亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

海軍規劃流程 (NPP) 作戰方案 (COA) 分析需要時間和主題專家 (SME) 才能正常運作。獨立艦船(單獨驅逐艦)會發現自己沒有時間或超過 1-2 個 SME 或兩者兼而有之。在實時戰略 (RTS) 兵棋推演中實施的人工智能 (AI) 技術可應用于軍事兵棋推演,以幫助軍事決策者進行 COA 分析。使用深度 Q 網絡 (DQN) 和 ATLATL 兵棋推演框架,在不到 24 小時的訓練或 500000 步學習。還表明,不到 6 小時或 150000 步的學習時間不會產生令人滿意的 AI 海軍上將,能夠在類似規模的航行自由行動 (FONOP) 場景中扮演 OPFOR 指揮官的角色。應用這些人工智能技術可以節省船上時間和回程人員的時間。將 AI 海軍上將訓練為優秀的 OPFOR 指揮官可以增強整個海軍的 NPP,而不會增加額外的壓力,也不會造成分析癱瘓。通過數十萬次建設性行動揭示的有意義的見解和局部爆發點,以及船員在現場模擬或模擬回放中的經歷,將導致現實世界中的戰斗準備好的海軍部隊能夠阻止侵略和維護海洋自由。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

人工智能是空中力量的一個強大推動力,但它的潛力還沒有被完全釋放與實現。只要承認其局限性并進行適當的管理,人工智能就有可能極大地改善空軍在不同戰爭層次上的規劃和決策過程。有助于簡化人工智能的使用并允許盡可能精確地利用最多數據的新投入將提高采用人工智能的潛力。從長遠來看,人工智能在聯合層面可能被證明是最有用的,因為它可以從每個部隊組成部分可以提供的大量數據和信息共享中受益。然而,在戰爭中擴大使用人工智能存在著復雜的挑戰和風險。為了建立一個未來的方向,需要考慮到人工智能在技術和人類用戶層面上的基本限制。

引言

當下人工智能(AI)的驚人發展并不總是能引起軍事飛行員群體的興趣。然而,最近人工智能與有經驗的戰斗機飛行員的空戰模擬引起了廣泛的關注(Ernest等人,2016)。在這些模擬中,人類飛行員被他們的人工智能對手擊潰。飛行員和許多其他行業一樣,最終會因為人工智能的進步而消失,這一觀點因此得到了越來越多的關注(Pashakhanloun,2019)。盡管人工智能加速發展,然而迄今為止,人類飛行員在空戰和領導空中力量投射方面的作用沒有什么變化。人類飛行員并沒有被取代,而是逐漸被允許在駕駛艙內積累人工智能的好處,就像駐扎在總部和空中作戰中心的空軍軍官一樣。

只要承認其局限性并加以適當管理,人工智能就有可能大大改善空軍的信息力量和損耗能力,以支持不同級別戰爭的規劃和決策過程。在評估人工智能在空中力量使用戰略的多個層面時,空軍領導人必須在關鍵的兩難問題上找到明確的方向。可以為人工智能開發哪些戰術、作戰或戰略應用?與其他戰爭相比,人工智能的使用是否更適合于特定級別的戰爭?我們如何將人工智能融入我們的戰爭方式?本文將在考慮人工智能的未來發展方向之前,探討與人工智能在經典戰爭層面的使用有關的一些基本挑戰,最后,討論擺在面前的關鍵相關限制和危險。

戰術層面的AI

從一個作者到另一個作者,對人工智能(AI)的定義有很大的不同。法蘭西共和國官方雜志》將人工智能定義為 "一個理論和實踐的跨學科領域,旨在了解認知和思維的機制,以及通過硬件和軟件設備對其進行模仿,以協助或取代人類活動"(2018)。基于這一定義,我們可以將人工智能理解為一種計算技術,它通過利用不斷擴大的可用數據量、不斷增長的計算能力以及軟件設計的進展來解決問題。人工智能的應用是多方面的,幾乎影響到所有領域。人工智能可以簡化行政任務。它可以提高機群維護的性能。它可以優化導彈的制導系統。

然而,正如邁克爾-C-霍洛維茨(Michael C. Horowitz)所指出的,人工智能不是一種武器(霍洛維茨,2018)。它是一個推動者,更類似于電力或內燃機等發明,而不是作戰坦克或戰斗機。現在,越來越多的軍事參與者正在將人工智能引入軍事行動,主要集中在戰術活動上。以色列是這一領域的先驅之一,最近在聯合行動中利用了三種人工智能的能力--《煉金術士》、《福音》和《智慧的深度》(Antebi,2022)。《煉金術士》利用戰術和行動數據,通過手持平板電腦提醒部隊可能的攻擊。《福音》為威脅識別提供建議,操作者必須驗證并決定適當的反應(Ahronheim, 2021)。據報道,這一應用節省了使用現有方法實現相同結果所需的一年的努力。最后,《智慧深度》能夠生成有史以來最全面的地下隧道地圖。

戰役與戰略層面的AI

人工智能在改變戰術層面的戰斗空間方面已經顯示出成果,但在更高的戰爭層面也有潛在的優勢。然而,由于戰略、作戰和戰術層面的戰爭需要不同類型的考慮和推理,人工智能的潛在應用和可獲得的結果也相應地有所不同。

根據克勞塞維茨的說法,戰略必須削弱并最終打破對手的意志。然而,衡量或量化戰略的這一目標并不容易實現。雖然軍事行動對對手造成的損害可以削弱他們的決心,但對于意識形態、政治或心理驅動的對手來說,這并不總是真的。戰爭不能簡化為一系列簡單的邏輯行動和可預測的結果,作為一種人類活動,創造力、驚喜、欺騙和心理因素都會發揮作用(Payne, 2021)。

人工智能無法探究戰爭的心理因素,也無法理解為什么戰場上的失敗并不一定意味著放棄戰斗意志。就像用于體育的軟件不能畫畫、走路,更不能預測比賽中發生的事情一樣,人工智能不能解決涉及人類的復雜互動所帶來的問題。人工智能將無法預測軍事行動中經常遇到的人類創造力和意外或欺騙因素,更不用說為其提供解決方案。人工智能的這些局限性的解釋是,能夠與人類的認知能力相匹配甚至超越的強人工智能目前并不存在。

  • 人工智能將無法預測軍事行動中經常遇到的人類創造力和意外或欺騙因素,更不用說為它們提供解決方案了。

人工智能將越來越多地參與到從規劃階段到執行空戰的行動中,但空軍反而需要依賴狹義的人工智能。狹義人工智能僅限于特定的任務和角色,它能以超過人類能力的水平完成這些任務和角色。表8.1比較了窄人工智能和強人工智能中的屬性,后者仍處于發展的早期階段。雖然狹義的人工智能可以支持戰術活動,但它主要被證明不足以將這些聚集成行動層面上的決定性優勢。這樣的觀察在各種嘗試中都有記錄,例如美國海軍為海軍指揮官開發作戰層面的人工智能系統的努力(Aycock和Gleney,2021)。

表 8.1:狹義 AI 和強 AI 的屬性比較

如何最好地利用新興技術還有待觀察,因為僅僅擁有技術是不夠的。在第二次世界大戰中,盟國擁有的坦克相對多于德軍,但由于德國軍事理論的力量,他們的軍隊遭受了關鍵的失敗。人工智能已經成為美國和中國之間競爭技術優勢的核心問題,讓人想起冷戰時期的動態。然而,無論系統的技術有多先進,軍隊使用人工智能的結果將取決于它與之結合的理論和概念。人工智能解決方案必須根據軍事環境的具體限制和特點進行調整。因此,必須通過同時發展和整合理論和作戰概念來全面發展人工智能的能力。

同時,人工智能可以以更有限的方式加以利用,以深入研究特定設備的工作原理或關注對手系統的漏洞--這是約翰-A-沃頓(1995年)著名的 "重心 "概念之一。人工智能也開始被用于影響和心理行動(PSYOPS),這已經成為軍事活動的一個重要組成部分。在現代沖突中,各方都可以歪曲、操縱和傳播錯誤信息。人工智能在這種情況下有很多用途,并能以各種方式支持進攻性和防御性的PSYOPS。按照同樣的思路,人工智能將在信息戰中發揮更大的作用,在信息戰中,信息系統代表了所有各方的關鍵重心。

也許人工智能在作戰層面上最重要的用途在于其優化情報和提供預測分析的能力,使空軍能夠更好地預測威脅和環境的變化。特定的人、特定的關鍵詞和其他模式的存在可以提前提供有關對手意圖和未來計劃的信號。考慮到盡可能多的現成信息,如視頻、文本和圖像,這些信息可能沒有被有效融合和利用,人工智能可以產生強大的結果。通過主動情景規劃的收集和監測(COMPASS)計劃是一項雄心勃勃的努力,旨在通過結合幾個學科,如博弈論、建模和模擬,實現這一目標(Tucker,2018)。

同樣,人工智能可以通過支持對不同建議和行動方案(CoA)的評估和測試,在高層規劃中發揮寶貴的作用。通過對敵對勢力、他們的理論、能力、后勤以及可能的領導人的指揮風格進行建模,人工智能可以幫助指揮官和作戰計劃人員衡量哪些行動方案可能會產生最理想的結果。更進一步說,通過改變建模參數,人工智能可以豐富對假設的思考,突出文化偏見或新的見解。人工智能的應用可能有助于引起人們對被忽視的考慮,甚至有助于開發新的思考挑戰的方法。如圖8.1所示,人工智能在制定行動方案的不同階段有明顯的潛力,可以做出有價值的投入。

圖 8.1:制定行動方案的抽象流程圖

人工智能的未來發展方向

使用人工智能的行動結果和經驗表明,這項技術可以通過加強情報、部隊保護和協助決策來支持戰術活動的重要方式。本文所涉及的簡要意見為我們提供了對人工智能未來潛力的一瞥。越來越多地將人工智能引入國防,推動了始于20世紀末的軍事事務革命(RMA)。與20世紀90年代一樣,其基本目標仍然是整合新的智能技術,通過揭開 "戰爭迷霧 "來主導戰斗空間。

戰斗空間傳感器的增加加強了信息的收集,這些信息必須被處理、合并,并分配給部隊成員,以建立多重殺傷鏈。隨著仍處于早期階段的 "馬賽克戰爭 "概念的實現,這一趨勢將變得更加明顯(Clark和Schramm,2020)。人工智能與多領域作戰(MDO)結構高度相關,它將聯合能力匯集在一起,使早期發現對手的弱點并協調針對這些弱點的同步效應成為可能。人工智能使其有可能通過預測或識別甚至是暫時的弱點,例如,對手的雷達故障,并觸發快速行動和效果以利用時間敏感的目標。

作為一個系統的設計,人工智能的潛力被放大了。在思考空中力量的未來時,這方面出現了兩個有希望的方向:無人機群和忠誠的僚機。在無人機群中,微小的自主系統將像蟻穴一樣運作,其中每個單獨的元素不一定是高度專業化的,但結合成一個系統,提供了一種類似于集體的智能。由于一個元素抵消了其他元素的技術限制,在同步工作中,這些蜂群可以執行復雜的功能,如探測、欺騙和打擊。無人機群被視為未來飽和敵方防空系統的基本手段(Hamilton和Ochmanek,2020)。

另一方面,忠誠的僚機概念則更加雄心勃勃。目前正在開發的第六代飛機被設想為與自主無人機一起運行,協同執行任務。這些僚機將為它們的載人同行提高態勢感知和生存能力,并協助飛行員更快地做出更好的決定。忠誠的僚機將可以適應反映特定任務目標的角色--例如具有電子戰或打擊功能。在過去一個世紀里,領先的空軍利用質量擊敗對手的方法基礎上,忠誠的僚機將重新定義人機合作的動態,并導致未來空軍結構的根本變化。

人工智能相關的限制和危險

如果不強調等待用戶的限制和危險,對軍隊使用人工智能的任何概述都是不完整的。人工智能不是一個神奇的推動者。像任何新興技術或新技術一樣,人工智能將需要發展和測試--反映出未來需要大量投資。人工智能在軍事行動中的應用不是一個簡單的運行軟件的問題。人工智能需要各種投資流,以開發所需的系統、有利的基礎設施,當然還有人的因素,這將使其得到最有效的使用,并保護其免受復雜對手的攻擊。

  • 人工智能需要各種投資流,以開發所需的系統、有利的基礎設施,當然還有人的因素,這將使其得到最有效的使用,并保護其不受復雜對手的攻擊。

必須創建新的數字架構、硬件和支持性基礎設施,以利用使人工智能成為可能的 "大數據"。將需要開發戰斗云來存儲數據,并且有必要確定數據和數據系統的性質和要求,以及適當的政策和治理框架。戰斗云和服務器的定位帶來了自己的挑戰--它們必須靠近用戶,但它們應該在空中還是在地面?無論答案是什么,它必須保證總部、指揮部和邊緣作戰人員之間的連接。

在當代軍事沖突中,各方都明白對連接和通信流的關鍵依賴。例如,在烏克蘭沖突期間,俄羅斯軍方瞄準了屬于商業電信服務提供商Viasat的服務器和數據交換節點,以阻止烏克蘭部隊的通信(Burgess, 2022)。事實上,人工智能有各種隱患,了解并能針對這些固有的局限性和脆弱性的對手可以利用這些隱患來損害其用戶的利益。例如,深度學習技術取決于所提供信息的質量和種類,以獲得準確的結果。

這就是為什么文化和無意識的偏見,限制了信息量,會導致操作員在與人工智能合作時做出錯誤的判斷。在人工智能所依賴的人機關系中,信任問題也會出現。如果人工智能比飛行員或受支持的指揮官更有創造力,并提供不尋常的方法來實現任務目標,這可能會引起懷疑和混亂,這在高速戰斗中是不可接受的。如果以同樣的方式產生的行動方案被推薦給盟友或聯盟伙伴,缺乏合理的推理會放大負面的后果。

另一方面,人類自然傾向于相信,當提供一個似乎連貫的結果時,機器是優越的。然而,過度自動化的風險會導致失常。在決策者處于高壓狀態下(例如等級或時間),通過依賴人工智能來指定目標,可能會造成錯誤,導致災難性的后果。

就像任何技術一樣,利用眾所周知的盾牌和劍的辯證關系,人工智能將不可避免地引發反戰略,并可能比預期更快地產生威脅。例如,北約空軍已經開發了自主無人機的進攻能力,卻沒有充分考慮到防御對手使用的類似系統。競爭對手在顛覆性技術時代發揮其能力的威脅有時被忽視,空軍需要告誡不要在人工智能方面重復類似的錯誤。這一點尤其重要,因為很多人工智能是利用商業上可獲得的或開放的軟件開發的,這使得對手有各種途徑來應對反戰略。

結論

人工智能是空中力量的一個強大的助推器,但它的潛力還沒有實現。有助于簡化人工智能的使用并允許盡可能精確地利用最多數據的新投入將提高其在不同級別戰爭中的應用潛力。從長遠來看,人工智能可能被證明在聯合層面上是最有用的,在那里它可以從每個部隊組成部分提供的大量數據和信息共享中受益。空軍領導人將需要決定可以給機器多大的自主權,以便在不影響戰略的情況下利用其品質。

  • 人工智能可能被證明在聯合層面上最有用,它可以從每個部隊組成部分提供的大量數據和信息共享中受益。

空軍中通過壓縮時間周期來加快行動節奏和進程的爭奪,決不能成為目的本身。戰爭的目的最終是為了實現政治效果,而不是在最短的時間內開展行動。就目前而言,人工智能在軍事行動中的使用仍然不可能在三個經典的戰爭層面上持續進行。也不可能將人工智能置于軍事決策過程或戰斗空間行動的中心。為了改變這種情況,需要在技術和概念上取得重大進展,以及思維方式的轉變。當這種情況發生時,關于飛行員將消失的預測很可能很快就會實現。

付費5元查看完整內容

人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。

引言

人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。

作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。

人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。

在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。

如何在海戰領域整合人工智能?

目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。

鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。

如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。

如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。

人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。

C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。

圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。

圖1. 海上人工智能系統的擬議架構

建議

首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。

第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。

第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。

付費5元查看完整內容

美海軍部依靠目前海軍的方式,如簡報、聊天和語音報告來提供艦隊的整體作戰評估。這包括網絡領域,或戰斗空間,描繪了艦船的網絡設備和服務狀態的單一快照。然而,這些信息可能是過時的和不準確的,在決策者了解網絡領域的設備服務和可用性方面造成了混亂。我們研究了持久性增強環境(PAE)和三維可視化的能力,以支持通信和網絡操作、報告和資源管理決策。我們設計和開發了一個PAE原型,并測試了其界面的可用性。我們的研究考察了用戶對多艘艦艇上的海軍網絡戰斗空間的三維可視化理解,并評估了PAE在戰術層面上協助有效任務規劃的能力。結果是非常令人鼓舞的:參與者能夠成功地完成他們的任務。他們發現界面很容易理解和操作,原型被認為是他們目前做法的一個有價值的選擇。我們的研究提供了對新型數據表示形式的可行性和有效性的密切洞察,以及它在不同社區之間復雜的操作技術(OT)環境中支持更快和更好的態勢感知和決策能力。

引言

A.研究領域

持久性增強環境(PAE)是一個系統,它使用共享(多用戶)環境、增強現實(AR)技術和一系列傳感器的概念來創建過程和數據集的可視化表示,這些數據集被持久地(在很長一段時間內)添加、操作、可視化和分析,以支持人類操作員所做的一系列任務[1]。PAE被認為有可能給許多領域和人類任務帶來好處,包括網絡系統的可視化、網絡態勢感知和決策工作領域。

PAE的重要概念包括將實時信息傳遞給人類操作者,并以一種比傳統的信息記錄和傳遞形式更容易理解的格式。后者提高了解決整個海軍領域不同社區的許多用戶的需求的潛力,減少了錯誤的數量,并將大部分時間用于決策過程。

由于用戶數量眾多,社區各異,必須準確及時地解決收集、處理和操作大量數據的需求。此外,網絡領域的復雜性促使人們需要簡化、準確和及時的信息。與AR系統非常相似,PAE允許用戶在現實世界中處理和操縱虛擬物體,并同時看到眾多用戶之間的系統實時自動同步變化。這種虛擬和現實信息的實時無縫整合解決了網絡領域的復雜性,最終在大量用戶和不同社區之間提供了行動的準確性和及時性。

我們設計和開發了一個PAE系統原型,并分析了它如何支持海軍領域的網絡系統可視化和任務規劃操作。我們努力的主要目標是提高單用戶對水面資產上復雜網絡的理解和態勢感知,以及對設備當前網絡狀態的實時表示,從而使海軍部(DON)的任務規劃更加有效。在戰術層面上,這項研究將使我們進一步了解為支持有效的任務規劃而需要建立的技術基礎設施和流程。該系統有可能為美國防部所有部門帶來明顯的好處。

B.研究問題和動機

在美國海軍中,為了完成不同的任務,多個作戰群體依靠網絡群體來顯示網絡和通信狀態,以維持作戰畫面并提供通信。美國水面艦艇上的網絡和作戰系統的整合,在將信息和網絡狀態顯示為二維(2D)物體時,會在作戰人員中造成混亂。特別是當網絡設備發生意外變化時(即失去電力、拒絕服務、失去衛星覆蓋等),情況更是如此。設備的變化不僅影響到船上的通信,而且還影響到領導人的整體態勢感知。利用PAE系統整合三維(3D)數據和立體顯示,有可能通過實時自動顯示系統變化,大大幫助決策者了解復雜的網絡。

1. 網絡對通信至關重要(我們為什么關心)

網絡對于海軍資產之間在作戰層面的通信是至關重要的。如果沒有網絡設備,一艘水面艦艇就失去了與指揮系統(CoC)進行快速和準確溝通的能力。同樣,CoC也不能有效地將他們的信息傳達給各個水面艦艇。現在,我們可以把單艦沒有能力接收任務或發送狀態更新的想法,然后把可用的水面資產數量增加到一個多資產的航母打擊群(CSG)。這導致整個CSG中的五到六艘艦艇沒有能力與CSG指揮官就當前的任務甚至是日常行動進行溝通。即使海軍可以使用傳統的通信方式,如摩爾斯電碼和旗語信號來傳遞簡單的信息,但更復雜的信息必須以容易消化的格式來表示,以便決策者能夠了解當前的行動并迅速作出最佳決策。

通過在地面資產之間利用PAE系統,PAE系統有可能改善對復雜信息的理解,它將從紙質手冊或電子圖書館中獲取的二維信息轉化為三維可視化系統,并不斷更新三維可視化,以反映用戶的互動和該系統接收和生成的數據集的不斷更新。PAE系統也有可能訪問歷史數據,這在分析歷史趨勢或行動后報告(AAR)中可能是至關重要的。歸根結底,網絡領域值得采用新技術并尋找更好的解決方案。

2. 網絡設備狀態

為了了解單位層面的網絡設備狀態,戰略層面的決策者依賴于目前海軍傳統上使用簡報、聊天和語音報告的做法。然而,這些信息可能是過時的和不準確的,最終在需要了解網絡領域的服務和設備可用性的決策者中造成了混亂。網絡領域是一個復雜的領域,需要有效的管理和理解網絡操作,包括海軍艦隊之間的共享態勢感知(SA)。網絡設備在不斷變化,這取決于設備的狀態和水面艦艇的地理位置,這些都會影響連接性。

海軍操作員和領導傳統上使用各種格式的二維網絡拓撲圖和微軟文件來描述網絡系統的運行狀態并維護資源管理。這些二維模型最初是為了協助領導和操作員對網絡進行清晰的可視化;然而,隨著時間的推移,網絡資產的增加,從而增加了二維模型的復雜性,使得理解這些綜合系統變得更加困難。正因為如此,二維網絡圖和拓撲結構的顯示更成為理解新系統集成或系統變化的障礙。理解傳統的、印刷的二維信息(圖1)所花費的時間已經不能滿足操作人員和作戰人員的需要,也不能及時為決策者提供簡明清晰的信息。

3. 從PowerPoint幻燈片(2D信息)到增強現實(3D信息)

當代支持人類操作和決策的技術已經從過去適度的形式上有了飛速的發展。數據的表現形式現在可以采取三維信息的形式,不再是靜態的,而是動態變化的,支持用戶與相同數據集的實時互動。然而,今天大多數水面資產的重要通信包括不同級別的互聯網連接,便于分享PowerPoint簡報和接收在二維空間表示的語音或書面報告。這些傳統的通信途徑是艦艇當前作戰狀態的快照或對即將到來的任務的一系列預期;它們推動了美國海軍 "維持、訓練和裝備能夠贏得戰爭、阻止侵略和維護海洋自由的戰斗準備的海軍部隊 "的能力[3]。正如Timmerman的論文研究[4]中所認識到的,目前的二維可視化將復雜的操作技術(OT)系統顯示為網絡社區所習慣的平面信息技術(IT)圖,從而過度簡化了這些系統。另一種更優越的表示方法是在三維空間中顯示邏輯網絡元素,反映這些網絡的物理和邏輯的復雜性。通過研究數據的三維表示法,海軍可以加快關鍵的時間敏感數據的流動,這些數據原本是在二維空間,變成更容易理解的三維信息。

研究的總體目標是對PAE系統原型進行定量評估,通過可用性研究分析其如何支持海軍領域的網絡系統可視化和任務規劃操作。對復雜網絡及其相應拓撲結構的傳統理解是基于技術手冊中的藍圖的二維圖紙。這種信息的翻譯再由非主題專家(SME)通過PPT簡報(或口頭簡報)進一步稀釋,以告知高層決策者的指揮系統當前在水面資產上的通信狀態。最終,在二維信息、口頭或PowerPoint簡報和向高層決策者提供綜合信息之間會有時間損失。向決策者展示復雜系統的解決方案是通過PAE將二維信息表現為三維信息。

C. 研究問題?

本論文探討了以下問題。

  • 什么是有可能為任務規劃提供更有效支持的技術框架?

  • 網絡通信能力的三維可視化和PAE系統能否為網絡領域特定的任務規劃要素提供有效支持?

  • PAE系統能否有效地協助戰術層面的任務規劃任務,具體到網絡通信的管理?

D. 范圍?

本論文將限于開發一個PAE系統原型,以幫助可視化用戶研究所需的網絡基礎設施。可用性研究有兩個不同的目的:檢查用戶對海軍網絡戰斗空間的三維可視化的理解,跨越多個艦艇的通信和網絡基礎設施,并評估PAE在戰術層面上有效協助任務規劃的能力。雖然海軍領域的PAE的大概念被設想為支持許多作戰任務和訓練情況[1],并包括與作戰系統的互連性,但為本論文開發的原型系統將有足夠的功能來支持用戶研究。

E. 研究方法

本研究的研究方法包括以下步驟:

1. 進行文獻回顧。在AR、虛擬現實(VR)、SA、潛在多用戶環境、網絡可視化實踐以及應用于AR的持久性系統等領域進行文獻回顧。

2. 執行任務分析。進行任務分析,分析當前網絡操作、決策以及整個艦隊的設備和服務可用性的資源管理的做法。這包括但不限于詳細分析航母上的戰斗值班長(BWC)與巡洋艦或驅逐艦上的作戰指揮官(CRUDES)之間的報告和互動,當前的網絡可視化做法,以及PAE的有效性。我們還將對目前的報告標準和現有的SA任務和實踐進行詳細的任務分析。

3. 確定三維模型。確定一套支持虛擬環境和可用性研究所需的用戶任務的三維模型。

4. 設計和開發一個PAE原型。設計和開發一個支持可用性研究的PAE系統原型。

5. 設計和執行可用性研究。設計一個可用性研究,制定機構審查委員會(IRB)文件,對人類參與者進行研究,并檢查用戶執行所需任務的經驗。可用性研究的設計將針對網絡領域的可視化,側重于用戶更好地理解網絡設備如何與其他系統相互連接的能力,并實時描述網絡戰斗空間。此外,該設計將被定制為展示多艦情況下的決策,并衡量界面在支持任務規劃和資源管理方面的有效性。

6. 分析數據。分析研究中收集的人類性能數據,并檢查PAE原型系統的技術性能。

7. 確定建議和未來工作。收集并確定對未來可能的工作的建議。

F. 論文結構

第一章:導言。本章介紹了研究空間的最關鍵要素:領域、問題、研究問題、范圍和用于解決所有研究問題的方法。

第二章:背景和文獻回顧。本章強調了VR、AR、混合現實(MR)、持久性系統和SA的定義。文中回顧了關注AR和VR技術的研究經驗,并討論了多用戶環境、現有網絡可視化實踐和持久性系統與AR技術結合應用時帶來的潛力。

第三章:任務分析。本章分析了目前整個艦隊的網絡操作、決策以及設備和服務可用性的資源管理的做法。

第四章:系統原型。本章闡述了PAE系統的設計和開發、系統結構和模擬環境。本章還描述了訓練場景和一套支持建立可用性研究所需的虛擬環境的三維模型。

第五章。可用性研究。本章介紹了可用性研究的要素,文中還討論了從可用性研究中收集的數據集中得出的結果。

第六章:結論和未來工作。本章概述了本研究的主要內容,并對未來的工作提出了建議。

付費5元查看完整內容

軍隊為訓練、規劃和研究目的進行兵棋推演。人工智能(AI)可以通過降低成本、加快決策過程和提供新的見解來改善軍事兵棋推演。以前的研究人員根據強化學習(RL)在其他人類競技游戲中的成功應用,探討了將強化學習(RL)用于兵棋推演。雖然以前的研究已經證明RL智能體可以產生戰斗行為,但這些實驗僅限于小規模的兵棋推演。本論文研究了擴展分層強化學習(HRL)的可行性和可接受性,以支持將人工智能融入大型軍事兵棋推演。此外,本論文還通過探索智能體導致兵棋推演失敗的方式,研究了用智能體取代敵對勢力時可能出現的復雜情況。在越來越復雜的兵棋推演中,對訓練封建多智能體層次結構(FMH)和標準RL智能體所需的資源以及它們的有效性進行了比較。雖然FMH未能證明大型兵棋推演所需的性能,但它為未來的HRL研究提供了啟示。最后,美國防部提出了核查、驗證和認證程序,作為一種方法來確保未來應用于兵棋推演的任何人工智能應用都是合適的。

引言

兵棋推演是成功軍隊的寶貴訓練、規劃和研究工具。自然,美國(U.S.)國防部(DOD)計劃將人工智能(AI)納入兵棋推演。將人工智能融入兵棋推演的一種方式是用智能體取代人類玩家;能夠展示戰斗行為的算法。本論文研究了用智能體取代人類兵棋推演操作員的可行性、可接受性和適宜性。為此,本章解釋了為什么兵棋推演對成功的軍隊至關重要。

A. 軍方為什么要進行兵棋推演

軍隊進行兵棋推演是為了回答關于戰爭的關鍵問題,這些問題必須在實際沖突發生之前被理解。兵棋推演是利用對立的力量模擬實際的戰斗,并由人類的決策來決定[1]。雖然有廣泛的不同類型的兵棋推演,但它們都有一個共同的目標:"獲得有效和有用的知識" [2]。這種劃分很重要,因為兵棋推演的不同目的會導致玩家和游戲控制者的行為不同。圖1顯示了兵棋推演從訓練到分析到實驗的廣泛范圍。

1.訓練用的兵棋推演

最直接的兵棋推演類型是用于訓練的兵棋推演。大型參謀部使用建設性的模擬(數字兵棋推演)來鍛煉他們的參謀過程,并驗證他們的軍事準備。小型參謀部使用虛擬模擬器來訓練他們的戰斗演習和船員演習。軍隊進行這些兵棋推演是為了了解戰爭和鍛煉決策能力[3]。所有隊員的行動和決策一般都要符合已知的條令和戰術、技術和程序(TTP)。對于大型的參謀部演習,對手可能會突破TTP的界限來挑戰參謀部(例如,表現得更有侵略性,但仍然依賴相同的TTP)。

2.用于分析的兵棋推演

兵棋推演可用于分析,即 "確定在部隊對抗中會發生什么"[3]。這些是大多數軍事人員所熟悉的兵棋推演類型:作為行動方案(COA)分析的一部分而進行的兵棋推演。這些類型的兵棋推演允許對戰爭計劃、部隊結構或理論進行評估。在這些戰役中,雙方都要采用已知的理論和TTP,但 "在這些戰役中,創新精神可以自由發揮"[4]。

3.實驗性的兵棋推演

在譜的另一端是實驗性兵棋推演。在這些戰役中,雙方都可以使用新的力量、武器和/或戰術來探索潛在的未來戰爭[5]。歸根結底,組織進行實驗性兵棋推演是為了產生 "關于戰爭問題性質的知識"[2]。美國軍方在演習中整合了這些類型的兵棋推演,如美國陸軍未來司令部的聚合項目和聯合作戰人員評估。

4.兵棋推演的好處

盡管兵棋推演既不是預測性的,也不是對現實的完全復制,但它們確實提供了一些沒有實戰就無法獲得的東西:對戰爭中決策的洞察力。當為訓練而進行戰爭演習時,組織正在學習良好的決策是什么樣子的(包括過程和最終結果)。當為分析而進行戰爭演習時,計劃者正在評估他們在計劃期間做出的決定,以及在執行期間需要做出的潛在決定。

這些好處足以讓美國防部副部長羅伯特-沃克在2015年發布了一份備忘錄,呼吁在整個美國防部重新努力開展兵棋推演[6]。沃克副部長認為,兵棋推演有利于創新、風險管理和專業軍事教育。沃克認為,最終,兵棋推演將推動美國防部的規劃、計劃、預算和執行過程,這是告知國防部資源分配的方法。美國和它的西方盟友并不是唯一相信兵棋推演好處的軍隊。中國正在為兵棋推演投入大量資源,包括將人工智能融入兵棋推演[7]。

B.兵棋推演中的人工智能

人工智能提供了一個機會,通過降低成本、加快決策過程和提供新的見解來改善軍事兵棋推演。為兵棋推演中的許多角色雇用人類操作員是昂貴的。組織必須給自己的人員分配任務(使他們脫離正常的職能)或支付外部支持。這種成本可以通過將人工智能整合到兵棋推演中而消除。兵棋推演分析的速度只能和人類操作者一樣快。用智能體代替操作員可以加快兵棋推演的速度,并允許多個兵棋推演同時發生,從而實現更廣泛的分析。最后,智能體因其在游戲中的創造性而受到關注[8]。創造性的智能體可以通過探索人類戰爭者可能沒有考慮的可能性,使戰爭計劃、部隊編隊或戰術得到更好的分析。

美國國內的國家安全組織認識到將人工智能融入兵棋推演的潛力。人工智能國家安全委員會在其最終報告中主張立即將人工智能能力整合到兵棋推演中,以確保美國及其盟友保持與同行的競爭力[9]。美國陸軍未來的模擬訓練系統--合成訓練環境(STE)設想整合人工智能來監測和調整訓練場景的難度[10]。美國陸軍研究實驗室有許多項目在調查人工智能與軍事指揮和控制系統的整合。具體來說,他們正在探索使用人工智能的一個子領域,即強化學習(RL)來進行連續規劃,以開發 "藍色部隊的新計劃"[11]。連續規劃將需要一個能夠評估其計劃的智能體,可能通過兵棋推演。

基于其他RL智能體在人類競技游戲中的成功,如《星際爭霸II》[12]、《古人防御》(DotA)[13]和圍棋[14],多名研究人員正在研究用于戰爭游戲的RL智能體。像《星際爭霸II》和DotA這樣的實時戰略(RTS)游戲最能代表兵棋推演。與兵棋推演類似,RTS游戲需要在有限的信息環境中進行長期的目標規劃和短期的戰術決策。以前的研究表明,RL智能體可以在兵棋推演中復制理想的戰斗行為[5], [11]。根據Kania和McCaslin的說法,谷歌的AlphaGo成功擊敗了世界上最好的圍棋大師,證明了人工智能可以應用于兵棋推演[7]。

C. 問題陳述

雖然以前的研究已經證明RL智能體可以產生戰斗行為,但實驗僅限于小型交戰。研究人員只要求RL智能體控制三到五個下屬單位。強化學習智能體將需要成功擴展,以滿足涉及幾百個單位的大型兵棋推演的規模要求。

問題是,隨著兵棋推演中單位數量和類型的增加,信息量和可能的動作數量變得難以解決。Newton等人提出可擴展性是一組目標:速度、收斂和性能,同時保持在一組約束條件下:隨著項目規模的增加,成本、計算能力和時間[15] 。分層組織是擴展的一種方法。本論文將研究分層強化學習(HRL)的可擴展性。換句話說,任何可行的、可接受的人工智能集成到戰爭游戲中,隨著戰爭游戲中單位數量的增加,必須仍然顯示出理想的戰斗行為。

除了將人工智能整合到軍事兵棋推演中的可行性和可接受性之外,這種整合還需要是合適的。開發和執行一個失敗的兵棋推演是有可能的,因為從中得出的知識是無效的或沒有用的。Weuve等人[16]解釋了可能導致兵棋推演失敗的不同途徑,他們稱之為兵棋推演病癥。以取代人類操作者為目的的智能體的設計和實施,需要防止兵棋推演的病態,從而確保有效的結果。

這導致了以下的研究問題。HRL是否允許智能體在不損失性能的情況下增加合作單位的數量和有效性?什么框架可以確保智能體的設計和應用正確,以滿足兵棋推演的目的?

D. 研究范圍

本論文延續了[17]和[18]對Atlatl戰斗環境中RL的調查。Atlatl是一個離散的、基于六邊形的兵棋推演,模擬陸地作戰行動。最初的研究使用一個簡單的多層感知器[17]成功地在RL智能體中產生了戰斗行為。隨后的研究使用卷積神經網絡(CNN)架構在復雜的地形和動態的對手中研究RL智能體[18]。

雖然有廣泛的HRL方法,但本研究的重點是封建多智能體層次結構(FMH)。在FMH中,一個單一的R智能體(即經理),將任務分配給一系列被稱為工人的下級RL智能體[19]。本論文比較了在Atlatl中越來越大的場景中采用基于規則的智能體、單一RL智能體和FMH所需的資源和有效性。

兵棋推演是由玩家和裁判員組成的[1]。友軍單位的玩家被稱為藍軍,他們的對手被稱為紅軍,任何一個玩家之外的平民或軍事單位被稱為綠軍。雖然有可能通過使用所有玩家和裁判員的智能體來實現兵棋推演的完全自動化,但本論文只評估了對單個玩家的替換。

本論文還研究了用智能體替換對方部隊(OPFOR)即紅色部隊時可能出現的復雜情況。討論了具體的兵棋推演病癥,并提出了緩解這些病癥的方法。美國防部的驗證、核實和認證(VV&A)框架被應用于通過RL對OPFOR的建模。

E. 研究結果

本論文發現,當FMH智能體以分布式方式進行訓練時,FMH智能體未能比單一RL智能體表現得更好。當經理和工人在同一環境中訓練時,FMH智能體的學習能力有所提高。然而,工人的不一致行動使經理無法制定最佳策略。此外,FMH的訓練要求超過了單個RL智能體的要求,這抑制了FMH擴展到大型軍事兵棋推演的能力。最后,本論文發現,將人工智能整合到軍事兵棋推演中的方法適合于像美國防部的VV&A框架那樣的過程。否則,基于模型的去太原的病癥會使兵棋推演的目標失效,并對美軍產生負面影響。

F. 論文對研究的貢獻

本論文通過進一步研究在建設性模擬中采用完全自主的智能體,對美國政府有直接好處。完全自主的兵棋推演智能體,能夠在多個層次上運作,需要支持兵棋推演的全部范圍。這很容易延伸到軍事規劃期間的決策支持工具,協助規劃者快速評估不同的COA。此外,探索在兵棋推演中使用智能體的適宜性將促進兵棋推演界采用人工智能。

付費5元查看完整內容

現代戰術戰爭越來越復雜,需要更快和更有效的決策。為了支持這些快速決策,有人提出使用自動決策輔助工具作為解決方案(Johnson 2019, 63)。鑒于現代戰場的復雜性質,決策輔助工具需要大量的數據。為了支持決策輔助工具的發展,機器學習代表了一種支持有效決策輔助工具的潛在方法。這項研究的目標是進行實驗,探索應用機器學習來幫助作戰人員進行復雜的激光武器系統與無人機群的交戰決策。為了實現這一目標,研究了激光武器系統和無人機威脅,并選擇了一個仿真程序來生成可用于訓練機器學習算法的交戰數據。

這篇論文研究了威脅交戰方法,確定了有效操作激光武器系統必須考慮的決策因素,以及人工智能和機器學習在支持決策方面的應用。對無人駕駛飛行器或無人機的威脅進行了基礎研究,以確定風險并支持交戰方法的發展。該基礎研究支持選擇場景并將其編入兵棋和仿真軟件Swarm Commander Tactics,該軟件用于模擬戰斗。這項研究進行了一項實驗,通過建模和仿真交戰場景來開發機器學習算法的概念驗證,以收集訓練數據并使用這些數據來訓練機器學習算法。訓練算法的目的是為了確定使用模擬艦載激光武器時的生存能力和成功的交戰方法。在生成模擬交戰數據后,使用模擬交戰測試了多種機器學習技術,以確定機器學習預測是否能夠支持基于模擬數據的自動決策輔助。這項研究研究了機器學習的算法方法以及開發和訓練機器學習系統的過程。

總的來說,對多種機器學習技術進行了評估,以支持在模擬交戰中預測成功的無人機交戰方法,發現最適合的是樹狀分類技術。實驗證明了機器學習在這個問題領域的應用,通過建模和模擬,機器學習算法訓練是成功的。最終機器學習算法預測的結果,在預測基于敵人類型、數量和激光武器系統攻擊方法的交戰結果時,總體準確率為96%;假陽性預測,即算法預測的勝利是失敗的,為2.1%。這些結果表明,一個復雜的戰斗空間模擬軟件可以用來準確地訓練預測性機器學習算法。

這項研究表明,將兵棋模擬與機器學習算法相結合,為支持復雜的決策和交戰提供了一種機制,由激光武器系統來對付敵人的無人機群。通過實施訓練有素的機器學習算法,可以分析具有異質無人機群的復雜戰斗空間,從而選擇適當的交戰技術,從而優化目標交戰的生存能力和有效性。這篇論文的主要研究目標是探索機器學習方法在識別和支持模擬艦載激光武器系統的有效目標選擇和交戰方法方面的功效。這項研究是生成決策輔助工具的一個組成部分,以支持無人機群與激光武器系統的交戰。現代戰斗空間的復雜性質需要決策輔助工具來減少作戰人員的認知負擔。

付費5元查看完整內容

現代戰術戰爭需要迅速而有效的決策和行動,以便在經常是高度動態和復雜的戰區保持競爭優勢。需要考慮的因素的數量因不確定性、事件的快速發展和人為錯誤的風險而放大。自動化、人工智能和博弈論方法的潛在應用可以為作戰人員提供認知支持。這項研究以自動兵棋推演輔助決策的形式探索了這些應用。該團隊為這個未來的系統開發了一個概念設計,并將其稱為兵棋推演實時人工智能輔助決策(WRAID)能力。

頂點項目的目標是探索自動化、人工智能和博弈論的應用,作為支持未來WRAID能力的方法。該團隊為WRAID能力開發了需求、概念設計和操作概念。該小組確定并探索了可能對未來實施WRAID能力構成障礙的挑戰性領域。該小組調查了與使用人工智能來支持戰爭決策有關的倫理挑戰和影響。

本報告首先對與WRAID能力相關的主題進行文獻回顧。文獻回顧從人工智能的回顧開始,提供了一個關于人工智能如何工作以及它能夠完成什么類型任務的概述。文獻綜述探討了人機協作的方法,以支持未來指揮官和人類用戶與WRAID系統之間的互動。需要翻譯指揮官的意圖,并讓WRAID將有意義的輸出傳達給指揮官,這需要一個強大的界面。審查包括傳統的兵棋推演,以研究目前的模擬兵棋推演是如何進行的,以便深入了解,未來的WRAID能力如何能夠實時復制兵棋推演的各個方面,并認為以前的兵棋推演可以為人工智能和機器學習(ML)算法的發展提供訓練數據。ML算法的訓練需要大量的代表性數據。文獻回顧研究了人類的認知負荷,以深入了解人類大腦的認知技能和上限;并確定人類思維的極限,以顯示人工智能可能提供的支持。文獻綜述中涉及的最后一個主題是,傳統的計劃和決策,以了解目前在軍事上如何制定戰術行動方案。

該小組進行了需求分析和利益相關者分析,探索WRAID能力如何支持作戰人員。該小組在需求分析的基礎上為WRAID系統開發了一套需求。這些要求被歸類為:硬件/軟件,人機界面,和道德規范。第一階段的分析結果包括 (1)戰爭的復雜性需要發展一種未來的WRAID能力,這種能力利用自動化方法,包括人工智能、ML和博弈論,(2)WRAID能力需要大量的計算能力和復雜的軟件算法,(3)實現未來WRAID系統的挑戰將是技術和道德的。

未來WRAID系統的概念設計是基于需求分析的。概念設計被記錄在一套系統模型中,包括背景圖、系統視圖、功能工作流程圖和操作視圖。該團隊開發了一個作戰場景,以支持對WRAID能力如何在作戰中使用。

在開發WRAID的過程中,預計會有一些路障。開發WRAID系統的技術是存在的,然而,研究小組發現數據挑戰、人工智能訓練、程序限制和當前系統工程的局限性將是需要解決的障礙。數據挑戰指的是獲得足夠的數據集的能力,這些數據集代表了訓練ML算法所需的真實世界的戰術行動和兵棋推演分析。程序性挑戰包括國防部實施網絡安全、機密數據、數據庫訪問和信息分配協議的能力。系統工程方面的障礙是需要新的方法來設計安全和可靠的人工智能系統,如WRAID能力。將需要SE方法來處理不可預見的故障模式,并在系統生命周期的早期確定根本原因。

對像WRAID能力這樣的人工智能系統的倫理考慮是系統發展的一個重要因素。開發系統以取代倫理學,將使系統更有可能被部署。有幾個有道德問題的自主武器系統被拉出來作為WRAID能力的道德對話的基礎。通過一個示例場景,對道德狀況進行定性分析,以了解在部署WRAID能力時可能出現的道德問題。倫理學在未來的技術中發揮著巨大的作用;從一開始就考慮到倫理學,建立技術是很重要的。

未來的重點需要放在繼續對想象中的WRAID系統采取正規的系統工程方法。WRAID系統需要一個強大的數據集,需要收集和注釋;收集的定性兵棋推演數據越多,WRAID系統的可行性和準確性就越高。與軍事部門的合作對于最大化WRAID的利益至關重要,例如情報和偵察組織。WRAID的模擬將是完善系統要求和創建現實模型的關鍵。關于如何使用WRAID的培訓和文檔應該同時開發,所以利益相關者,特別是指揮官已經準備好,知道如何使用這個新工具。未來的研究領域包括認知工程、基于正式模型的系統工程和人機協作。

隨著目前技術進步的速度和外國的目標,人工智能將在未來的沖突和戰爭中發揮作用。自上而下的指令將需要設計和實施WRAID能力:提供大量的資源,解決操作和文化變化,重組系統工程,并確保網絡安全和收購變化。實現未來的WRAID能力并不是一個微不足道的任務。然而,它對確保現在和未來的戰斗空間優勢至關重要。

付費5元查看完整內容

摘要

兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。

索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。

I. 引言

兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。

最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。

由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。

Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。

Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。

Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。

?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。

Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。

Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。

Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。

在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。

我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。

該程序將在接下來的章節中進一步討論。

付費5元查看完整內容

人工智能(AI)的進展,特別是深度強化學習(RL),已經產生了能夠達到或超過專業人類水平的系統。這項研究探索了RL訓練人工智能agent的能力,以實現小型戰術交戰中的最佳進攻行為。agent在一個簡單的、總體級別的軍事建設性模擬中接受了訓練,其行為得到了規模和經濟力量戰術原則的驗證。結果顯示,所應用的戰斗模型和RL算法對訓練性能的影響最大。此外,特定的超參數訓練也有助于行為的質量和類型。未來的工作將尋求在更大和更復雜的戰斗場景中驗證RL的性能。

付費5元查看完整內容

【標 題】

Wargaming in Professional Military Education: Challenges and Solutions

職業軍事教育中的兵棋推演:挑戰與解決方案

【作 者】

美國海軍陸戰隊埃里克·沃爾特斯(Eric M. Walters)上校(退役)

【摘 要】

鑒于強調在專業軍事教育中使用兵棋推演,學校、作戰部隊和支持機構的教官——尤其是那些本身沒有經驗的兵棋推演者——如何去做呢?本文解釋了在經驗豐富專家的幫助下,為選定、修改或內部設計的嚴格兵棋式推演制定理想的學習成果的必要性。總結了最近的相關學術成果,它提供了促進協作對話的基本術語和概念,并就這種動態和沉浸式教學方法的常見但可避免的陷阱提供了建議。

【正 文】

對于那些認為兵棋推演不僅僅是一種娛樂消遣的人來說,商業兵棋推演曾經是——而且可以說仍然是——一種小眾愛好。在 20 世紀和 21 世紀初的歷史中,只有相對較小比例的軍人和學者經常進行所謂的嚴格式兵棋推演。過去,這一想法受到制度性的抵制,在職業軍事教育(PME)中使用一些人認為是兒童游戲的東西;雖然最近這種恥辱感有所減輕,但對于外行來說,兵棋推演的學習障礙仍然很高。兵棋推演可能很難學習,甚至更難戰勝有能力的對手。然而,我們已經到了 2021 年,軍事兵棋推演似乎正在 PME 學校、作戰部隊甚至支持機構中復活。海軍陸戰隊司令大衛 H. 伯杰將軍在他的指揮官規劃指南中,強調了在 PME 中練習軍事決策的必要性,這是教育兵棋推演的主要目的。但一個事實仍然存在。對于那些有興趣使用和設計兵棋推演來教授軍事判斷力的人來說,這種教學方法似乎很難有效實施。學術界的成功案例涉及作戰部隊中已經是兵棋推演者的教授、教官和海軍陸戰隊領導人。不是兵棋推演者但教軍事決策的人如何弄清楚要使用什么兵棋推演?如何使用它?各種可用游戲的優點和局限性是什么?整合兵棋推演和課程有哪些挑戰,如何克服這些挑戰?本文旨在幫助那些不熟悉兵棋推演的人定位,并就在教授決策中的軍事判斷時使用它們的經過驗證的最佳實踐提供建議。

提 綱

1 教育者如何使用游戲來教學生?
1.1 了解戰術、作戰和戰略中力量、空間和時間之間的關系
?1.2 在兵棋推演中模擬現實“決策環境”以解決決策困境
?1.3 在兵棋推演環境中體驗摩擦、不確定性、流動性、無序和復雜性的交互動力學
1.4 鍛煉創造性和批判性思維:準備、參與和分析兵棋推演活動

2 哪種類型的兵棋推演最適合學習目標?
?2.1 角色扮演游戲 (RPG)
? ?2.2 研討會矩陣游戲
2.3 系統游戲
?2.4 紙牌游戲

3 哪種情況最適合使用——歷史情景還是假設情景?

4 兵棋推演教學——挑戰與解決方案
?4.1 克服設計偏見
?4.2 時間和復雜性的挑戰
?4.3 對教師要求的考慮
?4.4 兵棋推演支持單位教育和凝聚力

付費5元查看完整內容
北京阿比特科技有限公司