的設計和實現中,實現高效和一般化的學習。本文的工作遵循上述三個挑戰。
我們首先在基于視覺的感知難以實現的場景中利用基于接觸的感知。在一項工作中,我們利用接觸反饋來跟蹤靈巧操作過程中手持物體的姿態。另一方面,我們學習定位機器人手臂表面的接觸,以實現全臂感知。接下來,我們將探討針對基于模型和無模型技能的新對象和環境調整操作。我們展示了學習面向任務的交互式感知如何通過識別相關動態參數來提高下游基于模型的技能的性能。本文還展示了如何使用以對象為中心的行動空間,使無模型技能的深度強化學習更有效和可泛化。
探索了靈活的規劃方法,以利用低水平技能完成更復雜的操縱任務。我們開發了一個基于搜索的任務計劃,通過學習技能水平動態模型,放松了之前工作中關于技能和任務表示的假設。該計劃器隨后應用于后續工作中,使用混合力-速度控制器的已知前提條件來執行多步接觸豐富的操作任務。我們還探索了用自然語言描述的更靈活的任務的規劃,使用代碼作為結構化的動作空間。這是通過提示大型語言模型直接將自然語言任務指令映射到機器人策略代碼來實現的,策略代碼協調現有的機器人感知和技能庫來完成任務。
近年來,深度學習已經將自己定位為機器學習最有前途的方向之一。然而,深度神經網絡在不確定性估計、模型選擇、先驗知識的整合等方面存在許多不足。幸運的是,所有這些問題都可以在貝葉斯深度學習框架內克服,使用貝葉斯神經網絡、變分自編碼器或深度神經網絡高斯過程等模型。不幸的是,這需要使用近似推理過程和先驗分布的規范。在這篇論文中,我們展示了這些模型中先驗規范不僅僅是一個麻煩,而是一個寶貴的機會,可以將領域知識和歸納偏見加入到學習算法中,從而提升全新應用的性能。為此,我們對相關文獻進行了全面的回顧,并進一步貢獻了不同的原創研究成果。
具體地說,我們證明了變分自編碼器中的高斯過程先驗可以改進時間序列的表示學習,并允許對缺失數據進行有效的插補,同時還可以提供校準的不確定性估計。我們還表明,通過使用變分高斯-馬爾可夫過程,這是可能的,在沒有顯著的額外計算成本。此外,我們表明,在變分自編碼器中使用自組織映射作為結構歸納偏差,可以提高學習表示的可解釋性,并使有效的潛在聚類。這些聚類表示可以作為潛在時間序列模型的輸入,從而準確地預測未來的狀態。在貝葉斯神經網絡中,我們證明了常用的各向同性高斯先驗不僅會導致次優性能,而且在某些情況下還會產生所謂的冷后驗效應,即經過緩和的后驗比真正的貝葉斯后驗表現更好。相反,我們提出了具有重尾性和空間相關性的備選先驗,可以提高性能,緩解冷后驗效應。最后,當沒有先驗知識可用時,我們表明先驗分布可以在元學習環境中從相關任務中學習。在深度神經網絡高斯過程的情況下,我們表明元學習的均值函數和核函數的先驗改進預測性能和不確定性估計。
我們希望本文將為貝葉斯深度學習框架奠定基礎,在該框架中,先驗分布的選擇將被視為建模任務的關鍵部分,手工設計和元學習的先驗將在任務之間自由共享,以實現貝葉斯深度學習。
//www.research-collection.ethz.ch/handle/20.500.11850/523269