亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

不確定性是混合沖突的一個核心概念。許多混合沖突是隱蔽的、可否認的,并在正常的國家間關系和武裝沖突之間的灰色地帶進行。此外,混合沖突的信號可能來自于在很長一段時間內收集的大量公開和秘密來源,并且具有不同程度的可靠性。這些因素加在一起,對混合沖突的決策構成了重大挑戰。處理高層次的不確定性要求在情報分析和評估方面有創新的解決方案。在這方面,一個有希望的方法是對不確定性的明確估計。在這項研究中,我們借鑒了統計學、情報分析和人工智能的知識,提出了一種新的方法,并為量化和系統地估計不確定性開發了一個統計模型。該模型考慮了情報分析中不確定性的幾個重要因素:來源可靠性、信息可信度、概率語言和及時性。我們使用標記的和模擬的數據測試了我們的方法,并討論了使用人工智能和數據科學實現這一過程自動化的機會和挑戰。通過這樣做,這項研究向智能分析工具邁出了一步,以減輕混合沖突決策中的不確定性挑戰。

引言

不確定性是情報分析中的一個基本概念。幾乎所有的情報評估都應該用不確定性來表達。這是因為評估要么試圖從不完整的或往往是模糊的數據中做出推斷,要么試圖預測未來的事件(Mandel & Irwin, 2020)。混合沖突的幾個特點1增加了情報分析和評估的不確定性。許多混合沖突是隱蔽的、可否認的,并在正常的國家與國家之間的關系和武裝沖突之間的灰色地帶進行,導致新出現的威脅的信號很弱,而且往往不完整(Monaghan, Cullen & Wegge, 2019)。此外,混合沖突的信號可能來自于長期收集的大量公開和秘密來源,并具有不同的可靠性。這些問題因日益數字化而被放大,數字化導致了公開來源信息的爆炸性增長,而這些信息越來越容易被誤傳或假傳(Treverton, 2021)。

混合沖突的這些特點給情報分析人員帶來了一些挑戰:不確定性增加、模糊性、不可捉摸性、低于檢測閾值的活動、信息過載和數字來源的爆炸(Cullen,2018)。這些挑戰反過來又加劇了情報界對不確定性的系統和定量估計的呼吁。在混合沖突的情報分析中,需要創新方法來處理這些前所未有的不確定性和模糊性。這反過來將支持決策者制定應對復雜的混合威脅的政策。這些呼吁得到了實證研究的響應,實證研究顯示有可能減少分析偏差,改善合作,促進分析透明度,并為實現(半)自動化的情報分析過程鋪平道路(TR-SAS-114,2020)。

盡管各國情報組織之間存在定性標準,并且已經提出了改進不確定性估計的方法,但據我們所知,沒有任何情報組織采用系統的不確定性估計方法(Friedman & Zeckhauser, 2012)。換句話說,不確定性的估計或多或少地隱含在 "分析者的頭腦中"。此外,不確定性最常以定性方式(如 "極有可能")而非定量方式(如 "75%可能")來表達。盡管對不確定性的量化存在一些不情愿的態度--擔心涉及到對 "最佳估計 "的判斷的虛幻的具體感(有 "硬數字")--數值有可能緩解語言障礙,解決不確定性詞匯中的語義差異,并鼓勵分析者的責任感(Dhami & Mandel, 2020)。

這項研究試圖解決這些差距,并提出一種系統地、定量地估計和表達不確定性的方法。這項工作的新穎之處在于,它提出并測試了一種從情報報告本身提取不確定性信息的方法,而不是嚴重依賴分析員的判斷(例如,Lesot, Pichon & Delavallade, 2013;Schum & Morris, 2007)。因此,我們的方法也旨在對不確定性進行更客觀和可重復的估計。另一個主要貢獻是,我們考慮了這個過程自動化的步驟、機會和挑戰(使用數據科學和人工智能的技術)。畢竟,系統地手工估計不確定性將極大地增加分析者的工作量。通過這樣做,這項工作向更快、更系統、更客觀的不確定性判斷邁出了一步,減輕了混合沖突中決策支持的挑戰。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

摘要

在 2016 年人工智能促進協會 (AI) 發表的講話中,當時的協會主席呼吁 AI 為了魯棒性而犧牲一些最優性 [1]。對于 AI,魯棒性描述了系統在各種情況下保持其性能水平的能力 [5]。通過機器學習開發和驗證高質量模型面臨著特殊的挑戰。一般公認的大多數人工智能需要魯棒的原因包括:

? 訓練和運行數據的不確定性;

? 輸入來自不同訓練集,但在統計上或語義上與訓練群體一致;

? 訓練群體之外的輸入;

? 用有限的數據學習;

? 面對新穎的情況,需要不同于學習策略和分類器的開發方式;

? 對抗性行動。

此外,對于人類 AI 協作團隊,人類必須適當地信任 AI 系統;因此,透明度也可以被視為魯棒性問題。混合戰爭為人工智能的魯棒性帶來了額外的挑戰。決策的不同性質和必要的決策支持擴大了所需模型的范圍。在不同條件下開發的模型組合使用會影響可以對復合系統質量做出的統計聲明。

如果我們需要魯棒性,我們必須考慮它的度量。對與上述條件相關的魯棒性研究的調查,提供了一系列可能的措施。北約聯盟實施的混合戰爭需要了解所使用能力的魯棒性。在本文中,我們從當前文獻中調查了魯棒性度量的前景。在這樣做的過程中,我們有助于了解聯盟內部各種模型和軟件的組合。

1 引言

現代混合戰爭不僅包括傳統戰爭,還包括政治和網絡戰爭(以及其他),其越來越依賴人工智能 (AI) 在日益復雜的環境中執行任務。許多現代 AI 實現都是使用機器學習 (ML) 技術構建的,使用數據旨在來表示預期的情況。這意味著:

? 大多數當前的 AI 構建塊都是為特定目的而構建的,雖然旨在泛化以支持現實世界的輸入,但并不總是能夠處理不熟悉的情況(輸入)。它們是“黑盒”設計,可以實時或近乎實時地執行復雜的決策或環境解釋(分類),但通常只能為已知輸入產生可靠的答案。

? 如果提供以前從未見過的信息或通過人類可能察覺不到的攻擊,人工智能構建塊通常很容易被愚弄和混淆。

從本質上講,我們正在處理的是一個易受影響的問題:現代 ML 解決方案,實際上還有其他 AI 解決方案,本質上很容易被他們不熟悉的數據所欺騙 [2] [3]。例如,這使得依賴于它們的指揮和控制 (C2) 決策樹邏輯容易發生故障。當然,我們想知道如何通過確保利用人工智能的 C2 對故障具有魯棒性來保護自己免受此類漏洞的影響。

總結:

? 許多機器學習方法天生就容易受到環境變化和攻擊的影響;

? 因此,依賴機器學習(主要基于神經網絡(NN))的人工智能系統本質上是脆弱的;

? 因此,必須使依賴人工智能的混合戰爭變得強大。

1.1 魯棒性

ML 方法的訓練和運行都基于以下幾個方面:(1)輸入數據,(2)內部結構,以及(3)學習算法。機器學習的脆弱性可能是由許多因素造成的。出于本文的目的,我們假設網絡內部結構是靜態的、足夠強大且安全的,雖然還有許多其他因素,但我們考慮了兩個主要方面:(a) 訓練數據不佳,(b) 以前未使用的業務數據。因此,我們的重點是 ML 解決方案的輸入數據。

天真地,我們假設 ML 方法(尤其是 NN)是使用高質量(“好”)輸入數據訓練的:在運行期間可能期望 選擇性表示AI 處理的輸入范圍。這個想法是,在運行過程中,人工智能可以為運行數據產生“正確”的決策,這些決策與訓練它的數據相似。換句話說,人工智能必須能夠進行插值,并且在某種程度上還可以推斷其原理。

在最壞的情況下,糟糕的訓練數據會導致訓練出不符合目的的機器學習模型,或者在最好的情況下會導致生成“愚蠢”的模型;也就是說,只能做出具有高度不確定性的模糊決定。然而,在數據質量范圍的另一端也存在危險,因為雖然“好的”訓練數據可能會產生一個可以做出非常準確的決策的模型,但它可能只能使用窄范圍的輸入數據來做到這一點。當然,我們希望機器學習既能滿足其性能要求,又能適應它最初沒有訓練過的新環境;即能夠處理新穎事物場景。

因此,ML 的一個重要目標是構建一種泛化良好的能力。在狹窄的應用程序中,我們希望確保在環境樣本上訓練過的模型能夠像宣傳的那樣在整個環境中工作。最終,我們希望人工智能面向復雜環境的處理能力,可針對所有現實,或者至少是人類感知的所有現實。從某種意義上說,這完全涵蓋了所有情況,沒有新的情況。如果我們觀察牛頓宇宙并且擁有巨大內存量,那么所有情況都可以從當前數據中預測出來。但是,由于我們對宇宙建模的能力受到嚴重限制,因此可能會經常出現新穎情況。在不可能為復雜環境訓練模型的前提下,當這些模型被引入現實世界時,模型應該能應對各種突發情況。

因此,表征模型的魯棒性具有挑戰性,需要考慮模型的不同方面的魯棒性。雖然有許多可用的魯棒性定義,但應區分用于傳統軟件魯棒性的定義,例如 IEEE 24765[4] 的定義,以及與 AI 模型相關的定義。本文中使用 ISO CD22989 [5] 中提供的定義:

魯棒性是“系統在任何情況下保持其性能水平的能力。魯棒性屬性表明系統有能力(或無能力)在新數據上具有與訓練它的數據或典型運行數據相當的性能。”

1.1.1 魯棒性度量

在定義了術語“魯棒性”之后,由于本文的重點是魯棒性度量,我們現在將定義術語“度量”,應用于魯棒性。為了在編寫定義時為我們的思考過程提供信息,確定度量魯棒性可能具有的各種目的以及利益相關者可能是誰,是有用的。由于魯棒性度量的目的和要求將取決于 ML 模型的生命周期階段,因此我們分析了生命周期階段的目的。

盡管許多 ML 模型將基于 NN,但我們的分析擴展到涵蓋 ML 類型和架構的不同變體,并指出 ML 的主要變體是:NN、決策樹和強化學習。

在 ML 模型設計和開發階段,開發人員將試驗模型設計并調整模型的架構和參數,以優化模型的性能。在這個階段,魯棒性度量的目的既可以是提供一種在進行這些更改時度量魯棒性改進的方法,也可以描述模型如何表現魯棒性。此外,不同模型的開發人員之間商定的度量標準將允許在模型設計之間進行可靠的比較。

在系統設計階段,在選擇現成的ML模型納入整個系統時,度量魯棒性將通過提供一種方法來比較一個模型與另一個模型的魯棒性水平和性質,從而為系統設計者提供關于模型選擇的決策信息。

在部署之前,安全從業人員將使用魯棒性度量來為包含 ML 的系統的安全風險評估提供信息。具體來說,該度量將為 ML 模型的漏洞分析提供信息,若該模型具有低魯棒性,則表示攻擊者可以利用漏洞。

最后,在部署階段,從單個 ML 組件的魯棒性度量中得出的整體系統魯棒性度量,將支持最終用戶對系統輸出或行為的信任和信心。

鑒于上述使用范圍和相關利益者,出于本文的目的,我們將有意保留術語“度量”的寬泛定義。我們的定義超出了純粹的測量或量化行為,包括我們如何描述或表征 ML 在任何特定環境中的魯棒性。因此,我們將本文的其余部分基于以下定義:

魯棒性度量是 ML 模型在其生命周期中可能面臨的各種挑戰的魯棒性的度量或表征。特定度量的精確性質將取決于 ML 模型的類型、模型旨在完成的任務、以及模型所處生命周期的階段。

1.2 方法論和論文結構

在考慮魯棒性度量時,我們通過提出“面對……什么的魯棒性?”這個問題開始分析。這生成了一個 ML 模型可能面臨的情況列表,在這些情況下,它們的魯棒性可能會受到挑戰。我們稱這些為“面對”條件。

? 訓練和運行數據的不確定性;

? 不同于訓練集的輸入,但在統計上或語義上與訓練群體一致;

? 訓練群體之外的輸入;

? 用有限的數據學習;

? 新穎的情況,不同于學習策略和分類器的開發方式;

? 對抗性行動;

我們的文獻檢索提供了許多關于魯棒性的先前研究,對于每一項,我們都試圖確定它們適合哪些類別。雖然這并不總是顯而易見的,但它似乎代表了一種構建分析合乎邏輯的方式。因此,在以下段落中,我們嘗試以這種方式對文獻檢索中的單個研究進行分類。

對于每個類別,我們描述了每個魯棒性挑戰的性質和細節,然后是用于度量魯棒性的度量指標類型。盡管本文中對魯棒性的審查不包括混合戰爭示例,但所討論的內容適用于混合戰爭方法。

2 挑戰和度量方法

2.1 訓練和運行數據的不確定性

能夠處理訓練和運行數據中的不確定性對于 AI 來說至關重要,它代表了當前 ML 系統的關鍵組成部分,尤其是那些在軍事領域等危急情況下使用的系統。

2.1.1 挑戰

在 ML 中,目標是在給定的成本函數情況下,學習最適合訓練數據的模型參數。然后,部署該模型以獲取對新數據和未見過數據的預測。作為訓練過程的結果,任何學習模型都帶有不確定性,因為它的泛化能力必然基于歸納過程,即用數據生成過程的一般模型替換特定觀察[6]。盡管研究界做出了許多努力,但沒有任何現有的 ML 模型被證明是正確的,因為任何可能的實驗都嚴重依賴于假設,因此當受到以前未見的輸入數據影響時,每個當前的 ML 模型輸出仍然是不確定的。

不確定性在統計領域有著悠久的歷史,從一開始,它就經常被聯系起來并被視為一個類似于標準概率和概率預測的概念。然而,在最近,由于當前對 ML 的炒作以及如今基于此類解決方案的系統正在控制我們的日常生活,研究界對此類概念的興趣越來越大。這首先是出于安全要求,為此需要新的方法來應對。

在現有文獻中討論 ML 不確定性的不同方法中,可以根據所考慮的不確定性類型對它們進行聚類。當前的大多數作品都解決了偶然或認知不確定性。

2.1.1.1 偶然和認知不確定性

對 ML 中的不確定性進行建模的傳統方法是應用概率論。這種概率建模通常處理單個概率分布,因此忽略了區分偶然不確定性和認知不確定性的重要性 [7] [8]。

偶然不確定性:我們可以將其稱為統計不確定性,它源于實驗結果可變性的隨機性概念。簡而言之,當提到偶然不確定性時,我們隱含地指的是即使存在任何其他信息源也無法減少的不確定性。讓我們通過一個非常基本的例子來描述這一點:假設我們想要模擬拋硬幣的概率結果。我們可以定義一個概率模型,該模型能夠提供頭部或尾部的概率,但不能提供保證的結果。這種不確定性定義了總不確定性的不能復歸的部分。

認知不確定性:也稱為系統不確定性,這是由無知/缺乏知識決定的總不確定性的一部分。這種不確定性是由于機器學習系統的認知狀態造成的,并且可以通過附加信息來減少。例如,假設我們有一個 ML 模型學習一門新語言,并且給它一個新詞,它應該猜測它是指頭還是尾。智能體對正確答案的不確定性與預測拋硬幣時一樣不確定,但是通過在情況中包含額外信息(即提供同義詞或解釋單詞的正確含義),我們可以消除任何不確定性在答案中。因此應該很清楚,與偶然性相反,認知不確定性定義了總不確定性的可還原部分。

既然我們已經定義了偶然不確定性和認知不確定性,我們將考慮有監督的 ML 算法以及這兩種不同類型的不確定性如何在 ML 中表示。

在監督學習環境中,我們可以訪問由 n 個元組 (xi,yi) 組成的訓練集 D = {(x1,y1),…,(xn,yn)},其中 xi (屬于實例空間 X)是包含特征的第 i 個樣本 (即,測量值),而 yi 是來自可能結果集 Y 的相關目標變量。

在這種情況下,ML 算法具有三個不確定性來源:

? 偶然不確定性:通常,X 和 Y 之間的相關性不是確定性的。因此,對于給定的輸入 xi,我們可以有多個可能的結果。即使存在完整的信息,實際結果 yi 也存在不確定性。

? 模型不確定性:為解決給定問題而選擇的模型可能遠非最適合該任務的模型。這是由于模型的正確性和假設的正確性存在不確定性。

? 近似不確定性:通過優化過程學習的模型參數只是對真實假設的估計。這種估計是由于在學習過程中使用的數據缺乏保真度。

模型和近似不確定性都代表認知不確定性。

應該注意的是,對于 ML 算法,偶然不確定性和認知不確定性在很大程度上取決于環境。例如,通過允許學習過程改變最初定義的場景的可能性,可以減少偶然不確定性以支持認知不確定性;也就是說,原始環境中的偶然不確定性并沒有改變,而是通過改變環境而改變(類似于在擲硬幣的例子中加權硬幣的一側)。相反,如果我們考慮一個固定的初始場景,我們知道認知不確定性(即缺乏 ML 算法知識)取決于學習過程中使用的數據量(多少觀察)。由于訓練樣本的數量趨于無窮大,機器學習系統能夠完全降低逼近不確定性。

2.1.2 表示不確定性的機器學習方法

表示不確定性的不同 ML 方法具有不同的能力,可以根據以下內容進行聚類: (i) 表示不確定性的方式; (ii) 如果處理兩種類型的不確定性(偶然性和認知性)中的兩種或僅一種; (iii) 如果他們提供了任何可用于提供不確定性數量粗略估計的解決方案。

2.1.2.1 高斯過程

高斯過程 (GP) [9] 是一種用于監督學習的通用建模工具。它們可用于泛化多元隨機變量的貝葉斯推理和函數推理。在分類的情況下,GP 具有離散的結果,不確定性定義的困難在于知識的表示,然后將其識別為模型的認知不確定性,就像在貝葉斯方法中一樣。在回歸的情況下,可以將偶然不確定性(即誤差項的方差)與認知不確定性區分開來。

2.1.2.2 最大似然估計和Fisher信息數

在機器學習中,最大似然估計原理起著關鍵作用。事實上,如果一個模型可以“非常接近”似然函數的最大值,這意味著數據的微小變化可能對估計的影響有限。如果似然函數是平滑的,它可能是一個很好的指標,表明估計存在高度的不確定性,這可能是由于許多參數的配置具有相似的似然性。

在 ML 中,我們經常利用 Fisher 矩陣 [10] 來表示認知不確定性的數值 [11]。

2.1.2.3 生成模型

生成模型可用于量化認知不確定性。考慮到這些方法的概率性質,這些方法旨在模擬數據分布的密度,通過確定給定數據是否位于高密度或低密度區域,這些模型隱含地提供有關認知不確定性的信息。這一類別中最相關的工作是基于核密度估計或高斯混合,最近在深度自動編碼器方面取得了一些進展[12]。

密度估計是處理異常和異常值檢測方法的關鍵要素,后者只是一個分類問題,當樣本位于低密度區域時,它被認為是分布之外的問題。這樣的成果反而捕捉了偶然的不確定性。

一般來說,生成模型解決了一個非常具有挑戰性的問題,需要大量數據才能正常工作,并且通常具有很高的不確定性。

2.1.2.4 深度神經網絡

人工深度神經網絡 (DNN) 本質上是一個概率分類器,我們可以將訓練 DNN 的過程定義為執行最大似然推理。這導致模型能夠生成給定輸入數據的概率估計,但不能提供有關其概率置信度的詳細信息:捕獲了偶然的不確定性,而沒有捕獲認知。盡管如此,后者通常被稱為模型參數的不確定性。在文獻中,最近有一些作品 [13] [14] 試圖通過將貝葉斯擴展引入 DNN 來模擬這種認知不確定性。

2.1.2.5 模型集成

模型集成(Model Ensembles )模型類的常見示例是 bagging 或 boosting。這種方法非常受歡迎,因為它們可以通過產生一組預測而不是單個假設來顯著提高點預測的準確性[15]。可以包含在此類中的最相關的工作是隨機森林模型 [16]。此類別中的方法主要關注整體不確定性的任意部分。

2.1.2.6 Credal 集和分類器

Credal 集(Credal Sets)是一組概率分布,它是貝葉斯推理推廣的基礎,其中每個單一的先驗分布都被一個候選先驗的Credal 集所取代。作品 [17] [18] 研究如何定義Credal 集的不確定性以及相關表示,定義了存在于Credal 集中的兩種類型的不確定性:由于隨機性導致的“沖突”和“非特異性”。這些直接對應于任意和認知的不確定性;通常使用 Hartley 函數 [19] 作為標準不確定性度量; [20] 還定義了一種工具,可用于評估 ML 系統在面對訓練和操作數據的不確定性時的魯棒性。如果我們知道給定隨機變量的未知值在給定的有限集中,Hartley 函數可用于評估不確定性。此外,已經通過類似 Hartley [80] 和廣義 Hartley [81] 措施提出了對無限集的擴展。

2.2 與訓練集不同但在統計上或語義上與訓練群體一致的輸入

在運行期間,分類器為輸入數據的每個樣本分配一個類標簽。考慮到上述魯棒性的定義,類內可變性,即分配到同一類的所有樣本之間的可能變化,隱含地包含在用于學習分類器的訓練數據集中。

2.2.1 對語義數據變體的魯棒性

使用更具建設性的方法來定義魯棒性有助于更好地模擬用戶對分類器性能的期望。為此,如果分類器對于輸入數據的所有有意義的變體是不變的,我們將暫時稱其為魯棒分類器。顯然,所有有意義的變體的集合取決于應用場景,這通常很難描述。然而,對于許多分類問題,這種有意義的變體可以分為兩類:(i)物理修改(例如,噪聲添加、混合失真、裁剪、旋轉、縮放)和(ii) 輸入樣本的語義修改(例如發音的不同方式)。圖 1(1) 說明了手寫數字分類示例的這兩類可能變體。我們考慮書寫數字“9”的不同變體。而(如圖 1 所示)噪聲添加 (a) 和混雜失真 (b) 可被視為屬于第一類,第三類 (c) 在數字“9”上添加一個小弧線是有意義的(句法)變體,特別是不同國家的當地文化,它使符號(“九”)的語義保持不變。

圖 1 (1) 手寫數字 9 的可能數據變體,(2) 使用變分自動編碼器 (VAE) 重建的數字 3、8、9 的空間,該編碼器對來自 MNIST 語料庫的各個數字進行訓練,(3) 對應的潛在空間表示顏色編碼數字類型。

2.2.1.1 物理魯棒性

AI/ML 相對于第一類變體的魯棒性,尚未得到令人滿意的解決,但近年來已在相當程度上得到解決。在許多涉及對第一類變體的魯棒性的出版物中,基礎數據樣本被建模為歐幾里得向量空間中的向量。然后通過將范數有界向量添加到數據樣本來對失真進行建模。這里,通常使用 Lebesguetype 范數(lp norms)(特別是 l1、l2 和 l∞)。在一篇被廣泛引用的論文 [20] 中表明,這種 l2 范數有界的“對抗性攻擊”可用于在基于神經網絡的分類器中導致錯誤分類。隨后,在對抗性攻擊和相應的保護方法領域做了很多工作(本文稍后將進一步詳細討論)。結果表明,在許多情況下,攻擊很難檢測到,并且對于當時最先進的方法,可以繞過檢測 [21]。顯然,在這種情況下的魯棒性需要保護免受對抗性攻擊。在這種對抗性攻擊環境中定義魯棒性的許多方法可以在一個通用框架下捕獲,如 [22] 所示。

2.2.1.2 語義魯棒性

第二類,數據樣本的語義上有意義的變體,導致了迄今為止很大程度上尚未解決的重大挑戰。相應地,在[68]中,對所謂的感知擾動的魯棒性被稱為一個開放的研究問題。盡管現代基于 AI 的分類器,特別是深度神經網絡,在眾所周知的公共分類挑戰上取得了破紀錄的改進,但相比之下,它們的判別性自然不會導致分類結果的易解釋性。近年來,整個研究分支都集中在可解釋的 AI 上,即,研究通過給定分類器對映射到相同類別的樣本集進行形式化甚至語義化的方法。

理解分類器語義的一個重要方法是將成功的判別分類器與生成模型結合起來。生成方法的優點是可以使用這些模型生成來自原始(樣本)空間的示例。一種結合分類器和生成模型的成功方法是生成對抗網絡(GAN)[24]。

也可以適用于分類的生成模型是(變分)自動編碼器(VAE)[25]。自動編碼器的基本思想是通過訓練一個深度神經網絡來學習原始數據的緊湊表示,該網絡在兩端具有全維(相對于原始數據)層,中間有一個稀疏的“瓶頸”層。圖 1 (2) 和 (3) 說明了如何使用 VAE 來“理解”網絡學習的類別:(2) 顯示了一組具有代表性的重構,這些重構是由經過訓練的 VAE 的生成部分獲得的,用于對 MNIST 數據集的數字“3”、“8”和“9”進行分類。因此,在某種意義上,(2)總結了分類器準備識別的內容。在圖 1 的右側,(3)顯示了從 VAE 的分類器分支獲得的輸入樣本(即 MNIST 數字)的潛在空間表示。顏色對三個數字進行編碼。潛在空間點和重構樣本之間的對應關系如箭頭所示。在藍色中,繪制了將 9 的流形與其他數字分開的曲線,以指示學習的分類邊界。考慮到這個例子,我們注意到上述變體 (c) 在重建部分 (2) 中沒有很好地表示 - 考慮到語義庫受到北美書寫數字風格的偏見,這并不奇怪。因此,為了使分類器對變化 (c) 具有魯棒性,必須應用額外的措施,例如增加或添加到訓練數據中。

基于生成模型,Buzhinsky 等人[26] 提出了幾個指標來衡量分類器對“自然”對抗樣本的魯棒性。為此,他們提出了一組在潛在空間中工作的六個性能指標,并隨后顯示了上述經典對抗魯棒性和“潛在對抗魯棒性”之間的聯系,即對潛在空間擾動的魯棒性。后者的有趣之處在于,幾個示例的潛在空間擾動已被證明與原始樣本空間中語義上有意義的變體相對應。

我們注意到經典的對抗魯棒性已經可以用于獲得關于小范數有界擾動的人工智能分類器的“認證”魯棒性。然而,語義魯棒性更難以形式化,并且與正確理解和建模目標類密切相關。為此,生成模型是一個重要的工具。諸如投影信念網絡 (PBN) 等新概念,即基于前饋神經網絡結構的分層生成模型,具有易于處理的似然函數的優勢,在該領域非常有前景 [27]。

最近的一項工作 [75] 涉及一種稱為復雜事件處理的 ML 形式,其中融合了來自多個傳感器的具有空間和時間關系的多模態輸入,以允許深度學習模型推斷特定類型的事件,例如槍聲或爆炸。此類事件被稱為“復雜事件”。因此,魯棒性的概念并不適用于模型本身,而是適用于機器學習功能所包含的整個組件系統。該研究聲稱,(a)人類邏輯在基于模式和序列預定義復雜事件中與(b)來自單個傳感器的深度學習推斷相結合,提高了系統對錯誤分類的魯棒性。

2.3 訓練群體之外的輸入

在 [78]中,Ashmore 等人識別一組關于輸入域及其子集的定義:I 輸入域空間——模型可以接受的輸入集; O,運行域空間——模型在預期運行域中使用時可能預期接收的一組輸入; F,故障域空間——如果系統其他地方出現故障,模型可能接收到的一組輸入; A,對抗域空間——模型在被對手攻擊時可能收到的一組輸入;其中 O、F 和 A 都是 I 的子集。這些定義不僅在考慮訓練群體之外的輸入(可以從 O、F 或 A 中得出)時很有用,而且在推理模型的輸入時更普遍。

小的、像素空間的擾動,人類可能察覺不到,通常使用 lp 范數測量擾動幅度,是評估模型魯棒性的合理方法(將在 2.6 節后面討論);特別是在對抗性攻擊的可能性更高的混合戰爭領域。然而,在考慮評估模型的魯棒性時,這些小擾動不一定適用于 Ashmore 的攻擊域空間 (A) 之外。最近,獨立的工作 [79] [80] 已經開始研究擾動模型的輸入,使其遠離經常討論和研究的小擾動方法,而不是生成被認為與環境相關且人類可區分的擾動:這些擾動看起來會在輸入上引入純粹、模糊或朦朧等(這可以合理地代表來自 F 或 O 的輸入)。

此外,在 [80] 中,作者建議對語義相關的圖像引入有意義的擾動,但這些擾動可能尚未包含在模型訓練集中;例如,例如,將一群鵝引入一個場景,在這個場景中,模型正在識別停車場中的車輛數量。雖然最后一類有意義的擾動顯然是 Ashmore 的輸入域空間 (I) 的一部分,但可以說,如果訓練數據集不足,這些語義相關的擾動也可以被視為運行域空間 (O) 的一部分。有趣的是,[80] 還發現,當增加系統對小擾動的魯棒性時,模型在處理語義上有意義的擾動時可能變得不那么魯棒,因此考慮評估模型對這兩種擾動類型的魯棒性顯然很重要。

為了評估模型對這種語義上有意義或環境相關的擾動的魯棒程度,[80] 的作者提出了一種用于引入擾動的滴定方法,這樣可以逐步測量在模型的準確性變得可疑之前引入擾動(例如,通過其置信度或已知基礎事實的分類變化)。當考慮模型在預期的運行域空間中的應用時,這提供了一個進一步的度量標準來評估模型的魯棒性。

2.4 用有限的數據學習

眾所周知,使用深度學習需要大量數據來學習復雜的任務。如果訓練數據太小,模型會過擬合,泛化能力很差。不幸的是,獲取高質量的訓練數據既困難又昂貴,因為它通常需要人工標記。例如,細粒度的 Cityscapes 數據集平均需要 1.5 小時來標記每個樣本 [28]。此外,與為學術目的(概念驗證、評估、基準測試等)開發的數據集不同,軍事數據集還必須包含代表在現實世界可能發生但難以觀察甚至預測的大量邊緣情況的數據。如果沒有這樣的訓練數據,在可能最重要的時候,或者在條件因敵對行動而意外改變的時候,軍事模型的實際價值將是有限的。

軍事應用的數據采集挑戰是重大的,但也是必須解決的,以確保模型在現實世界中部署時是強大的。幸運的是,許多轉移學習技術[29][30][31]已經被提出,這些技術利用了深度神經網絡可以學習到可轉移的一般特征,因此,可以被其他類似的任務重新使用[32]。預訓練與微調相結合,通常用于利用少量/有限的數據進行學習,同時避免昂貴的大規模模型(如GPT-3)的再訓練,這些模型可能需要專門的硬件來學習。其主要思想是:

1.將預訓練的源模型的一部分復制到目標模型中;

2.向目標模型添加一個或多個隨機初始化的(未訓練的)層,使最后一層與目標的標簽空間相匹配;

3.使用標記的目標域數據訓練模型。

然而,這些技術不能用于軍事數據來自特殊傳感器(如激光雷達、紅外、合成孔徑雷達和高光譜)的情況,這些傳感器很少有預先訓練好的模型,或者過于敏感,甚至在盟友之間也不能共享。

無監督領域適應是另一種轉移學習技術,雖然它在淺層學習中已經被研究了幾十年,但最近在深度學習中也受到了很多關注[33]。使用這種技術,來自源域的標記訓練數據可以用來訓練一個使用目標域的無監督數據模型。該方法假設源域的標記數據成本低且容易獲得。

從軍事角度來看,這個想法很有吸引力,因為源數據有可能是合成的。也就是說,已經存在的模擬器或其他生成模型有可能被改編為不僅能生成完美標記的源數據,還能生成代表邊緣情況的數據,否則很難甚至不可能獲得這些數據。基于模擬的方法將完全消除人類的標記工作,否則可能會導致不正確、有偏見和不完整的數據集,這些數據集在訓練時也會轉移到模型中。使用無監督領域適應性來彌補 "模擬到真實"的差距(sim2real)正在積極進行[34][35],使用各種技術,其中許多依賴于使用對抗性方法,如領域損失函數[36][37]和生成性對抗網絡(GANs)[38][39]。

2.5 新情況,不同于學習策略和分類器的開發方式

為了在復雜環境中發揮作用,人工智能必須表現出對新事物的魯棒性。DeepMind[41]的演示表明,ML可以被用來開發策略,從而在僵硬的游戲中實現超人的發揮。圍棋“Go”這個游戲提供了一個復雜的環境,超過了我們對游戲可能狀態的存儲極限,因此提供了前面討論的關于我們對牛頓宇宙建模的極限的情況。然而,如果改變了游戲規則,生成的代理就會變得很脆弱或者完全失敗。在[42]中,這種類型的結果在一個更簡單的環境中被證明,實驗闡明不同的變化如何影響代理的魯棒性。

但新穎性不僅僅是數據點不包含在 ML 訓練集中的情況。為了將新穎性的研究結合起來,[43] 提出了一個描述新穎性的框架。圖 2 說明了人們如何以一種可以同時衡量新穎性和代理反應的方式看待新穎性。這種新穎性觀點的關鍵在于,可以將新穎性考慮到與世界有關的方面以及與代理人的經驗有關的方面。同樣,對代理任務有影響的新穎性,對魯棒性的影響不同于對任務沒有影響的新穎性。這也是 Chao [42] 中證明的一個發現。

圖 2. 考慮新穎性的框架。

2.5.1 DARPA SAIL-ON 計劃

DARPA SAIL-ON 計劃 [40] 中采用的一種基于游戲的新穎性實驗方法。 DARPA SAIL-ON 計劃假設智能體具有以下四個要素:

? 一種性能要素,它使用已知的專業知識通過感知、推理、規劃、控制機制來完成任務并實現目標(例如,尋找和收集具有所需特征的水下物體);

? 一個監控元素,將觀察結果與期望值進行比較,以檢測環境(例如,聲納不可靠、不熟悉的捕食者)和代理自身行為(例如,車輛向右轉向)中的異常情況;

? 一種診斷要素,可定位專業問題,生成有關原因(例如,非反射表面、橫流、未對準的螺旋槳)、評估備選方案并從中進行選擇;

? 修復被認為是造成性能問題的專業知識并糾正它們的維修要素(例如,更新的聲納方程、電流敏感控制器或新的螺旋槳模型)。

正如上文關于新穎性的介紹部分所述,這項研究的大部分開始于認識到 DeepMind 用于解決圍棋、國際象棋、將棋和星際爭霸游戲的方法對游戲規則的變化并不魯棒。一個例子是南加州大學 (USC) 開發并通過 GitHub 發布的 GNOME 框架。

NIWC Pacific 與 USC 合作開發了一個版本,英國 Dstl 使用 GNOME 框架開發了“Hunting of the Plark”游戲。這將允許對受過訓練以玩該游戲的代理的新穎性影響進行實驗,這是圖靈研究所研究小組的重點。計劃對使用 ML 開發的決策支持工具進行進一步實驗,我們不僅可以處理模擬情況,還可以與美國海軍進行現場實驗。

2.5.2 新穎性檢測

個體在不知道世界形勢發生變化的情況下對新穎事物有很強的抵抗能力。這很可能是由于新穎事物對正在執行的任務并不重要,或者至少是在敏感度較低的領域變化。然而,處理新穎事物的一個策略是至少檢測到一個代理處于一個新穎的情況,即使該代理不知道如何在新穎的環境中工作,除了退出或提醒其他人注意這種情況。

代理的基本問題是:環境是否發生了變化,或者正在分析的數據是否只是在以前分布的一個尾部?目前,對于大部分的ML來說,僅僅認識到數據不在樣本范圍內可能就足夠了。至少能認識到其自身局限性的ML在許多情況下是一個進步。在這方面,經典的對抗性例子演示經常被提起:在這些實驗中,代理往往對他們的錯誤答案非常自信[44]。

在規劃系統中,識別可能基于對任務進度的動態評估。如果規劃無效,一種可能是世界以一種模型未反映的方式發生了變化。早期檢測可能會防止災難性結果,但這并不能保證。事實上,人們可以設想無法恢復的情景(在黑洞的事件視界上轉彎是一個極端的例子)。

2.5.4對新穎性的魯棒響應

[45] 將提供魯棒響應的任務定義如下:

? 假定:使用專業知識在一類環境情況下運行的代理架構;

? 假定:支持此類環境中可接受的代理性能專業知識;

? 假定:在突然的、未通知的更改環境中,經驗有限會導致性能降低;

? 發現:當環境發生變化時,哪些修改后的專業知識將支持可接受的性能。

對新穎事物的響應類型與正在執行的任務類型有關。在分類器中,系統可能需要調整其模型,不僅允許改變其提供的答案,還允許解釋這種變化意味著什么。例如,想象一個感知代理,其可確定機器人是否存在障礙物。相機系統的改變,例如鏡頭上的蒼蠅附著可能會為系統創造一個新局面。如果系統能夠適應并確定不存在障礙,則需要對情況進行解釋以證明答案的合理性。

圖 3. SAIL-ON 新穎性指標假設。注意程序中的 TA2 代理是那些對環境中的新穎事物做出反應的代理。

對于規劃系統,新穎性可能表現為采用新的行動或發現行動的成本與以前不同;目標可能會發生巨大變化。規劃系統可能不得不調整他們的知識,重新計算以前的任務,利用經驗來改變他們的計算。上面圖 3 中的假設說明了測量環境。在環境中出現變化之前,學習和運行可能會進行一段時間。對特定變化還不夠魯棒的代理性能會下降,必須找到一種方法來檢測新事物的發生,確定發生了什么變化并在運行中對其進行解釋。

2.6 對抗性行動

在過去的幾十年里,已經證明基于深度學習技術的機器學習模型可以在各種任務中達到甚至超越人類水平的表現。另一方面,機器學習模型通常容易受到輸入擾動的影響,并且很容易被愚弄以產生不正確的輸出 [53] [54]。這些類型的操作被稱為對抗性攻擊,機器學習模型對抗這些攻擊的性能被測量為對抗魯棒性 [55]。在兩個不同方面研究了對抗魯棒性。第一個方面,研究人員試圖找到一種產生對抗性攻擊的方法,以最大程度地降低模型的魯棒性 [56] [57] [58] [59] [48]。第二方面,研究人員試圖找到更好的訓練或防御方法,使網絡架構對這種對抗性攻擊更加魯棒[60] [61] [62] [63] [64]。在本節中,我們調查了對抗性攻擊和防御方法,并從當前文獻中定義了對抗魯棒性的指標和測量方法。

2.6.1 對抗性攻擊

[54] 中針對機器學習系統 M 和輸入樣本 C(稱為干凈樣本)定義了對抗性攻擊,如下所示:

“假設樣本 C 被機器學習系統正確分類,即 M(C) = y。可以構建一個對抗性樣本 A,它在感知上與 C 無法區分,但分類錯誤,即 M(A) ≠ y。”

基于此定義,對抗性攻擊的目的是修改模型輸入以導致不正確的模型輸出,使其無法被人類觀察者區分。不可區分性標準對可應用于輸入的擾動有一些限制,這在文獻中稱為 lp 范數,即

其中 ? 是最大允許擾動。最常用的范數是 l2 和 l∞。

考慮到這一限制,提出了幾種方法來生成對抗性樣本 [65] [55] [48]。生成對抗樣本主要遵循兩種不同的方法,即黑盒和白盒。在黑盒方法中,用戶不了解模型,只能訪問給定輸入的預測概率或預測類別。另一方面,假設模型及其參數在白盒方法中是完全已知的[47]。

白盒攻擊在欺騙模型方面比黑盒攻擊更有效,并且在文獻 [56] [57] [58] [48] 中使用不同的方法進行了廣泛的研究。白盒攻擊主要是基于梯度的攻擊方法:它們通常構造一個損失函數,可以導致擾動攻擊能力的提高和擾動幅度的降低,然后通過梯度優化損失函數以生成對抗樣本[66]。使用損失函數的梯度來確定對抗性擾動,可以像快速梯度符號法(FGSM)[65]那樣在一個步驟中進行,用于快速生成對抗性樣本。為了提高效果并減少擾動,在基于迭代梯度的攻擊中,不是在梯度方向上采取單一步驟,而是采取多個較小的步驟[54][48]。

對抗性攻擊也可以作為訓練的一部分。最近的一些工作[46]背景是一個對等網絡,其中每個對等體都有一份神經網絡模型的副本,以創建一個分布式的學習環境,這并不依賴于中央協調節點的存在。這樣的機器學習架構非常適用于有多個伙伴的軍事聯盟場景。最初,每個對等體擁有總訓練數據集的一個子集,隨著模型訓練的進行,模型參數在每次訓練迭代時都在對等體之間共享。

本實驗基于 Fashion-MNIST 數據集,并非試圖提高點對點 ML 的魯棒性,而是測量和優化中毒技術在導致對等體錯誤分類方面的有效性。中毒效果的衡量標準是,就訓練迭代次數而言,惡意對等體能夠可靠地毒化良性對等體的速度有多快。然而,我們相信相同的指標可以用來推斷 ML 對這種中毒的魯棒性:實現錯誤分類所需的迭代次數越多,魯棒性就越高。

2.6.2 對抗性防御

已經提出了一些方法來保證在特定條件下對范數有界的對抗性攻擊的魯棒性。例如,Wong 和 Kolter [67] 使用對抗性多面體的概念為基于 ReLU 的分類器提出了可證明的防御措施。此外,[68] 中提出了一種有效且完整的分段線性神經網絡魯棒性驗證器。在該論文中,提出了一種算法,該算法基于最大 (l∞-) 范數在對抗性誤差上產生經過驗證的界限。

獲得強大的深度神經網絡的最成功的方法之一是通過對抗訓練。對抗性訓練的主要動機是將攻擊和防御都納入一個共同的理論框架,自然地封裝了大多數先前關于對抗性樣本的工作 [55]。在這種方法中,不是直接將原始數據集中的樣本輸入到訓練中,而是允許對抗性攻擊首先擾動輸入,然后將擾動的樣本輸入到訓練中。對抗性訓練以不同的方式得到增強,例如改變攻擊過程、損失函數或模型架構 [69] [50]。

對抗性訓練的性能很大程度上取決于生成增強訓練數據集時使用的損失函數和對抗性攻擊方法,并且由于需要生成對抗性樣本,與干凈訓練相比需要更長的時間。在 [73] 中,已經證明,使用具有早期停止的經典對抗訓練可以更容易地提高最先進的對抗訓練方法的性能。這表明我們對對抗性訓練的理解是有限的。在 [74] 中分析了對抗性訓練對魯棒性的影響,他們得出結論,在使用(隨機)梯度下降的干凈訓練過程中,神經網絡將在所有特征中積累一些與任何自然輸入,但極易受到(密集)對抗性擾動的影響。在對抗訓練期間,這種密集的混合物被“純化”以使模型更加魯棒。

2.6.2.1 訓練期間隨機噪聲的隱式生成建模提高了對抗魯棒性

最近開展的工作 [70] 專門研究了上述方法。事實上,這項工作旨在通過將隨機噪聲引入訓練輸入并使用隨機梯度下降 (SGD) 對其進行優化,同時最小化訓練數據的總體成本函數,從而使深度神經網絡對對抗性輸入更加魯棒。效果是在開始時隨機初始化的輸入噪聲在訓練過程中逐漸被學習。結果,噪聲近似地模擬了輸入分布,以有效地最大化給定輸入的類標簽的可能性。

作者 [70] 評估了他們在 MNIST、CIFAR10 和 CIFAR100 等分類任務上的方法,并表明以這種方式訓練的模型更具對抗性。發現噪聲和干凈圖像的組合方式對精度有重大影響,乘法比加法獲得更高的精度。魯棒性的直接度量沒有發展,而是隨著擾動水平的增加,魯棒性被量化為精度函數。

2.6.2.2 基于離散化的對抗性攻擊解決方案

繼對抗性訓練的主題之后,[72] 表明,圖像分類深度神經網絡對對抗性輸入的魯棒性可以通過輸入空間和模型參數空間的離散化來提高,同時精度損失最小。在使用 MNIST、CIFAR10、CIFAR100 和 ImageNet 數據集的實驗中,輸入空間的離散化涉及將像素強度的數量從 256 (28) 減少到 4 (22),參數空間的離散化涉及使用低精度權重訓練模型以及諸如二元神經網絡 (BNN) 之類的激活。此外,結合這兩種離散化技術極大地提高了模型的魯棒性。與更昂貴的對抗性訓練過程(即使用對抗性示例訓練模型)相比,這種組合方案可以被視為提高魯棒性的另一種方法。在每個實驗中,通過比較分類的準確性來衡量魯棒性,同時對抗性擾動 (ε) 逐漸增加。實際上,這項工作中魯棒性的度量似乎是在保持給定精度的同時可以容忍的擾動程度。

2.6.2.3 減輕神經網絡中的對抗性樣本

在最后一個示例中,進行了一項相對簡單的工作 [71]。對圖像分類器的輸入進行預處理是通過將輸入饋入高斯核來實現的,其效果相當于平滑低通濾波器,其中平滑程度取決于內核的標準偏差參數。該實驗是使用 MNIST 數據集進行的,并測量了平滑和各種對抗性噪聲水平的不同組合的準確度。結果表明,為了優化給定水平的對抗性噪聲的準確性,存在一個最佳的平滑水平。在這種情況下,用于魯棒性的度量是針對給定數量的對抗性噪聲的成功攻擊的百分比。該度量允許直接比較使用和不使用平滑的性能。

2.6.3 測量對抗魯棒性

對抗性魯棒性可以衡量為對抗性攻擊[47]擾動輸入的模型準確性。由于評估取決于應用的對抗性攻擊,因此很難衡量模型的實際對抗魯棒性。

文獻中的大多數作品通過使用在其訓練階段使用的相同或相似的對抗性攻擊方法和損失函數,來展示其方法的對抗性魯棒性。在[48]中已經表明,通過改變損失函數和生成對抗樣本的方法,可以實現比原始論文中報道的更低的對抗魯棒性。實際上,[48] 中指出,在 49 個案例中,有 13 個案例的魯棒性變化大于 10%,在 8 個案例中大于 30%。

在 [49] 中,通過將幾個深度神經網絡的性能與人類觀察者進行不同類型的操作進行比較,進行了類似的評估。在這項工作中,已經表明,只有在訓練階段知道所應用的操作時,深度神經網絡才能達到人類水平的性能。對于未知的操作,深度神經網絡的性能會急劇下降。此外,文獻中提出的許多防御策略都被更強大的對手打破了[48] [50]。因此,應仔細比較在不同方法下獲得的魯棒性,以確保評估盡可能有效[47]。

對抗魯棒性被報告為從擾動集中獲取的最壞情況輸入的模型精度。除了準確性之外,還可以測量兩種類型的性能指標來評估模型的魯棒性。第一個指標是對抗頻率,它衡量模型多久無法保持穩健[51]。第二個是對抗性嚴重性,用于衡量從原始輸入到對抗性樣本的預期最小距離 [51] [52],即模型被愚弄的難易程度。事實上,引用[51]:

“頻率和嚴重性捕獲了不同的魯棒性行為。神經網絡可能具有高對抗頻率但對抗嚴重程度低,這表明大多數對抗樣本距離原始點有非常小的距離。相反,神經網絡可能具有較低的對抗頻率但較高的對抗嚴重性,這表明它通常是魯棒的,但偶爾會嚴重不魯棒。頻率通常是更重要的指標,因為具有低對抗頻率的神經網絡在大多數情況下都是魯棒的。實際上,對抗性頻率對應于用于衡量魯棒性的對抗性樣本的準確性。嚴重性可用于區分具有相似對抗頻率的神經網絡。”

3 結束語

混合戰爭表明可能有許多系統和許多模型,因此如果假設人工智能將在混合戰爭系統的集合中使用,那么多種錯誤來源具有破壞人工智能在軍事領域應用的巨大潛力。

因此,上述當前技術的標準和調查都與了解將 AI 和 ML 應用于混合軍事領域的潛在弱點相關,因此在涉及與 AI 和 ML 的魯棒性有關的考慮時,顯然需要確保未來進行廣泛的評估。很明顯,有一個重要的考慮領域和可用的度量方法。然而,正如之前在第 2 節中提出的,這些度量方法適用于不同的利益相關者、不同的模型和潛在的不同任務。

因此,當前的問題是如何為特定模型確定和找到正確的度量方法,以獲得混合戰爭系統所需的置信度。 IST-169 打算推進這項初步調查來做到這一點。我們相信,開發各種類型的魯棒性及其適用于不同類型 AI 階段的圖形表示,將有助于全面了解 AI 魯棒性格局。這將加強并采取更嚴格的方法對人工智能應用進行開發。

付費5元查看完整內容

摘要

作者領導了一項跨學科的基準測試工作:決策分析、運籌學、風險建模、管理科學、沖突和戰斗模擬以及物流和供應鏈模擬。實踐者們自愿描述他們的做法并向其他人學習。雖然不同的實踐者群體對局部實踐達成了共識,但群體之間的互動卻很少。

以前的出版物描述了從基準測試中突出最佳實踐。我們發現了兩個差距:一個是令人不安的高比例的不良實踐,另一個是缺乏執行層面的風險評估。高管們往往缺乏時間或技術背景來對提供給他們的分析結果進行風險評估。

本文為高管們提供了一種新的、簡單的風險評估方法。六個非技術性的問題解決了在基準測試中看到的大部分風險。該方法是基于一個建立在國際基準工作基礎上的檢查表。作者還對具體的風險進行了研究,包括因對分析的依賴程度增加而產生的法律風險。在這些風險中,有一些與人工智能有關的獨特問題。

識別風險的工作表明危險來自幾個方面,并產生了一個不需要深入的建模、仿真和分析(MS&A)知識的風險檢查表。本文介紹了該清單,以及支持該清單的一些更深入的MS&A原則。這對管理人員和從業人員都很有用。

該研究得到了一些專業協會、行業團體和非營利性教育協會的支持,包括國際服務/行業培訓、模擬和教育會議(I/ITSEC)、石油工程師協會、電氣和電子工程師協會和概率管理。

研究總結和以前發表的結果

我們之前已經發表了(Roemerman等人)研究的本質和我們的數據收集。回顧一下,在2014年和2015年,作者提出了一個跨領域的基準研究。作為在多個領域工作的從業者,我們注意到一些領域的 "正常 "仿真和建模實踐在其他領域是未知的。我們向幾個組織提出了一個多領域的研究。普遍來說,反饋是積極的,但沒有人愿意領導這項工作。

最終,我們決定自己進行,并開始招募幫助。我們得到了許多我們曾經接觸過的組織的幫助,還有一些組織也加入了我們的行列:

  • 電氣和電子工程師協會(IEEE)是第一個允許我們使用他們的一個網絡論壇來討論這項研究并尋求參與者。
  • 石油工程師協會(SPE)也給予我們同樣的網絡論壇權限。
  • 賓夕法尼亞大學沃頓商學院的兩位教授為我們的研究提供了建議和未發表文獻的訪問權,并得到了研究生的幫助。
  • INFORMS提供了他們在線論壇的訪問權。
  • I/ITSEC允許我們調查他們的部分成員。
  • 概率管理公司允許我們接觸他們的會員,然后任命我們中的一位為最佳實踐主席。
  • 洛克希德-馬丁公司和雪佛龍公司允許我們進入他們的建模和仿真社區進行采訪和調查。

總的來說,這些組織有大約200,000名會員(不包括這兩家公司,他們的雇員可能是我們所接觸的協會的會員)。其中,我們估計只有不到10%的會員是建模、仿真和分析(MS&A)的積極從業者。在這些會員中,我們估計大約有2100人看到了我們的調查和采訪邀請。

除了與這些大型團體合作外,我們最初以40多個個人為目標,因為他們的組織聲譽或他們個人的卓越聲譽而參與我們的數據收集。我們點名征集這些目標,事實證明他們是一個豐富的信息來源。最后,我們接觸了來自65個組織的126名個人,涉及許多領域(見圖1)。

圖1:參與者來自不同的領域
付費5元查看完整內容

摘要

本文旨在展示開源數據的潛力,結合大數據分析和數據可視化,以表明特定領域的彈性水平,其中包括北約彈性評估的基線要求(blr)。

本文中描述的概念驗證提取了特定領域的相關彈性指標,涵蓋了包括能源和交通在內的選定基線要求。概念驗證使用交互式儀表板,允許終端用戶從多個角度探索可用的公共數據,以及對這些數據進行高級分析和機器學習模型的結果。

關鍵詞:大數據分析,機器學習,彈性,能源,交通,媒體

引言

軍隊越來越意識到大數據分析在作戰和戰略決策中的重要性和作用。在正確的時間獲得相關信息一直是做出最佳決策的關鍵因素。今天,這種影響甚至更大,因為數據和信息可以大規模收集并提供給每個人。技術和人工智能方法成為利用數據的巨大推動者[1]。

廣泛可用的開源數據來自媒體、科學文章、相關(專家)門戶網站,涵蓋經濟、政治、社會、能源、交通運輸等帶來了創造更有洞察力的背景的可能性,并通過分析各種來源和整合結果為任何評估提供了有價值的新維度。

從軍事角度來看,我們從開源數據中確定了許多跨不同領域的重要指標,這些指標可以用于評估整個聯盟的戰備和恢復能力。來自不同領域的許多指標似乎相互影響,可以相互關聯。

在去年,北約CI機構數據科學團隊參與了一項創新性的概念驗證,包括轉型和作戰命令,如ACT、SHAPE和JFCBS;為了識別、提取、計算和呈現開源數據中最相關的指標,以支持整個聯盟的彈性評估。由于彈性評估是一項復雜的評估,它依賴于許多不同領域和事件的關系,因此該項目定義了較小的范圍,重點關注以下關鍵領域:

?關鍵基礎設施——醫院、發電廠、港口、液化天然氣接收站和軍事設施

?能源——專注于電力和天然氣

?交通——專注于空運、公路、海運和接近實時的交通指標

?媒體——態勢感知

其主要目標是通過使用來自公開數據集的大數據來確定相關指標。然后創建有用的策劃數據和機器學習(ML)模型,以識別相關關系,并提供對當前情況和破壞性事件影響的見解。為了提高結果的準確性,我們最初關注于一個特定的地理區域。

付費5元查看完整內容

摘要

可解釋的人工智能(XAI)提供了克服這一問題的手段,它基于有關深度學習(DL)算法結果的額外補充信息。雖然完全透明對于復雜的DL算法來說仍然是不可行的,但解釋有助于用戶在關鍵情況下對AI信息產品進行判斷。應該指出的是,XAI是透明度、因果關系、可信度、信心、公平、信心和隱私等方面的總稱。因此,基本的方法論是多方面的。一種已經流行的方法是局部可解釋模型-預知解釋(LIME)方法,因為它可以很好地應用于各種應用中的不同模型。在本文中,LIME算法是在戰略運營的決策建議背景下進行研究的。在簡單介紹了其概念后,介紹了文獻中的應用。然后,一個戰略博弈的場景被認為是軍事戰爭的替代環境。一個基于DL的國際象棋人工智能被做成 "可解釋的",以評估信息對人類決定者的價值。得出了與戰略混合行動有關的結論,這反映了所提出的方法的局限性。

引言

根據設想,未來戰略戰爭的決策將在很大程度上受到基于人工智能(AI)方法的信息產品的影響。特別是混合作戰,是在一個高維和變異的環境中進行的,在這種環境中,對潛在的威脅和機會的評估是人類操作者難以掌握的,戰略規劃必須納入異質的、多功能的和高容量的數據源。因此,基于人工智能方法的算法產生的分類、預測和建議在這種復雜的場景中變得越來越重要。在過去的幾年里,人工智能的方法已經獲得了巨大的發展,有大量的創新和令人尊敬的成果,可以從大型數據集中獲得更高層次的信息。然而,深度學習(DL)方法的一個主要缺點是其固有的黑箱屬性,即由于計算模型的復雜性,其結果是不透明的。例如,后者可能有數百個層和數百萬個參數,這些參數是在訓練階段通過算法發現和優化的。因此,即使結果是準確的,用戶也沒有機會理解它或掌握輸入數據的因果部分。這反過來又會影響到用戶對輔助設備的信任,在兩個方向上都是如此。這個問題在某些民事應用中起著次要的作用,例如語音識別,它經常被應用于與設備的互動,因為除了體面的失望之外沒有潛在的風險。對于其他非常具體的任務,如手寫字符識別,DL算法的性能超出了人類的平均水平,這意味著失敗的可能性很小,因此關于因果關系的問題可能成為附屬品。然而,在許多軍事應用中,當涉及到與人工智能的互動時,人類的信任是一個關鍵問題,因為錯誤的決定可能會產生嚴重的后果,而用戶始終要負責任。這實際上是兩方面的。一方面,操作者往往需要了解人工智能產品的背景,特別是如果這些產品與他或她自己的本能相悖。另一方面,不可理解的技術會對算法信息產品產生偏見,因為很難確定在哪些條件下它會失敗。因此,適當的信任程度可能很難計算。

可解釋的人工智能(XAI)是向黑盒人工智能模型的用戶提供 "透明度"、"可解釋性 "或 "可解釋性 "的方法的集合。這些術語幾乎沒有一個共同的定義,但許多出版物提到了:

  • 透明度是指人類跟蹤和理解模型創建過程的可能理解程度。這就是從數據中提取信息,轉化為推理參數的表現形式。DL前饋網絡由于其基于大數據集的迭代學習過程和錯誤向各層的遞歸傳播而缺乏這一特性。
  • 可解釋性是指對模型本身的理解程度,即從輸入數據到預測結果的信息流可以被理解。由于涉及的參數數量和層的層次結構,這對標準網絡來說是不可行的。
  • 可解釋性是指對特定預測結果進行解釋的可能性程度。也就是說,用戶可以看到與輸入數據的一致性,在某種程度上可以看到是否存在因果關系。

XAI不能完全 "解釋 "DL模型,然而,它為工程師或操作員提供了更好地理解特定AI產品背后的因果關系的手段。而且很多時候,這可以幫助看到,從合理的因果關系鏈暗示算法決策或預測的意義上來說,該模型是否是合理的(或不是)。因此,XAI可以成為人工智能模型工程的一個重要工具,用于安全方面的驗證,甚至用于認證過程,以及為操作員提供額外的信息,以支持明智的決策。

雖然關于XAI的大多數文獻都集中在圖像識別的方法上,但這些結果很難轉化為基于特定挑戰性競爭形勢的戰術和戰略決策領域。在本文中,我們研究了人工智能模型在棋盤評估中的可解釋性。對更復雜的軍事戰略模擬的一些影響進行了討論。

本文的結構如下。在下一節中,簡要介紹了選定的XAI方法。然后,這些方法之一(LIME)被應用于棋盤評估問題,以證明在支持信息方面的解釋的質量。在最后一節,得出了結論,并討論了對更復雜的戰爭博弈和模擬的概括。

付費5元查看完整內容

摘要

混合沖突的分析、評估和決策是復雜的,原因有很多:混合活動的信號是多維的;結合多種類型的信息是必要的;許多混合沖突是隱蔽的,或者很難從正常的國家與國家的關系中分辨出來。對混合沖突的評估需要包括對手行為者的戰略目標、被利用的社會脆弱性和背景事件、跨社會領域的活動,以及對目標社會的影響。在早期的工作中,我們根據混合沖突的這五個要素提出了一個分析過程。在本文中,我們在這項工作和更廣泛的情報文獻的基礎上,解決如何進行混合沖突評估的問題。具體來說,我們概述了一個詳細的評估過程,為決策者提供對形勢的了解,以選擇對混合威脅的預防性和反應性反應。所提議的程序的優點在于它對混合沖突的綜合評估,結合了目標社會的觀點和對手行為者的觀點。此外,所提出的評估功能依賴于人類產生的分析性見解--考慮到背景、模糊性、規范性--和從傳入數據中產生的信號--考慮到結構化和結合來自多個來源的信息--之間的持續互動。這種綜合視角超越了傳統的分析方法。我們提出的評估很適合引導人類和自動化情報的結合,并提供了一個分析方法和工具的藍圖,以應對混合沖突中的決策挑戰。

引言

混合沖突是國家之間的一種沖突,大多低于公開戰爭的門檻(見歐盟等的定義,2018年,北約,2019年和荷蘭層面的定義,NCTV,2019年)。混合沖突中的國家使用許多國家權力的措施來影響其他社會。這些措施包括外交、信息、軍事、經濟、金融、情報和執法手段。戰略層面上的混合沖突案例研究需要敘事和社交媒體操縱、針鋒相對的金融和經濟制裁、外交威脅、大規模軍事演習和許多其他全社會的互動。許多類型的混合威脅在前些年的經驗中是已知的。例如,美國的選舉影響,中國通過基礎設施投資的影響,以及俄羅斯在破壞烏克蘭穩定方面的努力。

混合沖突給決策者帶來了不同的挑戰。這是因為公開的軍事對抗大多被避免,只有低于武裝沖突的法律門檻的活動才被應用。網絡領域和信息領域是針對政府和社會的影響活動發生的主要領域。由于混合沖突中許多活動的隱蔽性或模糊性,在將活動歸于國家行為者方面存在很大問題。最后,混合沖突是對各種手段和方法的創造性安排,它創造了新的情況,對分析來說具有內在的挑戰性。在這篇文章中,更詳細地研究了在面臨上述挑戰時對混合沖突的評估。

圖1 - 運動評估功能及其輸入的示意性概述
付費5元查看完整內容

摘要

混合戰爭為沖突推波助瀾,以削弱對手的實力。相關的行動既發生在物理世界,也發生在媒體空間(通常被稱為 "信息空間")。防御混合戰爭需要全面的態勢感知,這需要在兩個領域,即物理和媒體領域的情報。為此,開源情報(OSInt)的任務是分析來自媒體空間的公開信息。由于媒體空間非常大且不斷增長,OSInt需要技術支持。在本文中,我們將描述對物理世界的事件以及媒體事件的自動檢測和提取。我們將討論不同類型的事件表征如何相互關聯,以及事件表征的網絡如何促進情景意識

引言

開源情報(OSInt)的任務是探索和分析可公開獲取的媒體空間,以收集有關(潛在)沖突的信息,以及其他主題。所謂 "媒體空間",我們指的是通過傳統媒體(如電視、廣播和報紙)以及社交媒體(包括各種網絡博客)傳播的非常龐大、快速且持續增長的多語種文本、圖像、視頻和音頻數據語料庫。社會媒體大多是平臺綁定的。平臺包括YouTube、Twitter、Facebook、Instagram和其他[1,2]。在很大程度上,媒體空間可以通過互聯網訪問。很多部分是對公眾開放的。然而,也存在一些半開放的區域,其中有潛在的有價值的信息,但并不打算讓所有人都能接觸到,例如Telegram和Facebook頁面。

媒體空間提供關于物理世界的信息:發生了什么?哪些事件目前正在進行?未來計劃或預測會發生什么?它對物理世界的事件反應非常快,也就是說,幾乎是立即提供信息[3]。因此,媒體空間似乎是物理世界中事件的一個有希望的 "傳感器"。然而,從鋪天蓋地的大量信息中檢索出特別相關的信息仍然是一個挑戰,因為到目前為止,所提供的大多數信息是完全不相關的,至少對軍隊來說是如此。此外,媒體空間并不一致--它包括真實和虛假信息,因此,事實核查是一個進一步的挑戰。

除了作為物理世界的傳感器,媒體空間還是意識形態、意見和價值觀的論壇。它是一個重要的空間,用于協商一個社會認為是允許的、規定的或禁止的東西,并用于表現情緒和偏見。因此,它已成為混合戰爭的戰場,即以 "通過暴力、控制、顛覆、操縱和傳播(錯誤的)信息"([4],第2頁)為目的進行的行動。(錯誤的)信息行動導致我們稱之為 "媒體事件"。媒體事件可以被觸發,以影響情緒、意識形態和公眾對物質世界的看法。

可能的圖表實例
付費5元查看完整內容

摘要

應對氣候變化對北約具有戰略意義。對可能的氣候措施和后果進行充分知情的決策支持分析將決定北約如何很好地應對這一挑戰。環境科學和軍事行動分析的結合將使各國和聯盟能夠做出明智的決定,有可能減少溫室氣體排放和成本,并提高行動效率。

挪威國防部已責成挪威國防研究機構(FFI)在軍事要求規定的范圍內研究挪威武裝部隊減少溫室氣體排放的潛力。

我們對挪威武裝部隊未來的排放量進行了建模,并對七項措施的減排量和成本進行了量化。總的來說,這些措施有可能使溫室氣體排放相對于未來排放的基線減少15-30%,平均估計為22%。此外,我們還確定了幾個同樣重要的措施,這些措施的減排量可能難以量化。

武裝部隊的軍事平臺有很長的服務壽命。現在投資于能源效率低下的解決方案將在未來許多年內產生排放和成本。因此,我們建議,排放預測在采購決策和長期國防規劃過程中得到更突出的作用。

引言

挪威武裝部隊的活動對環境產生了一些負面影響。鑒于武裝部隊任務的性質,其中一些影響是不可避免的。對環境的影響進行了持續的調查,并每年進行報告。國防部門的溫室氣體排放在國際和國內得到了越來越多的關注,挪威國防部責成挪威國防研究機構(FFI)研究減少挪威武裝部隊溫室氣體排放的潛力。

本文的目的是在軍事要求規定的范圍內,對這種潛力進行建模。這項研究并不包含國防部門可能的環境措施的完整清單。我們已經優先考慮了目前知識缺乏的領域。我們還考慮了一個新提出的海上戰爭替代概念的排放效應。這不應該被理解為一種減排措施,它是一種提高能力和降低成本的措施。然而,我們希望證明這樣一個概念的排放后果,并將其作為一個例子,說明如何在國防部門利用技術來實現更多的氣候效率解決方案。

在本章中,我們將簡要地討論氣候變化和對挪威武裝部隊可能產生的后果。在接下來的章節中,我們將說明我們的分析方法和數據、結果和結論。

圖1-1:根據目前的長期計劃,挪威武裝部隊未來排放的模擬基線。
付費5元查看完整內容

摘要

人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。

引言

縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。

人工智能的進展

幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
 雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。

付費5元查看完整內容

摘要

任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。

本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作

集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。

圖1: 增強協同技術下的智能任務規劃(IMPACT)

IMPACT系統由三層組成(見圖2):

  • 人機交互應用層
  • 傳輸層
  • 支持服務層

圖2:從功能角度看IMPACT架構。

付費5元查看完整內容

混合作戰定義

同步使用針對所有社會職能中的特定漏洞而定制的多種權力工具,以實現協同效應。混合作戰入侵者將尋求利用目標國家的弱點。每一個混合戰爭入侵者可能有獨特的能力,可用于打擊目標國家。戰爭的“奇襲”原則可能是混合攻擊成功的最大因素。

為什么兵棋推演是一個好的工具關于混合作戰分析?

  • 數學模型的價值值得懷疑:有什么數據可以量化威懾或恢復力?
  • 如果對手的潛在破壞性行動沒有發生,是否阻止了它?怎么知道?
  • 混合戰爭通常會尋求攻擊多個方面,例如:關鍵基礎設施、民眾情緒、經濟;
  • 混合攻擊將要求人類識別攻擊的本質,文職領導人(來自公共和私營部門)和潛在的軍事領導之間的協調與合作可能對減輕攻擊的影響是必要的。
付費5元查看完整內容
北京阿比特科技有限公司