近年來,隨著人工智能技術的發展,更多數據被利用,數據驅動的端到端閑聊機器人技術得到快速發展,受到了學術界和工業界的廣泛關注。但是對于閑聊機器人的評價,現在沒有標準的自動評價方法,而自動評價方法對于閑聊機器人對話效果的評估及閑聊機器人的快速迭代是十分重要的。該文綜述了基于生成模型的閑聊機器人的自動評價方法。首先介紹了自動評價方法的研究背景及研究現狀,然后介紹了對閑聊機器人的基本能力—生成合理的回復進行評價的自動評價方法,并指出了每類方法的優缺點及進一步發展的方向,其次對評價閑聊機器人的擴展能力的自動評價方法進行了介紹,擴展能力包括生成多樣的回復、對話具有特定的個性、對話具有情感和對話主題具有深度和廣度等。隨后闡述了評價閑聊機器人綜合能力的評價方法,并討論了發展綜合自動評價方法的方向,同時還介紹了如何評價自動評價方法。最后進行了分析與總結,指出研究自動評價方法的困難與挑戰,并對未來發展進行了展望。
精準地預判網絡流量變化趨勢可以幫助運營商準確預估網絡的使用情況,合理分配并高效利用網絡資源,以滿足日益增長且多樣化的用戶需求。以深度學習算法在網絡流量預測領域的進展為線索,闡述了網絡流量預測的評價指標和目前公開的網絡流量數據集及應用,具體分析了網絡流量預測中常用的深度信念網絡、卷積神經網絡、循環神經網絡和長短時記憶網絡共四種深度學習方法,并重點介紹了近年來針對不同問題所提出的改進神經網絡模型,總結了各模型特點及應用場景。最后對網絡流量預測未來發展進行了展望。
自然語言生成(NLG)技術利用人工智能和語言學的方法來自動地生成可理解的自然語言文本。NLG降低了人類和計算機之間溝通的難度,被廣泛應用于機器新聞寫作、聊天機器人等領域,已經成為人工智能的研究熱點之一。首先,列舉了當前主流的NLG的方法和模型,并詳細對比了這些方法和模型的優缺點;然后,分別針對文本到文本、數據到文本和圖像到文本等三種NLG技術,總結并分析了應用領域、存在的問題和當前的研究進展;進而,闡述了上述生成技術的常用評價方法及其適用范圍;最后,給出了當前NLG技術的發展趨勢和研究難點。
因果關系抽取是自然語言處理(NLP)中的一種關系抽取任務,它通過構造事件圖來挖掘文本中具有因果關系的事件對,已經在金融、安全、生物等領域的應用中發揮重要作用。首先,介紹了事件抽取和因果關系等概念,并介紹了因果關系抽取主流方法的演變和常用數據集;然后,列舉了當前主流的因果關系抽取模型,并且在分別對基于流水線的模型和聯合抽取模型進行詳細分析的基礎上,對比了各種方法和模型的優缺點;此外,對各模型的實驗性能及相關實驗數據進行了歸納分析;最后,給出了當前的因果關系抽取的研究難點和未來的重點研究方向。
對話系統作為人機交互的重要方式,有著廣泛的應用前景。現有的對話系統專注于解決語義一致性和內容豐富性等問題,對于提高人機交互以及產生人機共鳴方向的研究關注度不高。如何讓生成的語句在具有語義相關性的基礎上更自然地與用戶交流是當前對話系統面臨的主要問題之一。首先對對話系統進行了整體情況的概括。接著介紹了情感對話系統中的對話情緒感知和情感對話生成兩大任務,并分別調研歸納了相關方法。對話情緒感知任務大致分為基于上下文和基于用戶信息兩類方法。情感對話生成的方法包括規則匹配算法、指定情感回復的生成模型和不指定情感回復的生成模型,并從情緒數據類別和模型方法等方面進行了對比分析。然后總結整理了兩大任務下數據集的特點和鏈接便于后續的研究,并歸納了當前情感對話系統中不同的評估方法。最后對情感對話系統的工作進行了總結和展望。
面對人工標注大量樣本費時費力,一些稀有類別樣本難于獲取等問題,零樣本圖像分類成為計算機視覺領域的一個研究熱點。首先,對零樣本學習,包括直推式零樣本學習和歸納式零樣本學習進行了簡單介紹;其次,重點介紹了基于空間嵌入零樣本圖像分類方法和基于生成模型零樣本圖像分類方法以及它們的子類方法,并對這些方法的機制、優缺點和適用場景等進行了分析和總結;然后,簡單介紹了零樣本圖像分類常用數據集和評估方法,并對典型零樣本圖像分類方法進行了性能比較;接著,指出了現有零樣本圖像分類中存在的領域漂移、樞紐點和語義鴻溝等問題及相應的解決思路;最后,對零樣本圖像分類未來發展趨勢和研究熱點,如判別性區域的準確定位、生成高質量不可見類視覺特征、廣義零樣本圖像分類等進行了探討。
行人檢測技術在智能交通系統,智能安防監控等領域表現出了極高的應用價值,已經成為計算機視覺領域的重要研究方向之一。得益于深度學習的飛速發展,基于深度卷積神經網絡的通用目標檢測模型被不斷擴展應用到行人檢測領域,并取得了良好的性能。但是由于行人目標內在的特殊性、復雜性,特別是考慮到復雜場景下的行人遮擋、尺度變化等問題,深度學習方法也面臨著嚴峻的挑戰。本文針對上述問題,以基于深度學習的行人檢測技術為研究對象,在充分調研文獻的基礎上,分別從基于錨點框、基于無錨點框以及通用技術改進(例如損失函數,非極大值抑制等)三個角度,對各類行人檢測算法進行細分,并選取具有代表性的方法進行詳細介紹和對比分析。此外,本文對行人檢測的通用數據集進行了詳細的介紹,對該領域先進算法的性能進行了對比分析,對行人檢測中待解決的問題與未來的研究方向做出預測和展望。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2020&journal_id=jig
摘要 在線社交網絡中的消息流行度預測研究,對推薦、廣告、檢索等應用場景都具有非常重要的作用。近年來,深度學習的蓬勃發展和消息傳播數據的積累,為基于深度學習的流行度預測研究提供了堅實的發展基礎。現有的流行度預測研究綜述,主要是圍繞傳統的流行度預測方法展開的,而基于深度學習的流行度預測方法目前仍未得到系統性地歸納和梳理,不利于流行度預測領域的持續發展。鑒于此,該文重點論述和分析現有的基于深度學習的流行度預測相關研究,對近年來基于深度學習的流行度預測研究進行了歸納梳理,將其分為基于深度表示和基于深度融合的流行度預測方法,并對該研究方向的發展現狀和未來趨勢進行了分析展望。
摘要 深度學習研究發展至今已可以勝任各類識別、分類、生成任務,但是對于不同的任務,神經網絡的結構或參數不可能只是微小的變化,依然需要專家進行調整.在這樣的情況下,自動化地調整神經網絡的結構或參數成為研究熱點.其中,以達爾文自然進化論為靈感的神經進化成為主要優化方法.利用神經進化優化的深度學習模型以種群為基礎,通過突變、重組等操作進化,可實現自動地、逐步地構建神經網絡并最終選擇出性能最優的深度學習模型. 本文簡述了神經進化與進化計算;詳細概述了各類基于神經進化的深度學習模型;分析了各類模型的性能;總結了神經進化與深度學習融合的前景并探討下一步的研究方向.
數據融合是最大程度發揮大數據價值的關鍵,深度學習是挖掘數據深層特征信息的技術利器,基于深度學習的數據融合能夠充分挖掘大數據潛在價值,從新的深度和廣度拓展對世界的探索和認識。本文綜述了近幾年基于深度學習的數據融合方法的相關文獻,以此了解深度學習在數據融合中應用所具有的優勢。首先,分類闡述常見的數據融合方法,同時指出這些方法的優點和不足;接著,從基于深度學習特征提取的數據融合方法、基于深度學習融合的數據融合方法、基于深度學習全過程的數據融合方法三個方面對基于深度學習的數據融合方法進行分析,并做了對比研究與總結;最后,總結全文,討論了深度學習在數據融合中應用的難點和未來需要進一步研究的問題。
人機對話系統能夠讓機器通過人類語言與人進行交互,是人工智能領域的一項重要工作。因其在虛擬助手和社交聊天機器人等領域的商業價值而廣受工業界和學術界的關注。近年來,互聯網社交數據快速增長促進了數據驅動的開放領域對話系統研究,尤其是將深度學習技術應用到其中取得了突破性進展。基于深度學習的開放領域對話系統使用海量社交對話數據,通過檢索或者生成的方法建立對話模型學習對話模式。將深度學習融入檢索式系統中研究提高對話匹配模型的效果,將深度學習融入生成式系統中構建更高質量的生成模型,成為了基于深度學習的開放領域對話系統的主要任務。本文對近幾年基于深度學習的開放領域對話系統研究進展進行綜述,梳理、比較和分析主要方法,整理其中的關鍵問題和已有解決方案,總結評測指標,展望未來研究趨勢。