人工智能(AI)有可能影響所有領域和大規模的軍事行動。本章探討了人工智能系統如何影響準備和開展軍事行動的主要工具,以及如何受其影響。本章分析和討論了人工智能在戰略、條令、規劃、交戰規則和命令方面的多層次影響。采取了一個廣泛的分析角度,能夠根據新的政策和技術發展,以及對政治、軍事、法律和道德觀點的考慮,對這個問題進行總體審查。因此,本章確定了機遇、挑戰和開放性問題,并提出了總體性的意見。提供了洞察力和途徑,以推進對人工智能在軍事行動中的適當整合、管理和使用的進一步思考、研究和決策。
人工智能(AI)的軍事應用有可能影響所有領域和大規模的軍事行動的準備和進行。人工智能系統可以越來越多地支持和取代人類完成軍事任務,因為它們變得更快、更準確,并能夠處理更多的信息和更高的復雜程度。這可能促進軍事行動速度的提高和更好的軍事決策,最終為擁有高性能人工智能的武裝部隊提供顯著優勢。人工智能的軍事用途甚至可能導致軍事事務的另一場革命,盡管這種發展將取決于其他因素而不僅僅是技術。
人工智能可以被用于各種軍事目的。在多維戰場上,人工智能技術可以被用作傳感器、規劃者和戰斗機,或兩者的結合。更具體地說,人工智能的軍事應用可以從支持情報、監視和偵察(ISR)的系統到自主導航和目標識別系統。這可能導致軍事人員和人工智能系統之間不同形式的互動,以及將軍事任務委托給人工智能系統的不同層次。例如,人工智能系統可以在決策過程中協助指揮官和士兵,無人駕駛的人工智能系統可以與有人駕駛的系統一起協作,人工智能系統可以在最少的人類監督下自主運行。 雖然目前只存在狹義和特定任務的人工智能,但正在大力發展人工通用智能(AGI)--具有類似于人類思維的廣泛領域推理能力的系統。 這與人工智能系統的自主性不斷增強的趨勢是一致的。
鑒于人工智能的特殊性和未來的應用,出現了一個問題,即人工智能的引入將如何影響軍事行動。本章通過評估人工智能如何影響準備和進行軍事行動的主要工具并受其影響來探討這一問題。具體而言,本章分析和討論了人工智能在戰略(第1分章)、條令(第2分章)、規劃(第3分章)、交戰規則(第4分章)和命令(第5分章)方面的多層次影響。以下各章將對每個工具進行一般性解釋,然后討論這些工具與人工智能的具體相互關系。
本章采取了一個廣泛的分析角度,包括了部隊整合和指揮與控制(C2)等軍事概念的各個方面,但并不限于此。 這使得在新政策和技術發展的基礎上,以及在考慮政治、軍事、法律和倫理角度的情況下,能夠對這個問題進行更全面的審查。因此,本章確定了機遇、挑戰和開放性問題,并提出了總體性的意見。本章最后發現了人工智能與準備和進行軍事行動的主要工具之間的動態相互關系,并將人類操作員和人工智能之間的互動定位為核心基本問題。
由于軍事人工智能是最近才出現的,因此對納入人工智能的未來軍事行動的任何分析只能是暫時性的,并基于這樣一個前提,即目前對具有高度自主性的人工智能,進行操作化的挑戰將被克服。然而,鑒于技術的快速發展,本章為推動進一步的思考、研究和政策制定提供了見解和途徑,以便在軍事行動中適當整合、管理和使用AI。
軍事行動為國家的政治和戰略目標服務。在戰爭的三個層面(戰略、戰役和戰術)中,軍事戰略是最高的。它可以被描述為 "戰爭的安排 "或 "戰爭的方向"。它為軍事行動提供依據,處于政治和軍事領域的交界處。 從本質上講,軍事戰略是一項計劃,它將最終目標與實現這一目標的手段聯系起來。更具體地說,軍事戰略可以被定義為 "使用武裝力量來實現軍事目標,進而實現戰爭的政治目的 "或 "在戰爭中達到預期結果的概念和實際考慮的表現,涉及對特定敵人的組織、運動和戰術、戰役和戰略使用或承諾的力量。國家安全和國防戰略可以為軍事戰略建立總體框架,而且經常可以在白皮書中找到。
各國還沒有公開通報他們如何使用或打算使用人工智能來制定軍事戰略。因此,在現階段,分析人工智能對軍事戰略的影響以及反之亦然,必須依靠國防白皮書和各國的人工智能戰略。一般來說,雖然在過去幾年中,大約有50個國家發布了關于人工智能在多個部門(特別是民用和工業部門)的使用、發展和融資的官方人工智能戰略,但這些文件一般不關注或幾乎不提及國防應用。然而,主要軍事強國最近通過了與軍事人工智能有關的國家戰略或類似文件,表明各國已經意識到軍事人工智能的戰略重要性,并指導他們努力開發、采購和將人工智能系統納入其武裝部隊。
美國國防部(DOD)在2018年發布了一項人工智能戰略,該戰略強調了優先發展的領域,確定了應如何與民間社會組織建立發展伙伴關系,并制定了一項關于人工智能機器倫理的政策生成計劃。美國人工智能國家安全委員會在2021年發布了一份報告,提出了與人工智能有關的國家防御戰略。 目標是到2025年達到人工智能準備,這意味著 "組織改革,設計創新的作戰概念,建立人工智能和數字準備的性能目標,并定義一個聯合作戰網絡架構",以及贏得"技術競爭"。
俄羅斯到目前為止還沒有公布關于軍事人工智能的政策,但正在積極資助私營和公共部門的研究。2018年,俄羅斯舉行了一次會議,提出了十項政策建議(AI: Problems and Solutions 2018),這些建議構成了其人工智能戰略的非官方基礎。
歐洲國家在人工智能戰略方面處于類似的階段。在英國2021年國防白皮書通過后,英國國防部(MOD)在2022年通過了《國防人工智能戰略》。 該戰略規定了國防部采用和利用人工智能的速度和規模,與工業界建立更強大的伙伴關系,并開展國際合作,以塑造全球人工智能的發展。 法國沒有采取這樣的戰略,但其《國防人工智能報告》強調了將人工智能納入其武裝部隊的戰略優勢,如分析和決策的速度,優化作戰流程和后勤,以及加強對士兵的保護,并將機器學習歸類為研究和開發(R&D)的主要領域。
雖然更多的國家發表了關于人工智能的分析和政策,但卻沒有對未來的軍事戰略提出見解,北約在2021年通過了其人工智能戰略。該戰略是整個聯盟的人工智能準備和運作的基礎,隨后是北約的自主實施計劃,包括在2022年創建數據和人工智能審查委員會。 歐盟至今沒有采取類似的戰略,只限于在2020年的《人工智能、機器人和相關技術的倫理問題框架》中鼓勵與軍事有關的人工智能領域的研究。
由于各國關于人工智能或與人工智能相關的國防戰略并沒有明確說明人工智能將如何影響軍事戰略,因此可以根據未來可能使用人工智能進行戰略決策的跡象來確定各自的期望。人工智能在戰爭戰略層面的應用實例是對核指揮、控制、通信和情報(C3I)架構的貢獻;導彈和防空系統的目標獲取、跟蹤、制導系統和識別;網絡能力;以及核和非核導彈運載系統。
對于軍事戰略來說,最重要的是,人工智能的應用可以幫助決策者監測戰場并制定方案。事實上,可以開發人工智能來預測其他國家的行為和反應,或生成正在進行的沖突的進展模擬,包括兵棋推演模型。人工智能還可以用來評估威脅,提供風險分析,并提出行動方案,最終指導決策者采取最佳對策。 此外,人工智能可以支持武裝部隊的方式和手段與既定的政治和戰略目標相一致,這是軍事戰略的一個主要功能。這種發展的一個后果是軍事進程的速度和質量都會提高。雖然這將為那些擁有高性能人工智能的國家提供巨大的優勢,但這也可能迫使武裝部隊越來越多地將軍事行動的協調工作交給人工智能系統。
將人工智能用于軍事戰略也可能導致挑戰,包括預測性人工智能需要無偏見和大量的數據。可靠的人工智能系統將需要用龐大的數據集進行訓練。 此外,專家們警告說,人工智能可能會加劇威脅,改變其性質和特點,并引入新的安全威脅。 一項關于將人工智能納入核C2系統的桌面演習表明,這種系統 "容易受到惡意操縱,從而嚴重降低戰略穩定性"。這種脆弱性主要來自于第三方使用技術欺騙、破壞或損害C2系統所帶來的風險,這表明系統安全對AI用于軍事戰略的重要性。
另一個重要的挑戰是,人工智能可能會加快戰爭的速度,以至于人類將不再能夠跟隨上述速度的發展,最終導致人類失去控制。 這種現象被稱為 "戰場奇點 "或 "超戰爭",可能導致戰略錯誤和事故,包括非自愿的沖突升級。即使這種風險能夠得到緩解,對人工智能的更多依賴也會減少軍事戰略中人的因素,特別是心理學和人的判斷。觀察家們認為,這可能會導致 "人工智能如何解決人類提出的問題,以及人類如果擁有人工智能的速度、精度和腦力會如何解決這個問題 "之間的差距。 然而,專家們也提出,戰略的制定需要對價值的理解,成本的平衡,以及對戰爭所處的復雜社會系統的理解,從而大大限制了人工智能在軍事戰略上的應用。還有一種可能是,當敵人擁有人工智能系統提供的高水平的理性預測能力時,決定性的因素將不是人工智能系統的能力,而是人類的判斷,特別是關于關鍵和困難的選擇。然而,這假定了某種程度的有意義的人類參與。
總之,主要的軍事大國正在投資開發、獲取和操作其武裝部隊的人工智能,因為人工智能有可預見的戰略優勢。然而,各國的戰略并沒有表明人工智能將如何被用于軍事戰略。然而,根據目前的技術發展,可以預計,人工智能將加強軍事戰略的制定和戰略決策,特別是人工智能能夠處理更多的數據,并以比人類和簡單計算更高的精度和速度來理解復雜性。一個可能的結果是軍事行動的加速,這可能會增加武裝部隊整合人工智能的壓力,使人類的判斷力邊緣化。因此,擁有和使用人工智能本身就成為一種戰略資產和目標。同時,國家對軍事人工智能的投資可能成為一種戰略責任,因為它可能增加破壞穩定的軍備競賽、誤解和誤判的風險。未來的軍事戰略需要考慮到這種風險。
總之,主要的軍事大國正在投資開發、獲取和使用人工智能,因為人工智能有可預見的戰略優勢。然而,各國的戰略并沒有表明人工智能將如何被用于軍事戰略。然而,根據目前的技術發展,可以預計,人工智能將加強軍事戰略的制定和戰略決策,特別是人工智能能夠處理更多的數據,并以比人類和簡單計算更高的精度和速度來理解復雜性。一個可能的結果是軍事行動的加速,這可能會增加武裝部隊整合人工智能的壓力,使人類的判斷力邊緣化。因此,擁有和使用人工智能本身就成為一種戰略資產和目標。同時,國家對軍事人工智能的投資可能成為一種戰略責任,因為它可能增加破壞穩定的軍備競賽、誤解和誤判的風險。未來的軍事戰略需要考慮到這種風險。
軍事條令進一步指導軍事行動的準備和執行。軍事條令可以被定義為 "從制度化的角度來看,執行軍事任務和職能普遍接受的方法"。因此,它代表了'在戰爭和軍事行動中什么是有效的制度化信念'。條令一般包含三個關鍵要素,即理論(什么是有效的,什么會導致勝利)、權威(條令必須被認真對待)和文化(組織及其成員是誰)。 因此,條令回答了 "軍隊認為自己是什么('我們是誰'),它的任務是什么('我們做什么'),如何執行任務('我們怎么做'),以及歷史上如何執行任務('我們過去怎么做')"等問題。 《美國陸軍條令入門》將條令描述為由基本原則、戰術、技術、程序以及術語和符號組成。
鑒于條令的目的和功能,人工智能在發展軍事條令方面的作用可能有限。它可能會繼續由人類創建和修訂。人工智能的具體作用可能僅限于監測武裝部隊的進程與他們的條令是否一致,以確定過去的工作,并支持對條令的質量和影響進行評估。為了有效地告知負責定義條令的軍事人員,這可能需要透明和可解釋的人工智能方法,否則軍事人員將無法理解并做出適當的決定。
然而,條令在設定人工智能的使用和人類互動的基本原則、價值和參數方面具有重要作用。值得注意的是,軍事條令是界定武裝部隊如何感知、理解和重視人工智能的適當手段。由于人工智能的高度自主性,武裝部隊可能需要明確人工智能是否被視為一種技術工具,或者說是一種代理手段。在這個意義上,條令可以定義武裝部隊是否將人工智能視為簡單的數學、技術系統,或者說是具有認知能力的工具。條令可以定義人類在組織中的價值、地位和作用,以及使用人工智能的過程。由于軍事行動和戰爭是人類為達到目而發起的行動,條令可以明確這意味著什么。在這種情況下,條令也可以定義人類與人工智能系統互動的價值和原則,包括人工智能需要為人類服務而不是相反。
同樣,條令也是定義人工智能系統的開發、獲取和使用的道德標準工具。由于軍事條令是根據國際法起草的,并且通常呼吁武裝部隊成員尊重國際法,因此條令也可以定義人工智能系統和運營商遵守國際法的方式。條令是對人工智能和人機協作施加限制的重要工具,適用于各軍種和武裝部隊的所有成員。這可能意味著對人工智能系統進行有意義的人類控制的一般要求,或禁止將某些功能授權給人工智能系統。
更具體地說,條令可以為人工智能融入組織流程設定原則和參數。例如,從事數據整合、優先排序的人工智能系統可能需要修訂軍事條令和武裝部隊使用和收集信息的準則。雖然僅限于觀測的任務系統需要有限的條令調整,但有更多 "積極 "任務的系統可能需要更具體的指導方針,如保障措施、自主程度、與操作者的溝通以及與人類部隊的互動。此外,有人認為,戰術應用主要是基于規則的決策,而戰役和戰略決策往往是基于價值的。每個級別的首選決策過程類型以及這種過程是否應該標準化,可以在條令層面上確定。
迄今為止,各國還沒有公布專門針對人工智能系統的軍事條令。英國國防部關于無人駕駛飛機系統的聯合條令是目前唯一公開的涉及軍事系統自主性的軍事條令。 然而,未來關于人工智能或與人工智能相關的軍事條令可能會根據人工智能的道德使用政策來制定。 事實上,這種政策定義了相關的價值觀、原則和使用軍事人工智能的形式,并為其提供指導,其目的與軍事條令類似。一些國家和組織最近通過了這種關于軍事人工智能道德使用的政策,包括北約。
美國國防部為人工智能的發展和使用采用了五項道德原則。系統需要負責任、公平、可追蹤、可靠和可治理。這些原則規定,美國防部人員負責人工智能系統的 "開發、部署和使用",因此必須表現出良好的(人類)判斷能力。此外,美國防部明確確定,必須努力將人工智能運作的數據偏見降到最低。 此外,美國國防部2012年3000.09指令確定了美國對致命性自主武器系統(LAWS)的立場。它定義了致命性自主武器系統,確定了三類智能武器系統(自主、半自主和人類監督的自主系統),并為其行動設定了一般界限,以及有關人類操作員的作用和法律審查的標準。
同樣,歐盟議會也通過了一份題為《人工智能:國際法的解釋和應用問題》(人工智能的民事和軍事使用準則),其中特別討論了人工智能的軍事應用。 該報告包含了關于歐盟成員國開發和使用軍事人工智能應用的強制性準則以及一般性結論。首先,報告解釋說,人工智能不能取代人類決策或人類責任。 第二,為了合法,致命性自主武器系統必須受到有意義的人類控制,要求人類必須能夠干預或阻止所有人工智能系統的行動,以遵守國際人道主義法(IHL)。第三,人工智能技術及其使用必須始終遵守國際人道主義法、國際刑事法院羅馬規約、歐盟條約、歐盟委員會關于人工智能的白皮書,以及包括透明度、預防、區分、非歧視、問責制和可預測性等原則。
2021年4月,法國道德委員會公布了一份關于將致命性自主武器和半自動武器納入武裝部隊的意見。盡管其內容尚未得到國防部長的批準,但它代表了未來潛在的軍事條令。該文件重申了人類對自主武器的致命行動保持一定程度控制的重要性,并聲稱法國不會開發也不會使用完全自主的武器。同樣,澳大利亞發表了一份題為《國防中的道德人工智能方法》的報告,其中討論了與軍事人工智能應用有關的道德和法律考慮,但并不代表官方立場。
總之,除了評估和修訂之外,人工智能不太可能對創建軍事條令有實質性的作用,因為條令的作用是定義和規范軍事組織問題以及與信仰、價值觀和身份密切相關軍事行動的各個方面。然而,正是由于這種功能,條令在確定武裝部隊與人工智能的基本關系方面具有重要作用。特別是,條令適合于籠統地規定人工智能將(不)用于哪些任務,人工智能將(不)如何使用,以及組織及其成員如何看待和重視人工智能。最重要的是,鑒于人工智能的特點,條令可以確定人類如何并應該與人工智能互動,以及何種組織文化應該指導這種關系。因此,條令可以為進一步的軍事指令和程序設定規范性框架。各國的道德準則可以作為軍事條令的基礎并被納入其中。
根據各自的軍事條令制定的作戰和行動計劃,是根據現有手段實現軍事目標的概念和指示。規劃反映了指揮官的意圖,通常包括不同的行動方案(COA)。存在各種軍事計劃和決策模式,但北約的綜合作戰計劃指令(COPD)對西方各種模式進行了很好的概述和綜合。 例如,加拿大武裝部隊遵循六個步驟,即啟動、定位、概念開發、決策計劃制定和計劃審查。一般來說,規劃包括 "規劃和安排完成特定COA所需的詳細任務;將任務分配給不同的部隊;分配合適的地點和路線;刺激友軍和敵軍的戰斗損失(減員);以及重新預測敵方的行動或反應。
雖然規劃需要考慮到人工智能系統在軍事行動中的使用,但人工智能最有可能被用于規劃本身。用于軍事規劃或與之相關的人工智能應用是ISR系統、規劃工具、地圖生成機器人,以及威脅評估和威脅預測工具。 與規劃有關的進一步人工智能應用可能包括大數據驅動的建模和兵棋推演。例如,美國陸軍為其軍事決策過程(MDMP)開發了一個程序,該程序采用 "高層次的COA"(即目標、行動和順序的草案),并根據這個總體草案構建一個詳細的COA,然后測試其可行性。這表明,人工智能可以發揮各種功能,從COA提議到解構和測試。
人工智能應用可能會對計劃產生強烈影響。規劃軍事行動是一個緩慢而繁重的過程,它依賴于對 "結果、損耗、物資消耗和敵人反應 "的估計。它涉及到對特定情況的理解、時空分析和后勤問題。然而,有限時間和勞動力限制了可以探索的選項數量。此外,預測可以說是"作戰指揮官最棘手的任務之一"。只要能提供足夠數量和質量的數據,人工智能在預測的質量和速度上都可能會有出色的表現。數據分析能夠進一步處理比人類計算更多的信息,最終減少"戰爭迷霧"。由于人工智能程序可以將行動分解為具體的任務,然后相應地分配資源,預測敵人的行動,并估計風險,因此人工智能的使用將提高決策的總體速度和準確性。增加可考慮的COA數量將進一步使規劃過程得到質量上的改善。
然而,使用人工智能進行規劃也有潛在的弊端。由人工智能驅動的更快規劃所帶來的戰爭速度提高,可以說會減少決策者的(再)行動時間,這可能會損害決策的質量。還有人質疑,人工智能驅動的規劃是否會"導致過度關注指揮分析方面,通過書本和數字削弱了軍事指揮決策的直覺、適應性和藝術性"。指揮官和其他軍事人員也可能變得過渡依賴技術,使他們變得脆弱。剩下的一個挑戰是產生足夠的相關數據,讓人工智能規劃系統正常工作并產生有意義的結果。
人工智能系統將執行規劃任務以及協助軍事人員,但它們可能不會根據這些計劃做出適當決策。事實上,有人認為,人工智能系統難以完成與指揮有關的任務,如設定目標、優先事項、規則和約束。因此,人類的判斷對于這些任務仍然是必要的。人工智能寧愿執行控制任務,并最終彌補軍事人員的認知偏差。然而,隨著新版本的C2(部分)納入人工智能,觀察家們質疑是否清楚誰將擁有跨領域的決策權,人類在這種架構中會和應該發揮什么作用,以及技術是否準備好進行大規模開發。
當強大的人工智能系統被用于軍事規劃時,規劃和決策之間的區別可能會變得模糊不清。與人類因軍事行動的高速發展而無法正確跟蹤事件進程的風險類似,將規劃任務更多地委托給人工智能可能意味著指揮官和規劃者不再能夠理解或追溯系統如何得出結論。同樣,指揮官可能會因審查眾多擬議計劃或COA的任務而被壓垮。人工智能生成的方案也可能意味著更高的復雜程度。因此,人工智能可以被用來消化信息,只向指揮官提供最相關的內容。然而,這可能會導致對人工智能的進一步過度依賴。因此,強大的人工智能系統,或系統簇(SOS),將需要一定程度的可預測性和透明度。
總之,與人工智能的其他軍事應用相比,至少在中短期內,人工智能可能會對規劃產生最重大的影響。由于規劃是極度時間和資源密集型的,人工智能系統可以導致速度、精度和質量的提高。這可能會對軍事行動和戰爭產生重大影響,因為有人認為,軍事競賽的贏家是那些在觀察、定位、決策和行動(OODA環)中工作最快的人。一個進一步的影響是,規劃的自動化導致了軍事決策的(進一步)合理化,包括人員傷亡的合理化。另一個后果是對人力的需求減少。然而,規劃方面的人力需求減少并不意味著基于軍事規劃決策的人力判斷需求減少,特別是在價值觀和直覺仍然是規劃的核心內容情況下。
交戰規則(ROE)用于描述軍事力量部署的情況和限制。交戰規則可采取多種形式,包括執行命令、部署命令、作戰計劃和長期指令。無論其形式如何,它們都對 "使用武力、部隊的位置和態勢以及使用某些特定能力 "等進行授權或限制。交戰規則有共同的要素,如其功能和在作戰計劃中的地位,以及其他基本組成部分。交戰規則通常是 "軍事和政治政策要求的組合,必須受到現有的國際和國內法律參數約束"。因此,其要素和組成部分反映了軍事行動、法律和政治要素。通用的交戰規則和模板文件,如北約的MC362/1和Sanremo交戰規則手冊,可以作為交戰規則起草者的基礎或靈感,而這些起草者通常是軍事法律顧問。雖然交戰規則一般不會分發給所有低級軍官,但士兵們經常會收到含有簡化的、基本版本的交戰規則記憶卡。
交戰規則是與軍事力量部署和武力使用有關的更大監管框架的一部分。因此,它們與其他類型的軍事指令相互作用,特別是目標選擇和戰術指令。目標定位指令提供了關于目標定位的具體指示,包括對目標的限制和盡量減少附帶損害。戰術指令是 "針對整個部隊或特定類型的單位或武器系統的命令,規定在整個行動中執行特定類型的任務或在行動中限制使用特定的武器系統。雖然交戰規則不是必不可少的,但它們可以為部隊及其成員提供更具體和細微的指示。
交戰規則是確定如何使用人工智能以及在哪些條件下可以在特定情況下應用的適當工具。交戰規則——或相關的行為規則——可以為人工智能的各種軍事應用設定參數,從而將特定的政治、軍事、法律和道德考慮以及來自更高組織或規范梯隊的限制,如條令或國際法律義務,轉化為具體指令。因此,ROE可以代表一個行動框架,被編入AI系統。例如,ROE可以確定一個地理區域或某個潛在任務的清單,系統被授權采取行動。在這些限制之外,他們將不會對處理過的信息采取行動。時間或其他限制,如預先設定的允許(不)與特定目標交戰,也可以由ROE定義。同樣,ROE可以預見一個系統需要標記的意外事件或問題。在這種情況下,有些人提出,人工智能可能會根據環境或其編程的任務來選擇應用哪種ROE。
ROE也可以定義人類和人工智能系統在特定任務中的互動。特別是,ROE可以確定指揮官或操作員在部署期間需要如何監測和控制該系統。由于對人類控制的需求可能會根據歸屬于人工智能系統的具體任務以及各自的背景和行動而有所不同,人工智能的ROE可以定義某些類型的行動或階段的自主性水平。ROE可以進一步處理或參考其他來源,如手冊和指令,關于如何實施各種形式的人類控制,如直接、共享或監督控制。重要的是,ROE可以限制指揮官或操作人員的權力,這可能迫使他們在指揮系統中參考上級。這可能是軍事行動中關于人機協作的ROE的一個重要作用,特別是在面對未曾預料到的情況或問題時,系統或其使用沒有事先得到授權。
當人工智能被用于傷害人和物或與之有關時,如在定位目標的情況下,ROE尤其相關。特別是當考慮到人工智能不能將道德或背景評估納入其決策過程時,在做出使用致命武力的決策時,人類的控制和判斷應該是有意義的。如上所述,大多數公開的政策在原則上確立了這種監督,但很少明確其確切含義。交戰規則和指令可以填補這一空白。為此,可以為人工智能系統的操作者制定與目標定位有關的行為準則,或為此類系統制定ROE模式。
事實上,雖然到今天為止還沒有能夠在沒有人類授權的情況下攻擊人類目標的自主武器,但在目標定位方面,更加自主的系統將是一個大的趨勢。與目標定位有關的現有軍事應用是目標識別軟件,如可以檢測衣服下爆炸物的Super aEgis II,以及用于目標交戰的系統。美國人工智能制導的遠程反艦導彈(LRASM)被宣傳為能夠自主地選擇和攻擊目標,甚至在GPS和通信受阻的環境中,如深水和潛在的外太空。另一個值得注意的事態發展是,據報道,2020年3月在利比亞部署了一架土耳其Kargu-2無人機,據稱該無人機在沒有人類操作員授權的情況下跟蹤和攻擊人類目標。它的使用可能代表了一個重要的先例,即在人類控制非常有限的情況下使用人工智能系統進行目標定位。
由于需要對ROE進行管理,人工智能可以協助主管當局協調、實施并最終確定ROE。軍事、政治、法律和道德目標和參數需要由軍事人員提供--至少在初始階段。正如北約的MC362/1號文件和《圣雷莫ROE手冊》所說明的那樣,ROE的后續管理是一個系統的、反復的過程,包括將具體的權力賦予不同級別的指揮部,以及監測ROE的實施和遵守情況。隨著時間的推移,人工智能系統可能會學會緩解ROE內部和之間的摩擦,以及為其適應性提升效率。例如,盡管國際法的實質內容可能本質上需要基于價值的判斷,而這種判斷不應委托給人工智能系統,但界定哪些規則需要在哪些情況下適用并不是一個過于復雜的理性過程。為了避免改變現有法律框架的實質內容,這種功能要求任何用于管理ROE的AI應用不能侵犯歸屬的權力。
總之,ROE可以成為一個有用的工具,以具體和實用的方式指導軍事AI的使用。因此,它可以補充和執行上級的政策、法規和準則,從而使軍事、政治、法律和道德目標和原則轉化為具體行動。ROE的指導對于人機協作,以及定義和具體化與人工智能系統有關的人類控制和判斷,在目標定位方面尤其重要。人工智能的應用可以進一步提高ROE管理的質量和效率。雖然這可能有助于協助軍事人員,類似于人工智能應用于軍事規劃,但軍事人員需要對ROE的實質進行有效監督,即誰或什么系統在什么情況下可以使用武力。然而,如果人工智能能夠實現更廣泛的、更細微的、更快速的交替性ROE,確保這種監督可能會變得具有挑戰性。
規劃和實施軍事行動的最具體的工具是命令。例如,北約和美國陸軍將命令定義為 "以書面、口頭或信號的方式傳達上級對下級的指示"。雖然有不同類型的命令,但它們一般都很簡短和具體。命令可以是口頭的,也可以是圖形的,還可以是疊加的。它們必須遵守法律以及上級的軍事文件和文書。另一個經常使用的術語是指令,它被定義為 "指揮官下達的命令,即指揮官為實現某一特定行動而表達的意愿。
從軍事參謀人員到人工智能系統的指令將采取系統初始開發的形式,有關任務目標和限制的參數編程,以及操作人員在操作期間的輸入。人類和人工智能系統之間的這些互動形式可能會履行傳統上歸屬于命令的功能。雖然人工智能系統的開發和操作,特別是機器學習,有其特殊的挑戰,但測試表明,機器并不存在不服從命令的內在風險。由于在操作過程中人的輸入等于人對系統的控制,如果一個系統能夠根據適當的學習自主地調整其行為,這一點就特別重要,現在正在開發防止系統在沒有人類輸入下采取行動的保障措施。例如,美國國防部3000.09指令規定,致命性武器系統的編程方式必須防止其在未經人類事先批準的情況下選擇和攻擊目標,特別是在失去通信的情況下。
人工智能和操作人員之間具體的互動形式仍在繼續開發。美國陸軍實驗室設計了一種軟件,使機器人能夠理解口頭指示,執行任務,并進行匯報。會說話的人工智能現在也被開發出來,以實現操作員和系統之間的口頭對話。這種互動使系統能夠要求其操作者進行澄清,并在任務完成后提供更新,以便士兵在工作中獲得最新的信息。諸如此類的應用可能使軍事人員更容易與人工智能合作,并減少操作員對人工智能控制的學習曲線。然而,人工智能應用也可以支持指揮官下達命令和指令的任務。人工智能尤其可以用來提高通信系統的穩健性和容錯性,這顯然可以使命令的傳輸更加安全。
雖然人工智能系統可能不會被委托正式發布命令,但是類似的動態可能會出現。對于人工智能系統之間的互動,命令是沒有必要的,因為系統只是作為數字應用網絡的一部分交換信息。關于對軍事人員的命令,武裝部隊似乎不可能接受人工智能系統向其成員發出指令。然而,由于人工智能系統可能會以越來越高的速度和復雜性提出行動建議,作為人類決策的輸入,軍事人員可能不會質疑這些建議,沒有時間批判性地評估它們,或者根本無法理解系統如何得出結論。如果他們還是以這些建議為基礎采取行動,這種對系統輸入的過度依賴可能意味著系統事實上向人類發布命令。還有可能的是,通過信息技術接收指令的較低層次的操作員和士兵可能無法知道某個命令是由人類還是人工智能系統創造的。為了排除這種結果,軍事條令和指令需要建立與命令有關程序的透明度。
總之,在軍事行動中,正式的命令很可能與控制人工智能無關。然而,命令和指令的傳統概念可以幫助分析、分類和發展人工智能系統和人類操作員之間的未來互動。在這種情況下,卡爾-馮-克勞塞維茨提出的管理方法和任務型戰術(Auftragstaktik)之間的傳統區別表明,人類對人工智能系統的投入,即人工智能系統的開發、編程和操作控制,可以根據對執行任務細節的程度來進行分類。鑒于人工智能的特質,我們有理由認為,當人工智能系統被賦予高水平的自主權,類似于任務型戰術時,將對武裝部隊最有價值。同時,人類在行動中的投入將是非常精確的,起到管理作用。然而,最重要的是,這又回到了上文討論的可以授予 AI 系統多少自主權的根本問題。
人工智能有可能影響所有領域和大規模的軍事行動。轉變的程度主要取決于未來的技術發展。然而,這也取決于武裝部隊將賦予人工智能的作用和功能。從這兩個因素中可以看出,人工智能與準備和開展軍事行動的主要工具之間存在著動態的相互關系。一方面,人工智能的引入將影響到這些工具以及軍事行動的準備和實施。另一方面,這些工具在監管和使用人工智能方面發揮著重要作用。這種相互關系是動態的,因為它很可能隨著技術的發展、部隊對人工智能系統的經驗、組織文化和社會價值觀的變化而變化。
上述內容討論了人工智能與準備和執行軍事行動的主要工具之間的相互關系,而其中核心潛在的問題是人類操作員與人工智能系統之間的相互作用。在戰略方面,國家的官方文件證明,獲得和運用人工智能具有戰略意義。人工智能將可能支持軍事戰略,特別是預測和規劃。戰略中的人為因素可能仍然至關重要,因為戰略依賴于本能和價值觀,但軍事人員有可能過度依賴人工智能。對于軍事條令,人工智能的作用可能僅限于評估和協助修訂條令。條令在決定武裝部隊的目的、價值觀和組織文化方面的功能表明,它將在確定武裝部隊如何看待人工智能系統并與之互動方面發揮重要作用。
人工智能將極大地幫助軍事規劃,特別是基于人工智能高速和精確地處理復雜和大量數據的能力。因此,即使人工智能系統不會被委托做出決策,軍事規劃人員和指揮官也有可能過度依賴他們的分析和建議,尤其是在時間壓力下。因此,人工智能支持決策和人工智能作出適當決策之間的界限可能會變得模糊不清。關于ROE,盡管人工智能可以支持ROE的管理,但后者主要是一個適當的工具,以具體的方式為具體的任務劃定人工智能的使用。這尤其適用于人機合作和人對人工智能應用的控制。在軍事命令方面,人工智能系統可能會大大協助指揮和控制,但不會被委托發布命令。然而,在實踐中,可能很難區分由算法發布的命令和由指揮官發布的命令。這可能會導致人工智能支持和人工智能決策之間的混淆,類似于規劃的情況。
因此,如果人類操作員和人工智能系統之間的交互,是人工智能與準備和執行軍事行動的主要工具之間動態相互關系的核心潛在問題,那么無論是技術發展還是工具適應性都需要特別注意適當的人類與人工智能的交互。可以預計,技術進步將主要塑造未來的人機協作模式。軍隊結構、標準和流程可能會跟隨技術發展而相應調整。然而,關鍵是要積極主動地界定基本原則、價值觀和標準,而不是簡單地適應技術發展,成為路徑依賴或面臨意想不到后果。
畢竟,關注適當的人與人工智能互動不僅是道德和法律的必要條件,也是通過引入人工智能有效提高軍事行動的必要條件。因此,對人工智能和軍事行動的進一步思考和研究,以及對人工智能和戰略、條令、規劃、ROE和命令的進一步思考和研究,應該側重于人機互動,因為這仍然是人工智能戰爭最緊迫的挑戰。這可能有助于在人工智能影響工具和這些工具管理軍事人工智能之間找到并確定一個適當的平衡。
隨著技術的飛速發展和威脅環境變得更加復雜,今天的海軍行動經常面臨著具有挑戰性的決策空間。人工智能(AI)的進步為解決海軍行動中日益復雜的問題提供了潛在的解決方案。未來的人工智能系統提供了潛在的意義深遠的好處--提高對態勢的認識,增加對威脅和對手能力和意圖的了解,識別和評估可能的戰術行動方案,并提供方法來預測行動方案決定的結果和影響。人工智能系統將在支持未來海軍作戰人員和保持作戰和戰術任務優勢方面發揮關鍵作用。
人工智能系統為海戰提供了優勢,但前提是這些系統的設計和實施方式能夠支持有效的作戰人員-機器團隊,改善作戰情況的不確定性,并提出改善作戰和戰術結果的建議。實施人工智能系統,以滿足海軍應用的這些苛刻需求,給工程設計界帶來了挑戰。本文確定了四個挑戰,并描述了它們如何影響戰爭行動、工程界和海軍任務。本文提供了通過研究和工程倡議來解決這些挑戰的解決思路。
人工智能是一個包括許多不同方法的領域,目的是創造具有智能的機器(Mitchell 2019)。自動化系統的運作只需要最小的人類輸入,并經常根據命令和規則執行重復性任務。人工智能系統是自動化機器,執行模仿人類智能的功能。它們將從過去的經驗中學習到的新信息融入其中,以做出決定并得出結論。
如表1所述,人工智能系統有兩種主要類型。第一種類型是明確編程的專家系統。Allen(2020,3)將專家系統描述為手工制作的知識系統,使用傳統的、基于規則的軟件,將人類專家的主題知識編入一長串編程的 "如果給定x輸入,則提供y輸出"的規則。這些系統使用傳統的編程語言。第二種類型是ML系統,從大型數據集中進行訓練。ML系統自動學習并從經驗中改進,而不需要明確地進行編程。一旦ML系統被 "訓練",它們就被用于操作,以產生新的操作數據輸入的結果。
表1. 兩類人工智能系統
人工智能系統--包括專家系統和學習系統--為海軍提供了巨大的潛力,在大多數任務領域有不同的應用。這些智能系統可以擴展海軍的能力,以了解復雜和不確定的情況,制定和權衡選擇,預測行動的成功,并評估后果。它們提供了支持戰略、作戰計劃和戰術領域的潛力。
本文確定了工程設計界必須解決的四個挑戰,以便為未來海戰任務實施人工智能系統。表2強調了這四個挑戰領域。這些挑戰包括:(1)復雜的海戰應用領域;(2)需要收集大量與作戰相關的數據來開發、訓練和驗證人工智能系統;(3)人工智能系統工程的一些新挑戰;(4)存在對手的人工智能進展,不斷變化和發展的威脅,以及不斷變化的人工智能系統的網絡弱點。本文側重于海軍戰爭的四個挑戰領域,但認識到這些挑戰可以很容易地被概括為整個軍隊在未來人工智能系統可能應用的所有戰爭領域中廣泛存在的挑戰。
表2. 為海軍實施人工智能系統的四個挑戰領域
人工智能正被視為一種能力,可應用于廣泛的應用,如批準貸款、廣告、確定醫療、規劃航運路線、實現自動駕駛汽車和支持戰爭決策。每個不同的應用領域都提出了一系列的挑戰,人工智能系統必須與之抗衡,才能成為一種增加價值的可行能力。表3比較了一組領域應用的例子,從潛在的人工智能系統解決方案的角度說明了挑戰的領域。該表在最上面一行列出了一組10個因素,這些因素對一個特定的應用程序產生了復雜性。根據每個因素對作為實施人工智能的領域的整體復雜性的貢獻程度,對六個應用領域的特征進行了定性評估。顏色代表低貢獻(綠色)、中貢獻(黃色)和高貢獻(紅色)。
表3中最上面一行顯示的特征包括: (1)認識上的不確定性水平(情況知識的不確定性程度),(2)情況的動態性,(3)決策時間表(可用于決策的時間量),(4)人類用戶和人工智能系統之間的互動所涉及的錯綜復雜的問題、 (5)資源的復雜性(數量、類型、它們之間的距離以及它們的動態程度),(6)是否涉及多個任務,(7)所需訓練數據集的復雜性(大小、異質性、有效性、脆弱性、可獲得性等 8)對手的存在(競爭者、黑客或徹頭徹尾的敵人),(9)可允許的錯誤幅度(多少決策錯誤是可以接受的),以及(10)決策后果的嚴重程度。該表的定性比較旨在提供一個高層次的相對意義,即基于一組樣本的貢獻因素,不同應用領域的不同復雜程度。
表3. 影響應用復雜性的因素比較
對于所有的應用領域來說,人工智能系統的工程都是具有挑戰性的。人工智能系統在本質上依賴于具有領域代表性的數據。獲得具有領域代表性的數據會帶來基于數據大小、可用性、動態性和不確定性的挑戰。決策時間--由情況的時間動態決定--會給人工智能系統工程帶來重大挑戰--特別是當一個應用領域的事件零星發生和/或意外發生時;以及當決策是時間緊迫的時候。具有更多決策時間、充分訪問大型數據集、直接的用戶互動、完善的目標和非致命后果的應用,如貸款審批、廣告、醫療診斷(在某種程度上)面臨工程挑戰,但其復雜程度較低。確定最佳運輸路線和為自動駕駛汽車設計AI系統是更復雜的工作。這些應用是動態變化的,做決定的時間較短。航運路線將在可能的路線數量上具有復雜性--這可能會導致許多可能的選擇。然而,航運錯誤是有空間的,而且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的空間非常小。在這種應用中,決策失誤會導致嚴重的事故。
影響開發支持海戰決策的人工智能系統的因素在表3所示的所有類別中都具有高度的復雜性。因此,戰術戰爭領域對工程和實施有效的人工智能系統作為解決方案提出了特別棘手的挑戰。表4強調了導致這種復雜性的海戰領域的特點。作為一個例子,海軍打擊力量的行動可以迅速從和平狀態轉變為巨大的危險狀態--需要對威脅保持警惕并采取適當的反應行動--所有這些都是在高度壓縮的決策時間內進行。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是網絡空間,導致需要處理多種時間緊迫的任務。由于海軍和國防資產在艦艇、潛艇、飛機、陸地和太空中,戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用。制定有效的戰術行動方案也必須在高度動態的作戰環境中進行,并且只有部分和不確定的情況知識。決策空間還必須考慮到指揮權、交戰規則和戰術理論所帶來的限制。人類作為戰術決策者的角色增加了決策空間的復雜性--信息過載、操作錯誤、人機信任和人工智能的模糊性/可解釋性問題等挑戰。最后,對于戰術決策及其可能的后果來說,風險可能非常大。
表4. 導致戰術決策復雜性的因素
解決高度復雜的決策領域是對海軍的挑戰。人工智能為解決海軍作戰的復雜性提供了一個潛在的解決方案,即處理大量的數據,處理不確定性,理解復雜的情況,開發和評估決策選擇,以及理解風險水平和決策后果。Desclaux和Prestot(2020)提出了一個 "認知三角",其中人工智能和大數據被應用于支持作戰人員,以實現信息優勢、控制論信心和決策優勢。約翰遜(2019年)開發了一個工程框架和理論,用于解決高度復雜的問題空間,這些問題需要使用智能和分布式人工智能系統來獲得情況意識,并做出適應動態情況的協作行動方案決定。約翰遜(2020a)建立了一個復雜的戰術場景模型,以證明人工智能輔助決策對戰術指揮和控制(C2)決策的好處。約翰遜(2020b)開發了一個預測分析能力的概念設計,作為一個自動化的實時戰爭游戲系統來實施,探索不同的可能的戰術行動路線及其預測的效果和紅色部隊的反應。首先,人工智能支持的C2系統需要描述戰術行動期間的復雜程度,然后提供一個自適應的人機組合安排來做出戰術決策。這個概念包括根據對目前戰術情況的復雜程度最有效的方法來調整C2決策的自動化水平(人與機器的決策角色)。約翰遜(2021年)正在研究這些概念性工程方法在各種防御用例中的應用,包括空中和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。
在海軍作戰中實施人工智能系統的一個額外挑戰是在戰術邊緣施加的限制。分散的海軍艦艇和飛機的作戰行動構成了戰術邊緣--在有限的數據和通信下作戰。"在未來,戰術邊緣遠離指揮中心,通信和計算資源有限,戰場形勢瞬息萬變,這就導致在嚴酷復雜的戰地環境中,網絡拓撲結構連接薄弱,變化迅速"(Yang et. al. 2021)。戰術邊緣網絡也容易斷開連接(Sridharan et. al. 2020)。相比之下,許多商業人工智能系統依賴于基于云的或企業內部的處理和存儲,而這些在海戰中是不存在的。在戰術邊緣實施未來的人工智能系統時,必須進行仔細的設計考慮,以了解哪些數據和處理能力可用。這可能會限制人工智能系統在邊緣所能提供的決策支持能力。
在軍事領域使用人工智能必須克服復雜性的挑戰障礙,在某些情況下,人工智能的加入可能會增加復雜性。辛普森等人(2021)認為,將人工智能用于軍事C2可能會導致脆弱性陷阱,在這種情況下,自動化功能增加了戰斗行動的速度,超出了人類的理解能力,最終導致 "災難性的戰略失敗"。Horowitz等人(2020)討論了通過事故、誤判、增加戰爭速度和升級以及更大的殺傷力來增加國際不穩定和沖突。Jensen等人(2020)指出,人工智能增強的軍事系統增加的復雜性將增加決策建議和產生的信息的范圍、重要性和意義的不確定性;如果人類決策者對產出缺乏信心和理解,他們可能會失去對人工智能系統的信任。
實施人工智能系統的第二個挑戰是它們依賴并需要大量的相關和高質量的數據用于開發、訓練、評估和操作。在海戰領域滿足這些數據需求是一個挑戰。明確編程的專家系統在開發過程中需要數據進行評估和驗證。ML系統在開發過程中對數據的依賴性甚至更大。圖1說明了ML系統如何從代表作戰條件和事件的數據集中 "學習"。
ML系統的學習過程被稱為被訓練,開發階段使用的數據被稱為訓練數據集。有幾種類型的ML學習或訓練--它們是監督的、無監督的和強化的方法。監督學習依賴于地面真相或關于輸出值應該是什么的先驗知識。監督學習算法的訓練是為了學習一個最接近給定輸入和期望輸出之間關系的函數。無監督學習并不從地面真相或已知的輸出開始。無監督學習算法必須在輸入數據中推斷出一個自然結構或模式。強化學習是一種試錯法,允許代理或算法在獎勵所需行為和/或懲罰不需要的行為的基礎上學習。所有三種類型的ML學習都需要訓練數據集。在部署后或運行階段,ML系統繼續需要數據。
圖1顯示,在運行期間,ML系統或 "模型 "接收運行的實時數據,并通過用其 "訓練 "的算法處理運行數據來確定預測或決策結果。因此,在整個系統工程和采購生命周期中,ML系統與數據緊密相連。ML系統是從訓練數據集的學習過程中 "出現 "的。ML系統是數據的質量、充分性和代表性的產物。它們完全依賴于其訓練數據集。
圖1. 使用數據來訓練機器學習系統
美國海軍開始認識到對這些數據集的需求,因為許多領域(戰爭、供應鏈、安全、后勤等)的更多人工智能開發人員正在了解人工智能解決方案的潛在好處,并開始著手開發人工智能系統。在某些情況下,數據已經存在并準備好支持人工智能系統的開發。在其他情況下,數據存在但沒有被保存和儲存。最后,在其他情況下,數據并不存在,海軍需要制定一個計劃來獲得或模擬數據。
收集數據以滿足海軍領域(以及更廣泛的軍事領域)的未來人工智能/ML系統需求是一個挑戰。數據通常是保密的,在不同的項目和系統中被分隔開來,不容易從遺留系統中獲得,并且不能普遍代表現實世界行動的復雜性和多樣性。要從并非為數據收集而設計的遺留系統中獲得足夠的數據,可能非常昂貴和費時。數據收集可能需要從戰爭游戲、艦隊演習、系統測試、以及建模和模擬中收集。此外,和平時期收集的數據并不代表沖突和戰時的操作。海軍(和軍方)還必須教導人工智能系統在預計的戰時行動中發揮作用。這將涉及想象可能的(和可能的)戰時行動,并構建足夠的ML訓練數據。
數據收集的另一個挑戰是潛在的對抗性黑客攻擊。對于人工智能/ML系統來說,數據是一種珍貴的商品,并提出了一種新的網絡脆弱性形式。對手可以故意在開發過程中引入有偏見或腐敗的數據,目的是錯誤地訓練AI/ML算法。這種邪惡的網絡攻擊形式可能很難被發現。
海軍正在解決這一數據挑戰,開發一個數據基礎設施和組織來管理已經收集和正在收集的數據。海軍的Jupiter計劃是一個企業數據和分析平臺,正在管理數據以支持AI/ML的發展和其他類型的海軍應用,這些應用需要與任務相關的數據(Abeyta,2021)。Jupiter努力的核心是確定是否存在正確的數據類型來支持人工智能應用。為了生產出在行動中有用的人工智能/ML系統,海軍需要在游戲中保持領先,擁有能夠代表各種可能情況的數據集,這些情況跨越了競爭、沖突和危機期間的行動范圍。因此,數據集的開發和管理必須是一項持續的、不斷發展的努力。
第三個挑戰是,人工智能系統的工程需要改變傳統的系統工程(SE)。在傳統系統中,行為是設定的(確定性的),因此是可預測的:給定一個輸入和條件,系統將產生一個可預測的輸出。一些人工智能解決方案可能涉及到系統本身的復雜性--適應和學習--因此產生不可預見的輸出和行為。事實上,一些人工智能系統的意圖就是要做到這一點--通過承擔一些認知負荷和產生智能建議,與人類決策者合作。表5強調了傳統系統和人工智能系統之間的區別。需要有新的SE方法來設計智能學習系統,并確保它們對人類操作者來說是可解釋的、可信任的和安全的。
SE作為一個多學科領域,在海軍中被廣泛使用,以將技術整合到連貫而有用的系統中,從而完成任務需求(INCOSE 2015)。SE方法已經被開發出來用于傳統系統的工程設計,這些系統可能是高度復雜的,但也是確定性的(Calvano和John 2004)。如表5所述,傳統系統具有可預測的行為:對于一個給定的輸入和條件,它們會產生可預測的輸出。然而,許多海軍應用的人工智能系統在本質上將是復雜的、適應性的和非決定性的。Raz等人(2021年)解釋說,"SE及其方法的雛形基礎并不是為配備人工智能(即機器學習和深度學習)的最新進展、聯合的多樣化自主系統或多領域操作的工程系統而設想的。" 對于具有高風險后果的軍事系統來說,出錯的余地很小;因此,SE過程對于確保海軍中人工智能系統的安全和理想操作至關重要。
表5. 傳統系統和人工智能系統的比較
在整個系統生命周期中,將需要改變SE方法,以確保人工智能系統安全有效地運行、學習和適應,以滿足任務需求并避免不受歡迎的行為。傳統的SE過程的大部分都需要轉變,以解決人工智能系統的復雜和非確定性的特點。在人工智能系統的需求分析和架構開發階段需要新的方法,這些系統將隨著時間的推移而學習和變化。系統驗證和確認階段將必須解決人工智能系統演化出的突發行為的可能性,這些系統的行為不是完全可預測的,其內部參數和特征正在學習和變化。運營和維護將承擔重要的任務,即隨著人工智能系統的發展,在部署期間不斷確保安全和理想的行為。
SE界意識到,需要新的流程和實踐來設計人工智能系統。國際系統工程師理事會(INCOSE)最近的一項倡議正在探索開發人工智能系統所需的SE方法的變化。表6強調了作為該倡議一部分的五個SE重點領域。除了非決定性的和不斷變化的行為,人工智能系統可能會出現新類型的故障模式,這些故障模式是無法預料的,可能會突然發生,而且其根本原因可能難以辨別。穩健設計--或確保人工智能系統能夠處理和適應未來的情景--是另一個需要新方法的SE領域。最后,對于有更多的人機互動的人工智能系統,必須仔細注意設計系統,使它們值得信賴,可以解釋,并最終對人類決策者有用。
表6.人工智能系統工程中的挑戰(改編自:Robinson,2021)。
SE研究人員正在研究人工智能系統工程所涉及的挑戰,并開發新的SE方法和對現有SE方法的必要修改。Johnson(2019)開發了一個SE框架和方法,用于工程復雜的適應性系統(CASoS)解決方案,涉及分布式人工智能系統的智能協作。這種方法支持開發智能系統的系統,通過使用人工智能,可以協作產生所需的突發行為。Johnson(2021)研究了人工智能系統產生的潛在新故障模式,并提出了一套跨越SE生命周期的緩解和故障預防策略。她提出了元認知,作為人工智能系統自我識別內部錯誤和失敗的設計方案。Cruz等人(2021年)研究了人工智能在空中和導彈防御應用中使用人工智能輔助決策的安全性。他們為計劃使用人工智能系統的軍事項目編制了一份在SE開發和運行階段需要實施的策略和任務清單。Hui(2021年)研究了人類作戰人員與人工智能系統合作進行海軍戰術決策時的信任動態。他制定了工程人工智能系統的SE策略,促進人類和機器之間的 "校準 "信任,這是作為適當利用的最佳信任水平,避免過度信任和不信任,并在信任失敗后涉及信任修復行動。Johnson等人(2014)開發了一種SE方法,即協同設計,用于正式分析人機功能和行為的相互依賴性。研究人員正在使用協同設計方法來設計涉及復雜人機交互的穩健人工智能系統(Blickey等人,2021年,Sanchez 2021年,Tai 2021年)。
數據的作用對于人工智能系統的開發和運行來說是不可或缺的,因此需要在人工智能系統的SE生命周期中加入一個持續不斷的收集和準備數據的過程。Raz等人(2021)提出,SE需要成為人工智能系統的 "數據策劃者"。他們強調需要將數據策劃或轉化為可用的結構,用于開發、訓練和評估AI算法。French等人(2021)描述了需要適當的數據策劃來支持人工智能系統的發展,他們強調需要確保數據能夠代表人工智能系統將在其中運行的預期操作。他們強調需要安全訪問和保護數據,以及需要識別和消除數據中的固有偏見。
SE界正處于發展突破和進步的早期階段,這些突破和進步是在更復雜的應用中設計人工智能系統所需要的。這些進展需要與人工智能的進展同步進行。在復雜的海軍應用以及其他非海軍和非軍事應用中實施人工智能系統取決于是否有必要的工程實踐。SE實踐必須趕上AI的進步,以確保海軍持續的技術優勢。
海軍在有效實施人工智能系統方面面臨的第四個挑戰是應對對手。海軍的工作必須始終考慮對手的作用及其影響。表7確定了在海軍實施人工智能系統時必須考慮的與對手有關的三個挑戰:(1)人工智能技術在許多領域迅速發展,海軍必須注意同行競爭國的軍事應用進展,以防止被超越,(2)在海軍應用中實施人工智能系統和自動化會增加網絡脆弱性,以及(3)海軍應用的人工智能系統需要發展和適應,以應對不斷變化的威脅環境。
表7. AI系統的對抗性挑戰
同行競爭國家之間發展人工智能能力的競賽,最終是為了進入對手的決策周期,以便比對手更快地做出決定和采取行動(Schmidt等人,2021年)。人工智能系統提供了提高決策質量和速度的潛力,因此對獲得決策優勢至關重要。隨著海軍對人工智能解決方案的探索,同行的競爭國家也在做同樣的事情。最終實現將人工智能應用于海軍的目標,不僅僅取決于人工智能研究。它需要適當的數據收集和管理,有效的SE方法,以及仔細考慮人類與AI系統的互動。海軍必須承認,并采取行動解決實施人工智能系統所涉及的挑戰,以贏得比賽。
網絡戰是海軍必須成功參與的另一場競賽,以保持在不斷沖擊的黑客企圖中的領先地位。網絡戰的特點是利用計算機和網絡來攻擊敵人的信息系統(Libicki, 2009)。海軍對人工智能系統的實施導致了更多的網絡攻擊漏洞。人工智能系統的使用在本質上依賴于訓練和操作數據,導致黑客有機會在開發階段和操作階段用腐敗的數據欺騙或毒害系統。如果一個對手獲得了對一個運行中的人工智能系統的控制,他們可能造成的傷害將取決于應用領域。對于支持武器控制決策的自動化,其后果可能是致命的。海軍必須注意人工智能系統開發過程中出現的特殊網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御戰略。海軍必須小心翼翼地確保用于開發、訓練和操作人工智能系統的數據集在整個人工智能系統的生命周期中受到保護,免受網絡攻擊(French等人,2021)。
威脅環境的演變是海軍在開發AI系統時面臨的第三個對抗性挑戰。對手的威脅空間隨著時間的推移不斷變化,武器速度更快、殺傷力更大、監視資產更多、反制措施更先進、隱身性更強,這對海軍能夠預測和識別新威脅、應對戰斗空間的未知因素構成了挑戰。尤其是人工智能系統,必須能夠加強海軍感知、探測和識別新威脅的能力,以幫助它們從未知領域轉向已知領域的過程。他們必須適應新的威脅環境,并在行動中學習,以了解戰斗空間中的未知因素,并通過創新的行動方案快速應對新的威脅(Grooms 2019, Wood 2019, Jones et al 2020)。海軍可以利用人工智能系統,通過研究特定區域或領域的長期數據,識別生活模式的異常(Zhao等人,2016)。最后,海軍可以探索使用人工智能來確定新的和有效的行動方案,使用最佳的戰爭資源來解決棘手的威脅情況。
人工智能系統為海軍戰術決策的優勢提供了相當大的進步潛力。然而,人工智能系統在海戰應用中的實施帶來了重大挑戰。人工智能系統與傳統系統不同--它們是非決定性的,可以學習和適應--特別是在用于更復雜的行動時,如高度動態的、時間關鍵的、不確定的戰術行動環境中,允許的誤差范圍極小。本文確定了為海戰行動實施人工智能系統的四個挑戰領域:(1)開發能夠解決戰爭復雜性的人工智能系統,(2)滿足人工智能系統開發和運行的數據需求,(3)設計這些新穎的非確定性系統,以及(4)面對對手帶來的挑戰。
海軍必須努力解決如何設計和部署這些新穎而復雜的人工智能系統,以滿足戰爭行動的需求。作者在這一工作中向海軍提出了三項建議。
1.第一個建議是了解人工智能系統與傳統系統之間的差異,以及伴隨著人工智能系統的開發和實施的新挑戰。
人工智能系統,尤其是那些旨在用于像海戰這樣的復雜行動的系統,其本身就很復雜。它們在應對動態戰爭環境時將會學習、適應和進化。它們將變得不那么容易理解,更加不可預測,并將出現新型的故障模式。海軍將需要了解傳統的SE方法何時以及如何在這些復雜系統及其復雜的人機交互工程中失效。海軍將需要了解數據對于開發人工智能系統的關鍵作用。
2.第二個建議是投資于人工智能系統的研究和開發,包括其數據需求、人機互動、SE方法、網絡保護和復雜行為。
研究和開發是為海戰行動開發AI系統解決方案的關鍵。除了開發復雜的戰術人工智能系統及其相關的人機協作方面,海軍必須投資研究新的SE方法來設計和評估這些適應性非決定性系統。海軍必須仔細研究哪些新類型的對抗性網絡攻擊是可能的,并且必須開發出解決這些問題的解決方案。海軍必須投資于收集、獲取和維護代表現實世界戰術行動的數據,用于人工智能系統開發,并確保數據的相關性、有效性和安全性。
3.第三個建議是承認挑戰,并在預測人工智能系統何時準備好用于戰爭行動方面采取現實態度。
盡管人工智能系統正在許多領域實施,但海軍要為復雜的戰術戰爭行動實施人工智能系統還需要克服一些挑戰。人工智能系統在較簡單應用中的成功并不能保證人工智能系統為更復雜的應用做好準備。海軍應該保持一種現實的認識,即在人工智能系統準備用于戰爭決策輔助工具之前,需要取得重大進展以克服本文所討論的挑戰。實現人工智能系統的途徑可以依靠建模和模擬、原型實驗、艦隊演習以及測試和評估。可以制定一個路線圖,彌合較簡單應用的人工智能和復雜應用的人工智能之間的差距--基于一個積木式的方法,在為逐漸復雜的任務開發和實施人工智能系統時吸取經驗教訓。
海軍將從未來用于戰術戰爭的人工智能系統中獲益。通過安全和有效地實施人工智能系統,戰術決策優勢的重大進步是可能的。此外,海軍必須跟上(或試圖超越)對手在人工智能方面的進展。本文描述了為在海戰中實施人工智能系統而必須解決的四個挑戰。通過對這些新穎而復雜的人工智能系統的深入了解,對研究和開發計劃的投資,以及對人工智能技術進步時限的現實預期,海軍可以在應對這些挑戰方面取得進展。
圖戰斗系列
2019年1月,美陸軍部長(SECARMY)要求陸軍科學委員會(ASB)研究人工智能(AI)如何改善戰場上的戰役和戰術表現。具體而言,他希望ASB確定陸軍在人工智能實施方面的獨特挑戰,確定陸軍的行業最佳實踐,并審查對手在戰場上對人工智能的潛在使用。
為了進行這項研究,ASB組建了一個研究小組,成員包括建立人工智能系統和指導人員,以及在實驗室、學術界、工業界和軍方有經驗的人員。該團隊還得到了負責人工智能實施的陸軍人工智能任務組以及陸軍研究實驗室(ARL)和陸軍夜視局高級政府聯絡員的協助,他們幫助約束該研究并為陸軍的人工智能實施提供指導。在收集數據的同時,研究小組還會見了來自政府、工業和學術界各組織的130多名人士。
在工業革命期間,機器開始執行以前需要人類體力勞動的任務。今天,一場認知革命正在發生,機器開始執行以前需要人類認知的任務。例如,我們問智能手機問題,并期望得到合理的答復,我們在網上買東西,并得到類似產品的推薦。
目前還不清楚我們是否了解認知革命的所有影響,但研究小組認為,它將改變戰爭特征,因為它提高了決策到行動的速度、規模和范圍,超過了人類在沒有援助的情況下所能完成的大量任務。人工智能是認知革命的核心,在戰場上優化使用人工智能將需要陸軍采用新的思維方式,包括一個反應靈敏的采購過程。
為了這項研究的目的,研究小組將人工智能定義為計算機系統執行通常需要人類智慧的任務能力。有許多關于人工智能的方法。
美國的對手已經在使用人工智能。俄羅斯和中國定期公布在戰場上進行的自動駕駛車輛實驗。成功實施人工智能的一個關鍵是數據標簽化。中國和俄羅斯的領導層都宣布人工智能是未來,誰能領導認知革命,誰就能在戰場上獲勝。除了僅僅使用人工智能,美國的對手希望實現人工智能的優勢。
目前的美國防部政策劃定了自主和協作,這決定了人工智能如何被用于支持各種作戰任務。因此,需要對人工智能采取多種方法,以確保人工智能系統在戰場上的最佳應用。無論采用哪種方法、作戰使用或政策要求,快速反饋周期將推動對作戰任務的評估,并將采用人工智能來告知如何收集和調節數據、如何運行算法以及如何優化人機界面。換句話說,人工智能最終將被用來衡量人工智能在戰場上的使用情況。這對軍隊來說也是顛覆性的。
同時,美國陸軍有幾種可能的方式在戰場上使用人工智能。下一個垂直升降飛機可以與使用綜合視覺增強系統(IVAS)的下一代戰斗車輛和士兵合作。一旦這些部件被聯網,相對于士兵在獨立系統中所能做到的,人工智能將提供更高的速度、范圍和規模。因此,人工智能將被用于自主機動、輔助目標識別和/或自動目標識別、任務規劃等。
人工智能給戰場帶來的優勢伴隨著風險和挑戰。有效使用有幾個潛在的障礙,如缺乏互操作性,數據饑餓,以及被對手利用。這些都是眾所周知的。但也有圍繞可靠性、信任、道德和可解釋性的問題,所有這些都有助于操作者理解人工智能的決策或建議。不是所有的人工智能系統都能做到這一點。
圖5 陸軍使用人工智能的潛力和挑戰
研究小組訪問了工業界,以了解商業企業如何利用人工智能,減少風險,并克服固有的挑戰。成功應用人工智能的共同主題涉及快速和持續的適應性和改進,可由以下方法促成:
使用常見的人工智能平臺
整理數據,特別是通過事實標簽
用模擬數據增強真實數據
創建架構和基礎設施,支持數據流和競爭所需的高性能計算
開發與技術共同發展的運行概念,例如,特斯拉的軟件更新方式是根據人們如何使用車輛來發展和展示新功能的。
知道在哪里應用人工智能來解決價值最高的問題,帶來最好的投資回報
獲取人工智能技能人才,由于競爭激烈,即使是像亞馬遜這樣的公司也面臨挑戰。
競爭也促使行業發展出一套實踐,允許快速變化和升級,特別是在軟件方面,進入正常生產,同時確保高質量。這種實踐--DevOps--結合了開發(Dev)和信息技術運營(Ops),以縮短系統開發的生命周期,并提供持續、高質量的交付(圖1)。
企業在實驗室中創建、整合和測試人工智能,將其發布給消費者,并部署到現場。當它被使用時,它被監測,并根據該系統的運行和使用情況,制定計劃,產生升級。企業重新編碼,重新開始循環以提高性能。DevOps循環需要一個底層數據層來迭代AI。與軟件升級不同,軟件升級可能是按月推送的,而人工智能周期必須是連續的,操作非常迅速,以確保最佳性能。
在收集數據的過程中,研究小組了解到,陸軍已經開始組織將人工智能帶到戰場上。陸軍成立了人工智能工作組,并與卡內基梅隆大學(CMU)合作成立了陸軍人工智能中心。陸軍也已經開始在陸軍未來和概念中心、訓練和條令司令部(TRADOC)以及其他地方開發人工智能的概念。
也可以說,這些人工智能的工作在很大程度上是不協調的。有許多陸軍項目使用人工智能。但陸軍成功運作的人工智能不能像在工業界觀察到的那樣快速發展。往往沒有共同的基礎設施,所以用于每個系統的計算、網絡和數據都是獨立的。
與工業界相比,陸軍人工智能活動的另一個不足之處是系統分析和建模與仿真(M&S)不足。例如,在x系統中加入人工智能將使任務的有效性提高y量;它將改變殺傷率,或完成任務的時間,或任務成功的概率,等等。就研究小組所能確定的而言,那些能夠顯示人工智能可能帶來什么價值的A-B測試還沒有做。
陸軍面臨的一個潛在挑戰是目前美國防部的采購環境,這使得復制工業界的快速開發周期變得極為困難。陸軍要購買一個可以像谷歌和其他公司那樣每天進行更新的系統是非常困難的。
陸軍可以自行解決的另一個挑戰是缺乏獲得、管理和使用其人工智能能力所需的足夠人才。陸軍有與增長和保留STEM資格人員有關的人才管理問題,而人工智能從業者在這一領域中所占的比例更小。有一些專家,但陸軍并沒有很多。
隨著陸軍繼續組織將人工智能帶入戰場,相當明確的是,最佳應用將出現在哪里(圖2)。有幾十種情況下,人工智能會增強陸軍的作戰功能,以包括一些人類參與可能有限的任務。
圖2 AI在戰場上的潛在應用
這些賦能器中的大多數已經在開發中,它們很少從頭開始。戰場上的使能因素往往可以建立在商業技術之上。
根據人工智能任務組的報告,目前的陸軍人工智能生態系統以CMU的人工智能中心為中心(圖3)。它與各利益相關者保持著聯系,包括實驗室和材料開發商、陸軍訓練中心和作戰社區。通過人工智能任務組,該中心還與美國防部的聯合人工智能中心進行協調。
圖3 當前陸軍AI生態系統
美陸軍人工智能生態系統專注于開發和實戰原型;從定義下一代系統的人工智能要求,到為傳統平臺開發人工智能解決方案。這種在戰場上的人工智能整合將迫使陸軍以新的方式運作。除了解決商業從業者確定的挑戰和減輕潛在對手的攻擊,陸軍必須解決地方性的挑戰,包括以下能力:
確定人工智能投資的優先次序,以獲得最大的戰場影響
構建一個SoS框架,利用獨立開發的、異質的、支持人工智能的平臺
通過繁忙的操作網絡調動數據、模型、算法和反饋
測試不斷發展的系統,并驗證其對敵方攻擊的復原力
圖17 SoS企業架構集成
雖然商業從業者可能擁有他們的整個人工智能企業,但軍隊不會。陸軍將從國防工業基地內的不同來源購買技術,它將不得不使它們一起工作。一旦完成這項任務,數據、模型、算法和反饋都必須在一個繁忙的操作網絡上移動。陸軍將不會有使用工業界所享有的那種基礎設施的好處。
陸軍還需要采用類似于DevOps周期的方法,以支持持續改進的方式將原型轉化為記錄項目(POR)。這將需要有能力(對陸軍來說是新的)測試不斷發展的系統并驗證對攻擊的適應性。陸軍將不得不改變其運作方式,以采用DevOps循環。
根據其數據收集、分析和發現,研究小組在六個類別中提出了建議(圖4)。
人工智能將通過提高決策的速度、規模和范圍來改變戰爭的特征,而這是人類所能實現的。如果陸軍對采用MDO是認真的,它就需要認真地采用協作性人工智能。
人工智能對陸軍和其對手都將是顛覆性的,因為:
美國陸軍將需要開發一個人才管道,使其成為人工智能能力的聰明買家和聰明用戶。
有說服力的動機:美國的對手已經在做這些事情了。
人工智能(AI)系統很可能會改變軍事行動。本文探討了人工智能系統如何影響準備和進行軍事行動的主要工具,并受其影響。因此,本文在戰略、理論、計劃、交戰規則和命令的背景下分析和討論了人工智能,以確定機會、挑戰和開放性問題的位置,并提出總體意見。本文采取了一個廣泛的分析角度,能夠根據新的政策和技術發展以及對政治、軍事、法律和道德觀點的考慮,對這一問題進行總體審查。因此,本文提供了一些見解和途徑,以推動對人工智能在軍事行動中的適當整合、管理和使用的進一步思考、研究和決策。
(本文由國家情報委員會的戰略未來小組與外部專家和情報界分析師協商后制作,以幫助為 2021 年 3 月發布的綜合全球趨勢產品提供信息。但是,該分析并不反映美國政府的官方政策、廣度情報來源,或美國情報界的全方位觀點。)
在未來20年里,軍事沖突很可能是由歷史上引發戰爭的相同因素驅動的--從資源保護、經濟差距、意識形態差異到追求權力和影響力--但隨著新技術、應用和理論的出現以及更多行為體獲得這些能力,發動戰爭的方式將發生變化。改進的傳感器、自動化和人工智能(AI)與高超音速技術和其他先進技術的結合,將產生更準確、連接更好、速度更快、射程更遠和更具破壞性的武器,主要供最先進的軍隊使用,但一些較小的國家和非國家行為者也可以獲得。隨著時間的推移,這些系統的擴散和傳播將使更多的資產變得脆弱,加劇升級的風險,并使戰斗可能更加致命,盡管不一定更具有決定性。
本評估主要關注未來20年內可能發生的戰爭和戰斗方式的變化,包括技術、理論和行為者。它沒有詳細討論未來沖突背后的潛在原因或動機,也沒有試圖預測戰爭的每一個潛在發展。
到2040年,一系列潛在的革命性技術和新用途可能會改變戰爭的特征。我們在戰爭的三個不同方面考慮這些潛在的變化:硬件(武器系統和新技術本身)、軟件(理論、訓練和使用這些新技術的方式)和用戶(使用這些武器和理論的國家或非國家行為者)。對于戰爭的未來,新技術的應用和組合與技術本身一樣重要。
例如,在1919年,不難預測飛機、航空母艦、坦克和潛艇--所有這些都在第一次世界大戰中出現過--將在下一場大戰中使用。各個交戰國--每個國家都有自己的軍事經驗、觀念和傳統--將以何種不同的方式使用它們,以及哪些技術將戰勝其他技術,是真正的問題,也是最難預測的問題。今天的情況也是如此。
在未來的20年里,新的和正在出現的技術可以在四個廣泛的領域改變并可能徹底改變戰場:連接性、致命性、自主性和可持續性。
連接性:戰斗人員探測和定位其對手、相互溝通和指導行動的方式。
致命性:新的武器和武器系統可以在戰場上造成的損害。
自主性:機器人和人工智能可以改變誰(或什么)戰斗和決策的方式。
可持續性:軍隊供應和支持其部署部隊的方式。
未來的戰爭可能會減少對火力的關注,而更多地關注信息的力量以及通過指揮、控制、通信、計算機、情報、監視和偵察(C4ISR)概念連接軍隊的方式。與以往任何時候相比,優勢將在于哪一方能夠收集最重要的信息,準確和快速地分析它,然后迅速和安全地將信息和相關指令傳播給部隊。
更加廉價的傳感器和大數據分析的結合表明,到2040年,在實時檢測和處理信息方面可能會出現一場革命。世界上許多國家的軍隊認識到這一潛力,并已在努力利用信息的力量來擴大其作戰戰略和能力。他們正在探索新興技術,包括但不限于人工智能,如何能夠迎來一個持續監視的時代并改善他們的決策。
在那些希望隱藏其活動的人--無論是在戰術、作戰還是戰略層面的戰爭--與那些尋求識別和跟蹤他們的人之間的較量中,到2040年,平衡可能會轉向 "尋求者",因為日益先進和可獲得的技術為他們提供了持續的全球監視能力。
例如,在海底領域,更多的、改進的和相對便宜的傳感器與商業化處理能力的進步相結合,可以使潛艇--被認為是世界上第一個隱形技術--更容易被發現。
這種信息優勢和實現這種優勢的技術也可能成為未來沖突中對手的重要目標。連通性越是被視為一方的決定性優勢,另一方就越會尋求破壞、降低和禁用高度連接的、依賴信息的系統。
這種努力可能集中在戰術層面,使用先進或傳統的武器來消除關鍵的基礎設施和節點,或通過更微妙的--可能更具破壞性的--先進手段,如網絡或電子戰來改變GPS信號以誤導對手的平臺和智能武器,這種技術被稱為 "欺騙"。在更大的戰略層面上,網絡攻擊和電子戰可能被用來破壞軍隊的整體C4ISR基礎設施,以混淆或凍結決策,大大削弱其戰斗能力。
現代軍隊特別容易受到任何精確導航的損失,包括全球定位系統及其同等產品。例如,在2010年,一個軟件故障使多達10,000個軍用GPS接收器暫時失效,影響了美國海軍的X-47B原型無人機等系統。
依靠天基基礎設施的C4ISR或其他系統,如GPS,可能會因動能--甚至可能是定向能--反衛星武器系統的進步而面臨進一步的風險,無論是基于地面的還是空間本身的。
圖 連接戰爭:GPS 欺騙誤導平臺
一旦通過多樣化的監視技術找到了對手的部隊,就可以用越來越先進的武器來對付他們。武器裝備中最重要的、正在進行的趨勢之一是高速、遠程、增強的破壞潛力和精確性的日益結合。到2040年,通過在大多數武器系統中整合衛星提供的圖像和定位、定時和導航信息,精確度將進一步提高。這種進步將有可能改善能夠跨越大陸進行打擊的系統,以及更多的戰術武器,如制導火箭、炮彈和迫擊炮彈。
到2040年,此類系統的數量和精度不斷增加,特別是彈道導彈和巡航導彈系統,將對總部、通信設施、機場、后勤基礎設施和其他關鍵目標構成重大威脅。
遠程精確打擊武器庫存可能包括越來越多的高超音速系統,它們可以以前所未有的機動性和速度打擊遠距離目標。這些系統將給那些試圖開發能夠探測、跟蹤和攔截這種快速移動和機動武器的反措施的人帶來艱巨的挑戰。
盡管尚未在戰斗中得到證實,但定向能武器--包括激光和高功率微波--可能成為2040年戰場的特征。遠程精確打擊武器,如高超音速武器,有可能徹底改變進攻,而定向能武器可以徹底改變防御,例如,提供一種有效的手段來對抗高超音速武器的高速和可操作性。如果能夠克服部署此類武器系統的挑戰,包括能源消耗和補充,那么能量武器以光速發射的每一發子彈的成本幾乎可以降至零,而理論上其射速可以超過任何機械系統。
圖 高超音速滑翔機軌跡和彈道軌跡
無人駕駛系統。無人機已經是全世界戰場上公認的--甚至是假定的--作戰工具。未來20年可能會看到大量其他無人駕駛飛行器的開發和部署,從地面飛行器到海基地面和地下平臺。這些飛行器是執行平凡的、重復性活動的理想選擇,如為載人平臺執行補給任務,以及執行危險任務,如偵察敵人的掩體和據點,鋪設或清除陸基和海基水雷,或搜索潛艇。
致命的自主武器。隨著自主技術的發展,一些國家可能不擔心人類會在發射決策中出現問題。因此,到2040年,盡管有相關的倫理和法律挑戰,真正的自主致命武器可能會在戰場上游蕩,并做出自己的目標和交戰決定。
蜂群。所有類型的無人駕駛系統正在迅速變得更多、更有能力和更便宜。已經觀察到小型無人機群的攻擊--例如,當美國特種部隊在2016年秋天為從ISIS手中奪回伊拉克城市摩蘇爾而戰斗時,他們受到了至少十幾架武裝無人機的攻擊,它們投放了手榴彈和簡易爆炸物。然而,蜂群的力量不僅僅是數量--無人駕駛車輛的蜂群可以相互溝通,并隨著情況的變化調整其戰術和目標。
圖 在伊拉克的一次訓練演習中,一個Talon 3B機器人正在接近一枚殺傷地雷。
這些自主系統的發展和不斷發展的能力與人工智能的進步密切相關。人工智能已經被用來提高各種現有武器系統的性能,如精確彈頭中的目標識別,并可在人機合作中用于支持人類,包括決策工具,或作為決策引擎本身。到2040年,源于人工智能的軍事決策可能會在實時支持行動中納入可用的天基數據。
例如,中國正在積極尋求將人工智能用于廣泛的應用,包括信息和數據分析;用于兵棋推演、模擬和訓練;以及用于指揮決策。俄羅斯總統弗拉基米爾-普京在2017年說,引領人工智能發展的國家將 "成為世界的統治者"。
然而,人工智能面臨著技術障礙和缺陷,它必須克服這些障礙和缺陷,以滿足其在戰場上的全部潛力。人工智能和支撐它的機器學習算法在界限分明的任務中表現出色,但如果面對混亂或意外的輸入,就會出錯。例如,可以想象這樣的情景:在動態的、往往是混亂的戰斗環境中,由人工智能驅動的致命自主武器被輸入所淹沒,要么關閉,要么游離,甚至開始瞄準友軍。
最后,其他新技術,特別是機器人技術、增材制造、生物技術和能源技術,可能會大大改善軍事后勤和維持。
無人車可用于后勤支持,在后方基地和部署在戰場上的部隊之間進行相對平凡但往往危險的供應。
增材制造能力--如使用包括先進金屬或陶瓷在內的新材料進行3-D打印--有可能通過廉價、快速和在需要的地方生產供應品、零件和可能的設備來徹底改變軍事后勤。
生物技術可以提高士兵個人在戰場上的戰斗力和生存能力。士兵們可能會使用他們身上或體內的醫療設備來監測他們的身體狀況,并且隨著戰場的進展,使用設備來診斷健康問題或傷害,并注射藥物--甚至在戰斗中。
新能源技術--如小型核反應堆,或高密度電力儲存--可以通過減少操作前沿部署的設施和設備所需的燃料數量,或作為未來定向能源武器的動力源,對后勤和武器系統產生同樣的變革性影響。
圖 2020 年 5 月對安裝在波特蘭號航空母艦 (LPD 27) 上的激光武器系統進行的測試。據美國海軍稱,該系統成功地禁用了用作目標的無人機。
定向能武器:威力強大,但依賴于能量:激光和其他定向能武器(DEWs),以及正在開發的軌道炮,都依賴電能來運作。因此,定向能武器的一個潛在缺點是,如果它們被剝奪了電源,例如在戰斗中遭到破壞,它們就會變得無法使用。
在戰場上使用新武器和新技術的方式將與技術本身一樣重要,特別是在確定軍事突破是真正的革命還是僅僅是當今軍事藝術的先進版本方面。正如第一次和第二次世界大戰前對新的和未經試驗的理論概念進行辯論一樣,世界各地的軍隊正在努力開發如何使用這些新的戰爭工具的理論("軟件")--有些是以新穎的方式,但有些則更多地反映了從今天的戰術和戰略的演變。至少有四種相互獨立但并不相互排斥的設想,即行為者在未來幾年內如何使用新武器和技術。
作為毀滅性的開場炮,高超音速武器,也許與更多的先進常規導彈相結合,可以在防御者能夠做出任何形式的反應之前,幾乎同時打擊對手的軍事和民用基礎設施。由于這種武器的射程和精度,攻擊者很可能不必事先廣泛部署部隊,從而限制了對手的指標和警告。
雖然一些新技術似乎有利于進攻或遠征戰爭,但某些其他新技術似乎為防御提供了更多的幫助,特別是對于專注于確保其國土安全的小國。例如,今天的無人駕駛系統通常需要大型和昂貴的機身,以容納必要的發動機和燃料箱,以便在遠離其基地的地方運行或在外國或敵對領土上長時間徘徊。然而,如果目標是保持對局勢的了解,并保衛一個國家的領空、海洋主張或本土領土,那么大量小型和廉價的無人駕駛系統可能同樣有效。
高速和高度精確的致命武器的擴散將使昂貴的、高價值的、難以快速替換的平臺和武器系統的生存能力受到質疑。一個潛在的緩解策略可能是進一步發展和實施分布式部隊和行動。
精確的地理位置、高保真戰場感知、即時通信和對抗性武器的結合意味著,到2040年,軍隊可能不再需要在時間和空間上集結部隊,達到歷史上或傳統上認為必要的程度來實現其目標。
然而,有一種風險是,如果促進分布式戰爭所需的任何關鍵使能器--特別是通信--被敵對行動破壞、擾亂或摧毀,那么軍隊的整體作戰系統可能從一個相互聯系的、有凝聚力的網絡演變成一個無法進行有效作戰行動的斷裂的馬賽克。
各國可能會越來越多地在 "灰色地帶 "進行競爭,除其他外,還使用非官方或看似可否認的代理人,包括私營軍事公司(PMC)。盡管使用代理人并不是一個全新的現象--冷戰時期美國和蘇聯之間的競爭大多涉及代理人沖突、可否認的部隊和假情報運動--但日益緊密聯系的環境正在改變一些工具和技術。
最終,新技術的選擇和作戰概念的發展可能取決于各個行為體獨特的威脅意識、實力和脆弱性。潛在的行為者包括從大國和地區大國到非國家行為者,如PMCs和叛亂及恐怖組織。國家和組織文化以及內部動態可能會在不同行為體如何采用和使用新技術方面發揮作用。這些行為體在多大程度上鼓勵主動性和創新,或在其他方面對變化持開放態度,可能會決定他們能否成功掌握新技術和理論的全部潛力。
一些先進的或新興的技術--如高超音速技術--可能仍然屬于大國和較富裕的國家行為者的范圍,但相對較低的國家和非國家行為者可以利用成本較低和更廣泛的自動化系統和網絡工具來實現高影響甚至是戰略層面的效果。較小的國家或正在崛起的國家可能更具創新性,因為它們冒險的損失較小,受遺留系統的負擔較輕,有時可以通過跳過幾代人的發展或投資于新的和未經測試的軍事或商業技術來跨越式發展。
2019年,伊朗利用武裝無人機和巡航導彈對沙特阿拉伯的石油生產設施進行了一次協調的遠程打擊,展示了創造性地將不同的技術和工藝編織在一起的能力--這次攻擊短暫地關閉了全球5%以上的石油生產,導致油價飆升。
私營軍事公司,特別是那些在某個大國要求下運作并有可能獲得最佳技術的公司,也有可能將先進的武器和監視設備納入其行動中。由于不受國家軍隊的官僚主義、理論和傳統的約束,私營軍事公司有可能在確定新的和創新的方法,在戰場上應用日益先進的技術方面發揮領導作用。
叛亂和恐怖組織可能會試圖進一步利用先進技術,因為這些技術變得越來越便宜和容易獲得。現在,潛在的恐怖分子很容易建造或購買無人機,并將其改裝為攜帶幾磅炸藥。
在歷史上,新的作戰技術不斷涌現,往往大受好評,但只對戰場產生了有限的影響,而其他技術--如火藥--則繼續產生了深遠的影響。準確地確定哪些以及在多大程度上新技術和工藝將對未來戰爭的特點產生最大的影響是眾所周知的困難。然而,已經在戰場上出現的或即將出現的先進能力,指出了一些趨勢和對2040年的戰爭與和平的潛在影響。
許多可能在未來20年內被開發和部署的先進系統代表著擴散的威脅。在持續的技術變革和擴散的速度下,許多與軍事相關的技術可能會變得更容易獲得,并且對國家和非國家行為者來說都很普遍。
例如,空間技術和服務在本質上是雙重用途的,這意味著先進的、基于空間的服務--如高分辨率圖像--將可用于軍事應用以及民用政府和商業使用。
技術的擴散和相對較低的成本已經為網絡空間的沖突創造了一個特別低的障礙,使小國家或團體能夠在沒有昂貴的武器系統和人員的情況下實現戰略效果。低成本的網絡空間能力的應用也可以為打擊依賴技術的國家或組織提供一個優勢。
鑒于技術的傳播和商業行業在新的應用和系統開發中發揮的核心作用,有可能想象一種動態的融合,即出現一種新的私營軍事公司,提供最先進的軍事能力--如機器人武器和由雇傭軍操作的平臺--以獲得報酬。這可以使較小的軍事強國避免發展現代軍事和培訓熟練人員的費用。
遠程精確打擊能力意味著曾經因為距離而被認為相對安全的地區將變得越來越脆弱,包括機場、集結區、指揮和控制中心。各國還可能面臨不受地域限制的、針對關鍵基礎設施的協同網絡攻擊,以擾亂部隊行動,在平民中造成混亂,并削弱公眾對軍事行動的決心。
先進武器系統的日益普及以及混合戰爭和非動能戰爭的不斷使用,可能會進一步挑戰長期以來對國家間威懾的理解,可能會有意外升級為國家間直接沖突的風險。
如果高超音速和其他先進的精確打擊武器被證明像傳統智慧所認為的那樣有效和難以防御,這些系統可能成為理想的第一打擊武器。如果局勢高度緊張,領導人可能會感到有壓力,因為害怕在對手的第一次打擊中失去他們先進的高超音速武器和其他武器庫。
增加灰色地帶的活動,即使是為了避免全面的軍事對抗,也會帶來另一個風險變量,特別是隨著時間的推移,能力的增長。在對抗中,任何一方都不可能完全確定對方會如何反應,例如,當國家支持的私人軍事承包商在戰斗中被殺,或網絡攻擊破壞了關鍵的基礎設施或破壞了選舉。從本質上講,使用這些方法的前提是對方不會尋求升級。
涉及大國或中等國家的未來沖突從一開始就可能是異常激烈的,但也是曠日持久的,沒有結果的。幾個世紀以來,對手發動戰爭,認為他們有一些優勢,可以使他們迅速和決定性地獲勝。有時他們是正確的,但在其他情況下,那些認為自己擁有贏得戰爭的技術或軍事戰略的領導人卻證明是錯誤的。隨著各種各樣新的但尚未嘗試過的作戰技術和概念的出現,這種動態可能會在未來20年內繼續重復。
作為歷史對比,日本在1941年對珍珠港的攻擊使美國海軍的太平洋戰艦艦隊癱瘓,并殺死了2400多名美國人。在未來,先進和日益致命的武器可以達到類似的影響,并在沖突開始的幾分鐘內對一個國家的武裝力量造成類似的傷亡。
這種破壞的速度和規模可能導致任何在未來沖突中遭受類似損失的國家因喪失軍事能力和信心、對傷亡的震驚或破壞其戰斗意志的組合而認輸或退出戰斗。然而,這種明顯的決定性損失有可能激勵一個國家繼續戰斗,而不顧流血和財富的代價,就像珍珠港事件后的美國一樣。這種情況也可能迫使一個國家采用新的武器技術或新的戰爭方法,否則它可能不會考慮去試圖擊敗對手。
(2021年11月10日,在荷蘭弗里皮爾舉行的北約反無人機系統技術互操作性演習中,無人機在無人機群演示前處于起飛位置。)
美國防部(DOD)和美國政府在敵方使用小型無人駕駛飛機系統(sUAS)方面面臨著重大國家安全挑戰。創建集群能力的現有技術導致了多層次和無法管理的威脅。本文討論了如何準備和應對這一迫在眉睫的挑戰,俗稱“無人機蜂群”。傳統思維和實踐的基本挑戰推動了對無人機蜂群的關注。一些未解決的問題包括無人機蜂群對美國的潛在利益與威脅。迄今為止,沒有任何方法能充分解決美國對無人機蜂群的戰略風險。盡管美國防部戰略包括一些應對敵方無人機威脅的方法,但它并沒有完全面對挑戰,而要解決未來武裝無人機蜂群帶來的戰略問題,就必須面對這些挑戰。為了減輕這種新出現的風險,美國需要一個協調的方法來解決技術、法律和條令問題。
美國目前的戰略文件為確保和推進國家利益提供了總體要求。然而,新出現的威脅和潛在的無人機蜂群技術威脅著美國的安全態勢。例如,2017年美國國家安全戰略指出,“我們將保持一個能夠威懾并在必要時擊敗任何對手的前沿軍事存在”。隨著美國軍隊在全球范圍內的廣泛投入,對手可以利用無人機蜂群來挑戰美國在許多領域的利益;如果是這樣,美國軍隊就不能可靠地投射力量來威懾和擊敗這些同樣的對手。
此外,《美國國防戰略》認為戰爭的特點在不斷變化,行為者可以更迅速、更容易地獲得技術,包括人工智能(AI)、自主性和機器人技術。時任美國防部長詹姆斯-馬蒂斯在2018年說明了這種擔憂,他承認國土不再是一個避難所,必須預測針對“關鍵的國防、政府和經濟基礎設施”的攻擊。無人機蜂群構成了重大的國家安全戰略風險,應對這一新興威脅給美國帶來了三個關鍵領域的挑戰和機遇:技術、法律和理論。
關于作戰無人機系統使用的研究文獻揭示了以創新方式改變戰爭特征的潛力。技術革命使行為者能夠利用無人機來實現國家目標。最近發生在南高加索地區的納戈爾諾-卡拉巴赫爭議地區的戰爭說明了這一現實。阿塞拜疆對無人機系統的使用極大地幫助了它的勝利,支持了它對亞美尼亞的空中和地面作戰,而亞美尼亞擁有更多的常規空中和地面部隊,包括戰斗機和坦克。此外,這場戰爭說明了使用無人機系統來摧毀防空系統、地面部隊和裝甲車輛的優勢,包括空中能力成本相對低廉。這些系統可以憑借其相對較小的尺寸和較慢的速度避開敵人的防空系統,而且它們在常規沖突中為不太富裕的國家提供了潛在的軍事優勢。這種力量的再平衡表明,國家可能會在未來的沖突中更多地使用無人機系統來脅迫他們的敵人,促成外交上的讓步,并實現國家安全目標。遙控飛機是改變戰爭性質的工具,而小型無人機的創新使用說明了下一步的改進,其成本低,回報潛力大。
除了目前無人機系統的應用,這些航空器的未來發展趨向于更加復雜,在人工智能、自主性和機器學習方面將取得更多進展。這些術語可能會使一些人想到虛構的作品,如《天使降臨》(2019),這部電影中,小型螺旋槳驅動的無人機從地面的管道發射,攻擊美國總統和他的特勤人員。然而,在現實中主要軍事大國目前都在追求這種能力。
中國電子信息技術研究院在2020年9月測試了從地面和空中發射器發射和使用多個sUAS的蜂群編隊。此外,美國海軍研究辦公室和國防高級研究計劃局近年來進行了廣泛的測試,使用大量的無人機相互協調進行偵察,編隊飛行,或可用于向目標投放彈藥。2020年9月的一次演習顯示,俄羅斯也在繼續追求用三種型號的無人機系統進行集成編隊,打擊地面目標。雖然這本身不是無人機蜂群,但一位俄羅斯專家指出:“在這一點上,俄羅斯有很多關于UAV蜂群使用的研究,并對這種概念進行了測試和評估。”
民用無人機蜂群的發展表明,這是一項雙重用途的技術。在過去的幾年里,對無人機能力的需求不斷增加,因為各公司為編排好的展示活動編排了數以百計,有時甚至數以千計的無人機系統。例如,英特爾在2018年創造了一次展示中無人機數量最多的世界紀錄,有2066架。英特爾特定型號的無人機在眾多活動中飛行,包括2018年冬季奧運會和2017年超級碗的半場表演。最近,無人機表演為當選總統喬-拜登的特拉華州勝利慶典展示了蜂群能力。可以想象,一個邪惡的行為者可能會控制大量無人機,對涉及國家元首或大量人群的活動進行破壞。伊朗在2019年9月對沙特阿拉伯最大的原油穩定廠之一進行了無人機攻擊,顯示出不同尋常的復雜性,并且還在試驗同時對50個目標使用大量無人機。無人機蜂群的軍事和民用趨勢預示著美國的力量可能會在未來受到挑戰。盡管各行為體尚未使用真正的小型無人機蜂群來對付對手,但該技術的攻擊應用并不遙遠。
各國應在仔細考慮其風險和影響后,規劃使用無人機群。一些文獻承認無人機蜂群在某些戰略軍事背景下的概念性應用。例如,一位戰略專家認為,完全自主武裝型無人機蜂群(AFADS)是蜂群應用的一個子集,可以被視為大規模殺傷性武器(WMD)。美國陸軍應用兵棋推演方法證明了無人機蜂群武器如何在平行攻擊中提供作戰優勢。美國防部關于使用自主系統的發起人之一指出:部署完全自主的武器將是一個巨大的風險,但這可能是一個軍隊值得承擔的風險。這樣做將會進入未知的領域。敵對行動者正積極試圖破壞戰時的安全行動。而且在行動時,沒有人可以干預或糾正問題。
大國可能愿意承擔這種風險;正在開發能夠獨立于人類操作者做出決策的自主武器。前美國防部長馬克-埃斯佩爾指出了美國和其他大國在自主武器發展方面的這種區別。一些評論家斷言,自動防御系統提供了軍事優勢,包括自由打擊覆蓋戰略資產的傳統防空系統或對核和支撐能力進行監視。
各國必須考慮自主武器計劃的戰略影響。一個行為者向對手使用無人機蜂群可能導致意外升級,而一個意外的人工智能決策可能無意中導致敵人反擊或外交危機。國際上的討論還沒有涉及到使用完全自主武器在“危機穩定、升級控制和戰爭終止”方面的戰略考慮。許多專家同意,自主武器系統可能在危機或武裝沖突期間提供作戰優勢,特別是在灰色地帶或混合戰爭中,但戰略風險要求決策者現在就考慮這些危險,以避免以后出現災難性的結果。完全自主的武器系統增加了誤判和/或誤解的風險,這可能導致國家和非國家競爭者之間不受控制的風險升級。這包括使用大規模毀滅性武器的威脅增加。盡管采用自主無人機蜂群存在固有的風險和后果,但這些能力為行為者提供了實現國家目標的軍事和戰略選擇。有人類參與的半自主無人機蜂群武器也會給對手帶來風險,盡管程度較低。
關鍵術語和分析的范圍將澄清誤解。歐文-拉肖在《原子科學家公報》中寫道,將蜂群無人機定義為“分布式協作系統......成群的小型無人駕駛飛行器,可以作為一個群體移動和行動,只需有限的人類干預”。蜂群的另一個定義規定了軍事應用,“大量分散的個體或小團體協調在一起,作為一個連貫的整體進行戰斗”。根據美國防部指令3000.09,自主武器系統,“一旦啟動,就可以選擇和攻擊目標,而無需人類操作員進一步干預”。美國國家科學、工程和醫學研究院規定,無人機蜂群是指40個或更多的無人機系統,該群體作為一個單位,有各自的行為,所有成員都不知道任務,成員之間相互通信,每個無人機系統“會相對于其他無人機系統進行定位”。這些創新包括人工智能、自主性和機器學習的應用,以及美國防部指定為1、2和3組的sUAS進步。sUAS作為一個整體執行任務,包括情報、監視和偵察以及進攻性攻擊。在本文的其余部分,這種威脅將被稱為無人機蜂群。
對抗(或稱反制)無人機蜂群提出了三個領域,這對五角大樓和負責保衛美國國土的國家機構來說既是挑戰也是機遇。第一個領域,即技術,美國防部的工作集中在硬件解決方案上。在2021財年,美國防部最初計劃“在反無人機系統(C-UAS)的研究和開發上至少花費4.04億美元,在C-UAS的采購上至少花費8300萬美元。”所有軍種都追求各種尖端技術解決方案來探測、跟蹤、識別和擊敗目標。用于探測的硬件解決方案包括雷達以及電子光學、紅外和聲學傳感器;所有這些都因小型無人機的表面特征和相對速度而限制了其有效性。另一種技術涉及操作員可能需要控制無人機無線電指令信號的探測。擊敗機制包括干擾、欺騙、槍支、網、定向能和標準防空系統等方法。然而,目前的能力給操作者帶來的結果是好壞參半的。目前的措施主要是針對數量較少的無人機,而這些無人機并沒有表現出蜂群行為能力。其他方法,包括美國空軍和國防部在作戰環境中測試的高功率微波(HPM),可能提供更有效的能力來對付無人機蜂群,但專利方面的挑戰可能會限制其有效性。誠然,美國防部可能正在追求更先進的HPM武器,其基礎設施足跡更小,如Leonidas系統,但目前的研究僅限于非保密來源。
美國防部的反無人機系統(C-sUAS)戰略承認了無人機蜂群帶來的戰爭特征變化,但并沒有提到具體的解決技術。考慮到對抗無人機蜂群的近期要求,當前技術的重大局限性給行業帶來了挑戰。此外,美國防部可能沒有關注無人機蜂群的新威脅。相反,開發和采購工作表明,重點是傳感器和武器,以擊敗目前的無人機系統。美國防部2021財年的C-UAS預算主要針對當前設備進行開發,沒有考慮滿足未來需求的技術創新。在COVID-19大流行期間和之后美國防部預算下降的環境下,這種方法可能被證明是低效的,并造成重大風險。各國開發無人機蜂群技術的速度表明,其成熟速度比應對此類威脅的設備成熟速度更快。
觀察家們注意到需要快速創新以減輕不斷上升的威脅,但目前的國防工業基礎面臨著變革的障礙,包括軍事文化和新的商業技術測試。快速創新的一個更常見的問題源于對商業產品的收購,其中知識產權成為系統部署使用的很大障礙。當公司的設備或軟件不一定能互操作時,這個問題就會變得很嚴重,使C-sUAS操作者無法獲得擊敗目標所需的融合、及時和有用信息。軍事文化不一定會獎勵創新的思想家,并且很可能成為快速變革的障礙。雖然美國防部目前的C-sUAS戰略確定了無人機蜂群的威脅,但它沒有充分解決國防部必須如何克服高成本和創新遲緩的技術風險。
(2022年8月14日,在密歇根州格雷靈營地,分配給美陸軍第37步兵旅戰斗隊總部的上士Noah Straman 在北方打擊行動期間發射了DroneDefender)
C-sUAS戰略的第二個風險來源是在法律限制,特別是在國土上。現行法律為國土上的美國公民提供保護,同時也抑制了美國防部在軍事設施上保護無人機威脅的能力。鑒于無人機的威脅能力和檢測限制的多重影響,無人機蜂群加劇了這種限制所帶來的風險。C-sUAS戰略宣稱,美國防部的主要利益相關者必須與合作伙伴合作才能取得成功。這一當務之急應推動立法解決方案,以擴大這種反無人機設備運行的國內環境權限。
C-sUAS戰略強調了在國土上操作反無人機能力的重大法律挑戰,并斷言:“許多現有的法律和聯邦法規在設計時并沒有將無人機系統作為威脅來處理,而技術變化的持續速度使得法律當局很難跟上步伐。”目前的法律不允許及時發現潛在的無人機威脅,這些威脅可能來自軍事設施之外。《美國法典》(USC)第10條第130i款授權國防部長和武裝部隊指定人員采取所有動能或非動能行動,以“禁用、損壞或摧毀”對“所涉設施或資產”構成威脅的無人駕駛飛機系統。這一法律限制使操作者無法在潛在的無人機威脅到達目標之前將其擊敗。
盡管《美國法典》第10章第130i條授權國防部“在未經事先同意的情況下......通過攔截或以其他方式獲取電訊或電子通訊,探測、識別、監測和跟蹤無人駕駛飛機”,但它并沒有明確說明這一權力是否延伸到基地的邊界之外;如果可在邊界之外,就會給國防部提供戰術優勢。新的授權也不清楚美國防部是否可以在不違反情報監督指令的情況下,在其管轄范圍之外收集所需的無人機信息。此外,針對潛在的無人機蜂群威脅收集此類信息可能會擴大責任。探測目標還需要區分敵方和友方的無人機,鑒于目前的權限,處理與合法民用飛機有關的具體信息可能會有問題。
根據C-sUAS戰略,美國防部必須采取多邊行動,并與執法機構分享威脅信息,如10 USC 130i所允許的。這可能的一種方式是在國家安全特殊事件(NSSEs)期間,聯邦調查局(FBI)可以有臨時的權力來反擊無人機,而無需首先獲得授權。2018年《預防新威脅法》授權國土安全部(DHS)和司法部(DOJ)“通過基于風險的評估,減輕無人駕駛飛機......對設施或資產的安全或安保構成的威脅”。在最近的案例中,聯邦調查局與聯邦航空管理局(FAA)合作,在2020財政年度期間,包括2020年超級碗、2019年世界大賽、2020年玫瑰碗比賽、華盛頓特區的“A Capitol Fourth”和紐約市的新年慶祝活動中,成功對抗了超過200架無人機。聯邦調查局還與國土安全部以及佐治亞州的州和地方執法部門合作,在2019年超級碗比賽期間對抗54起無人機入侵事件;在體育場周圍的臨時飛行限制期間,至少有6架無人機被沒收了。
2018年《預防新威脅法》的描述內容與《美國法典》第10篇第130i條的授權非常相似,但仍不清楚國土安全部、司法部和國防部如何進行實際合作。首先,NSSEs是臨時性的,如果沒有永久性的授權,通過機構間的協調對威脅進行早期預警的優勢幾乎可以忽略不計。對手很可能不會在NSSE期間對國防部資產發動無人機蜂群攻擊。其次,如果國防部發現了其管轄范圍之外的威脅并警告國土安全部或司法部,聯邦、州或地方執法部門不太可能有時間和能力來攔截無人機蜂群威脅。
地方執法部門和私人實體有更少的權力來對抗無人機。根據國土安全部、司法部、交通部和聯邦通信委員會最近的咨詢,采用反無人機技術的非聯邦公共機構和私人可能違反聯邦法律。法律將無人機定義為飛機,任何破壞或摧毀無人機的工具都可能引發涉及《飛機破壞法》和《飛機海盜法》的責任。那些使用無線電頻率探測的人可能會涉及《竊聽/陷阱法》和《竊聽法》的訴訟負責,這取決于該能力是否記錄或攔截無人機和控制器之間的電子通訊。
最后,附帶影響可能導致當地執法部門或私人實體重新考慮采用這些能力。杰森-奈特對城市地區警察機構的考慮進行了分析,并提到了反無人機技術干擾合法地面和空中活動的例子。目前的授權并沒有為國防部對抗無人機群所需的預警能力提供全面的法律基礎。盡管在某些情況下,與東道國或在應急地點的多邊協調可能為防御者提供優勢,但鑒于美國防部的法律限制,在可能試圖使用無人機蜂群來對付關鍵基礎設施時,國土為對手提供了優勢。
(2022年3月30日,第3海軍陸戰隊第9工兵支援營沿海工兵偵察隊的戰斗工程師海軍陸戰隊下士Chance Bellas在菲律賓克拉韋里亞的Balikatan 22期間組裝了小型無人機系統VAPOR 55)
C-sUAS戰略的最后一個障礙是關于有效使用反無人機設備的一個重要但被忽視的方面。該戰略宣稱,隨著技術的成熟,需要制定條令,但僅僅承認企業的需求并沒有解決規劃誰可能操作這些設備的重大挑戰。現在確定條令上的需求將減輕未來的能力差距。美國陸軍必須在保衛空軍基地免受未來無人機蜂群威脅方面發揮更大作用。
采用反無人機能力的一個獨特方面是,它包括在所有領域的行動。具體來說,在空中瞄準和減輕對手的巨大挑戰,需要對三個主要任務領域的分工進行清晰的評估:防空、部隊保護和空域控制。從這些任務領域中提取部署原則對于規劃反無人機能力的戰略用途是有價值的。聯合條令是基于目前的部隊結構和幫助解決復雜問題的責任。規劃對抗無人機蜂群的方法需要對聯合條令中的角色和責任進行更深入的評估。
條令必須考慮到培訓未來在所有領域發揮作用的設備操作人員。在空中領域的操作需要對防空、部隊保護和空域控制有充分了解和精通的人員。設計一個與技術和設備同步發展的部隊結構并為其提供資源,將更有效地阻止和對付先進的威脅。這一發展推動了反無人機蜂群條令開發的權威指導,其也是C-sUAS聯合辦公室(JCO)作為國防部執行機構責任的一部分。此外,聯合辦公室將“協調C-UAS的聯合作戰概念和聯合條令的發展”。然而,這種責任描述沒有考慮到目前國防部各部門在空域控制、部隊保護和針對無人機蜂群威脅的防空方面的角色挑戰。專注于對抗地面威脅的部隊保護軍事人員并不具備對抗空中威脅同時避開友軍飛機的必要知識。對這些人員進行空域環境、電磁波譜、空間作業和天氣等相關培訓,將使他們更有效地運用能力來對付無人機蜂群。在防空方面重疊的責任,特別是美國陸軍和美國空軍之間的責任,可以解決此條令上的挑戰。然而,各軍種都依賴部隊保護專家,這給業務帶來了風險。
條令還包括對角色和任務的劃分,特別是在空軍基地的防空方面。越南戰爭和伊拉克戰爭迫使高級軍事指揮官和各軍種將能力分配給傳統任務,而犧牲了支持戰略和作戰目標的空軍基地防御。特別是陸軍和空軍,自二戰結束以來,一直在為地區和點狀防空任務的具體作用而爭斗。2020年蘭德公司的一項研究強調了目前的辯論:今天,美國陸軍負責為空軍基地和其他固定設施提供點式AMD(防空和導彈防御),但兩軍多年的忽視導致了能力上的不足......陸軍領導層將其機動部隊的移動式短程防空置于固定設施防御之上。
在美國陸軍對海外和國內主要作戰基地的防空資源進行優先排序之前,戰略和戰役目標很容易被無人機蜂群影響。此外,空軍可能會繼續倡導和獲得C-sUAS的能力,而沒有條令上的決議。空軍可能會實現其長期以來的愿望,即在戰術防空方面發揮更大的領導作用——這將與聯合司令部的任務相矛盾,即避免重復工作并獲得效率。同樣,其他軍種可能會繼續購買設備進行試驗,如果沒有跨領域和職能協調,這可能不是最佳或有效的。
蘭德公司的報告還詳細說明了陸軍和空軍在防空方面的角色錯位。2020年的一份國會研究報告提出了一個重要問題:“計劃中的SHORAD(短程防空)部隊結構和能力是否足以應對預測的未來挑戰?”該報告表明,陸軍計劃在現役和后備部隊之間增加18個營的防空能力,這可能不足以滿足支持歐洲威懾倡議和太平洋威懾倡議的陸軍部隊需要。這些能力包括應對無人機系統的威脅,但不包括保衛空軍關鍵資產和主要作戰基地的假定任務。盡管聯合出版物3-0《作戰》要求整合進攻和防御能力,以實現對敵方無人機的空中優勢和部隊保護,但它并沒有明確規定各軍種的角色和任務。這種理論上的模糊性增加了SHORAD資源不足的危險,以應對未來無人機蜂群的倍增效應。
新興技術的發展和使用無人機蜂群可能性的增加使得有必要對條令和軍種的作用進行重新評估。事實上,空軍參謀長已經敦促國防部長辦公室對各軍種的角色和任務進行審查,以確定聯合作戰概念的領導組織,如遠程精確射擊和攻擊下的后勤。這兩個概念都與保護戰略資產免受潛在的無人機蜂群攻擊有關。此外,美國防部缺乏條令指導可能也表明需要評估機構間的概念和方法,以便在民事管轄范圍內采用類似的能力。JCO及其國防部戰略將為持續的條令開發提供基本要素,但更多的工作必須集中在調整各部門的角色和資源上。
美國防部對抗無人機蜂群的新方法必須解決技術快速發展的風險,對手可能利用民用和國防部保護關鍵基礎設施之間的法律縫隙,以及防空、空域控制和部隊保護方面固有的條令挑戰。正如2018年美國國防戰略所指出的,國土不再是一個避難所,而是敵人無人機蜂群的目標,這些蜂群可能具有洲際范圍的能力。
(2021年10月14日,夏威夷波哈庫洛亞訓練區,海軍陸戰隊準下士德米特里-謝潑德在布干維爾II期間進行步兵排戰斗課程時發射無人機)
敵對趨勢必須推動國防工業基地采用相對低成本、快速和人工智能的技術解決方案。最初尋求納入未來技術的“第三次抵消戰略”,為減輕這種風險提供了一個特別有用的方法。該戰略探討了蜂群式無人機、高超音速武器、人工智能和人機協作的最佳組合方式,以在戰斗中提供獨特的優勢,但它并不只關注材料和設備。相反,它考慮了如何最好地將人類的創造力與技術的精確性相結合。當應用于對抗無人機蜂群時,人機協作的概念可以為防空事業提供優勢。解決方案應該包括一系列與人工智能軟件完全整合的傳感器,以便更迅速地識別潛在目標,并提高信心水平。美國陸軍的TRADOC小冊子525-3-1《2028年多域作戰中的美國陸軍》指出,這些特征是人工智能和高速數據處理所希望的,以提高“人類決策的速度和準確性”。
值得投資的人機技術項目包括由人工智能驅動的自主蜂群無人機,以通過斗狗來減輕或摧毀敵人的蜂群。喬治亞理工大學在2017年與海軍研究生院合作進行了這種實驗。此外,美國防部的低成本開發能力包括非動能直接能量武器,如戰術高功率微波作戰響應器(THOR)和混合防御限制空域(HyDRA)計劃。THOR為對抗無人機蜂群提供了一種特別有效的能力,因為與HyDRA激光器相比,其影響范圍更大。然而,如果與綜合指揮和控制(C2)界面連接部署并協調,將人工智能與人類結合起來,該系統可比標準防空能力更有效,成本更低。
C2能力必須能夠更快地確定目標,將傳感器與擊敗機制連接起來,并允許人類操作員迅速選擇更有效的武器。最近的報告表明,聯合司令部正在追求這些能力,并可能要求各軍種開發自己的C2系統,以便最終整合到美國陸軍的前線防空指揮和控制系統。其他C2系統包括美國海軍的CORIAN(反遙控模型飛機綜合防空網絡)能力和美國空軍的多域無人系統應用指揮和控制。然而,這些具體的系統目前似乎并沒有與先進作戰管理系統(ABMS)或擬議的聯合全域指揮與控制(JADC2)架構聯系在一起。最近和剛開始的工作表明,在北大西洋公約組織中將使用JADC2概念將傳感器與射手聯系起來以對抗無人機群的倡議。未來的JADC2架構在概念上可以使人類操作員為自己的目的控制敵方的無人機蜂群網絡。無論哪種創新,“第三次抵消戰略”都為應對未來致命的自主無人機蜂群問題提供了一個潛在的寶貴方法。
在不考慮未來無人機蜂群威脅或人工智能發展活動的情況下,追求不同的和針對具體軍種的C2能力將浪費時間和納稅人的資金。相反,美國防部應更快地將2021財年開發的反無人機蜂群C2能力納入JADC2架構。國會責成國防部長評估綜合防空和導彈防御C2系統,其中包括C-UAS能力,并確定它們是否與新興的JADC2架構兼容。這個框架符合國會對自主或半自主能力的偏好,而且操作和維持成本低。盡管互操作性、知識產權、數據管理和信息保障仍然是挑戰,但將C-sUAS C2系統整合到JADC2架構中,將產生更快的殺傷鏈和潛在更低成本的項目。JCO主任肖恩-蓋尼少將最近承認,這種開放的架構方法可能會在日后帶來巨大的安全紅利。 第二,在國土的現有法律框架內運作,美國防部必須倡導在固定地點有更多的權力來保衛關鍵基礎設施。國會必須在緊急情況下和和平時期授予國防部長更多的權力。該建議必須包括授權操作者在基地邊界之外確定潛在目標。運營商也應該有法律支持,以近乎實時的方式告警當地和聯邦執法機構。
(2021年4月18日,太平洋,分配到第21直升機海戰中隊的海軍二級空勤人員(直升機)丹尼爾-艾爾斯在與兩棲攻擊艦埃塞克斯號的實彈演習中用MH-60S海鷹GAU-21.50口徑機槍向目標無人機開火)
第二,在國土的現有法律框架內運作,美國防部必須倡導在固定地點有更多的權力來保衛關鍵基礎設施。國會必須在緊急情況下和和平時期授予國防部長更多的權力。該建議必須包括授權操作者在基地邊界之外確定潛在目標。運營商也應該有法律支持,以近乎實時的方式告警當地和聯邦執法機構。
幸運的是,聯邦航空局正在推行幾項舉措來對抗敵方無人機。這些計劃包括將無人機納入國家空域系統,以區分友軍和敵軍的無人機。國防部應積極鼓勵聯邦航空局和美國國家航空航天局繼續各自的無人機行業倡議,包括無人機系統交通管理研究,以“確定服務、角色和責任、信息架構、數據交換協議、軟件功能、基礎設施和性能要求,以實現對低空無控制無人機操作的管理”。這些增加的權力,再加上增強的能力,可以縮小民事和軍事管轄權之間的法律差距,以保護國家基礎設施和國防部的關鍵資產。
最后,美國防部必須通過兵棋推演和演習積極磨練理論,以確定空軍基地防空中最合適的角色和職能。隨著無人機技術的成熟和向友軍提出更復雜的問題,盡早建立正確的部隊結構將更有效地應對挑戰。這將需要進行必要的培訓和適當的資源配置,以滿足國會對有效和低成本設備的需求。正如蘭德公司的研究報告所指出的那樣,沒有單一的行動方案,而是通過組合來提供解決方案。然而,角色和職能的重新調整對于成功至關重要。追求適當的聯合討論將為未來對抗無人機蜂群的強大和基于風險的模式提供基礎,并避免過去的戰略錯誤。
人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。
人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。
作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。
人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。
在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。
目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。
鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。
如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。
如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。
人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。
C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。
圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。
圖1. 海上人工智能系統的擬議架構
首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。
第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。
第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。
自動化使系統能夠執行通常需要人類投入的任務。英國政府認為自動化對保持軍事優勢至關重要。本論文討論了當前和未來全球自動化的應用,以及它對軍事組織和沖突的影響。同時還研究了技術、法律和道德方面的挑戰。
許多軍事系統都有自動化的特點,包括執行物理任務的機器人系統,以及完全基于軟件的系統,用于數據分析等任務。自動化可以提高某些現有軍事任務的效率和效力,并可以減輕人員的 "枯燥、骯臟和危險 "的活動。 許多專家認為,自動化和自主性是與系統的人類監督水平有關的,盡管對一些系統的定位存在爭議,而且對系統是否應被描述為 "自動化 "或 "自主 "可能存在分歧。英國防部在其 "自主性譜系框架 "中概述了5個廣泛的自主性水平,從 "人類操作 "到 "高度自主"。一個系統可能在不同的情況下有不同的操作模式,需要不同程度的人力投入,而且只有某些功能是自動化的。方框1概述了本公告中使用的定義。
方框1:該領域的術語并不一致,關鍵術語有時可以互換使用。
自動化系統。自動系統是指在人類設定的參數范圍內,被指示自動執行一組特定的任務或一系列的任務。這可能包括基本或重復的任務。
自主系統。國防科學與技術實驗室(Dstl)將自主系統定義為能夠表現出自主性的系統。自主性沒有公認的定義,但Dstl將其定義為 "系統利用人工智能通過自己的決定來決定自己的行動路線的特點"。自主系統可以對沒有預先編程的情況作出反應。
無人駕駛車輛。朝著更高水平的自主性發展,使得 "無人駕駛 "的車輛得以開發,車上沒有飛行員或司機。有些是通過遠程控制進行操作,有些則包括不同程度的自主性。最成熟的無人駕駛軍事系統是無人駕駛航空器,或稱 "無人機",其用途十分廣泛。
人工智能。人工智能沒有普遍認同的定義,但它通常是指一套廣泛的計算技術,可以執行通常需要人類智慧的任務(POSTnote 637)。人工智能是實現更高水平的自主性的一項技術。
機器學習:(ML,POSTnote 633)是人工智能的一個分支,是具有自主能力的技術的最新進展的基礎。
英國政府已經認識到自主系統和人工智能(AI,方框1)的軍事優勢以及它們在未來國防中可能發揮的不可或缺的作用。在其2021年綜合審查和2020年綜合作戰概念中,它表示致力于擁抱新的和新興的技術,包括自主系統和人工智能。2022年6月,英國防部發布了《國防人工智能戰略》,提出了采用和利用人工智能的計劃:自動化將是一個關鍵應用。在全球范圍內,英國、美國、中國和以色列擁有一些最先進的自主和基于AI的軍事能力。方框2中給出了英國和全球活動的概述。
方框2:英國和全球活動
英國 英國政府已表明其投資、開發和部署用于陸、海、空和網絡領域軍事應用的自主和人工智能系統的雄心。最近的投資項目包括NELSON項目,該項目旨在將數據科學整合到海軍行動中;以及未來戰斗航空系統,該系統將為皇家空軍提供一個有人員、無人員和自主系統的組合。在2021年綜合審查發表后,政府成立了國防人工智能中心(DAIC),以協調英國的人工智能國防技術的發展。這包括促進與學術界和工業界的合作,并在紐卡斯爾大學和埃克塞特大學以及艾倫-圖靈研究所建立研究中心。
全球背景 對自主軍事技術的投資有一個全球性的趨勢:25個北約國家已經在其軍隊中使用一些人工智能和自主系統。有限的公開信息給評估軍隊的自主能力帶來了困難,但已知擁有先進系統的國家包括。
俄羅斯和韓國也在大力投資于這些技術。在俄羅斯,機器人技術是最近成立的高級研究基金會的一個重點,該基金會2021年的預算為6300萬美元。
自主系統可以被設計成具有多種能力,并可用于一系列的應用。本節概述了正在使用或開發的軍事應用系統,包括情報、監視和偵察、數據分析和武器系統。
自動化正越來越多地被應用于情報、監視和偵察(ISR),通常使用無人駕駛的車輛(方框1)。無人駕駛的陸上、空中和海上車輛配備了傳感器,可以獲得數據,如音頻、視頻、熱圖像和雷達信號,并將其反饋給人類操作員。一些系統可以自主導航,或自主識別和跟蹤潛在的攻擊目標。英國有幾架ISR無人機在服役,還有一些正在試用中。這些無人機的范圍從非常小的 "迷你 "無人機(其重量與智能手機相似)到可以飛行數千英里的大型固定翼系統。英國正在試用的一個系統是一個被稱為 "幽靈 "無人機的迷你直升機,它可以自主飛行,并使用圖像分析算法來識別和跟蹤目標。無人駕駛的水下航行器被用于包括地雷和潛艇探測的應用,使用船上的聲納進行自主導航。這些車輛還可能配備了一種技術,使其能夠解除地雷。
許多軍事系統收集了大量的數據,這些數據需要分析以支持操作和決策。人工智能可用于分析非常大的數據集,并分辨出人類分析員可能無法觀察到的模式。這可能會越來越多地應用于實地,為戰術決策提供信息,例如,提供有關周圍環境的信息,識別目標,或預測敵人的行動。英國軍隊在2021年愛沙尼亞的 "春季風暴 "演習中部署了人工智能以提高態勢感知。美國的Maven項目旨在利用人工智能改善圖像和視頻片段的分析,英國也有一個類似的項目,利用人工智能支持衛星圖像分析。
以自動化為特征的武器系統已被開發用于防御和進攻。這些系統包括從自動響應外部輸入的系統到更復雜的基于人工智能的系統。
防御系統。自動防空系統可以識別和應對來襲的空中威脅,其反應時間比人類操作員更快。這種系統已經使用了20多年;一份報告估計有89個國家在使用這種系統。目前使用的系統可以從海上或陸地發射彈藥,用于應對來襲的導彈或飛機。英國使用Phalanx CIWS防空系統。雖然沒有在全球范圍內廣泛采用,但以色列將固定的無機組人員火炮系統用于邊境防御,并在韓國進行了試驗。這些系統能夠自動瞄準并向接近的人或車輛開火。
導向導彈。正在使用的進攻性導彈能夠在飛行中改變其路徑,以達到目標,而不需要人類的輸入。英國的雙模式 "硫磺石"(DMB)導彈于2009年首次在阿富汗作戰中使用,它可以預先設定搜索特定區域,利用傳感器數據識別、跟蹤和打擊車輛。
用于武器投送的無人平臺。為武器投送而設計的無人空中、海上和陸地運載工具可以以高度的自主性運行。這些系統可以自主地搜索、識別和跟蹤目標。大多數發展都是在空中領域。英國唯一能夠自主飛行的武裝無人機是MQ-9 "收割者",但有幾個正在開發中。英國防部還在開發 "蜂群 "無人機(方框3)。雖然存在技術能力,但無人駕駛的進攻性武器并不用于在沒有人類授權的情況下做出射擊決定;報告的例外情況很少,而且有爭議。 自主系統在識別目標和作出射擊決定方面的作用,是廣泛的倫理辯論的主題(見下文)。
方框3:無人機蜂群
無人機蜂群是指部署多個能夠相互溝通和協調的無人機和人員,以實現一個目標。在軍事環境中,蜂群可能被用來監視一個地區,傳遞信息,或攻擊目標。2020年,英國皇家空軍試驗了一個由一名操作員控制的20架無人機群,作為Dstl的 "許多無人機做輕活 "項目的一部分。蜂群技術還沒有廣泛部署。據報道,以色列國防軍于2021年首次在戰斗中使用無人機蜂群。
自動化技術和人工智能的擴散將對英國軍隊產生各種影響,包括與成本和軍事人員的角色和技能要求有關的影響。對全球和平與穩定也可能有影響。
一些專家表示,從長遠來看,軍事自動化系統和人工智能可能會通過提高效率和減少對人員的需求來降低成本。然而,估計成本影響是具有挑戰性的。開發成本可能很高,而且回報也不確定。提高自動化和人工智能方面的專業知識可能需要從提供高薪的行業中招聘。軍隊可能不得不提高工資以進行競爭,英國防部將此稱為 "人工智能工資溢價"。
自動化可能會減少從事危險或重復性任務的軍事人員數量。然而,一些軍事任務或流程,如高層戰略制定,不太適合自動化。在許多領域,自主系統預計將發揮對人類的支持功能,或在 "人機團隊 "中與人類合作。專家們強調,工作人員必須能夠信任與他們合作的系統。一些角色的性質也可能會受到自動化的影響,所需的技能也是如此。例如,對具有相關技術知識的自主系統開發者和操作者的需求可能會增加。英國防部已經強調需要提高整個軍隊對人工智能的理解,并承諾開發一個 "人工智能技能框架",以確定未來國防的技能要求。一些利益相關者對自動化對軍事人員福祉的影響表示擔憂,因為它可能會限制他們的個人自主權或破壞他們的身份和文化感。
人員對自動化的態度:
關于軍事人員對自動化的態度的研究是有限的。2019年對197名英國防部人員的研究發現,34%的人對武裝部隊使用可以使用ML做出自己的決定的機器人有普遍積極的看法,37%的人有普遍消極的態度。有報道稱,人們對某些自主武器系統缺乏信任,包括在2020年對澳大利亞軍事人員的調查中。在這項研究中,30%的受訪者說他們不愿意與 "潛在的致命機器人 "一起部署,這些機器人在沒有人類直接監督的情況下決定如何在預定的區域使用武力。安全和目標識別的準確性被認為是兩個最大的風險。有證據表明,信任程度取決于文化和熟悉程度。
一些專家提出了這樣的擔憂:在武器系統中越來越多地使用自主權,有可能使沖突升級,因為它使人類離開了戰場,減少了使用武力的猶豫性。蘭德公司最近的一份戰爭游戲報告(上演了一個涉及美國、中國、日本、韓國和朝鮮的沖突場景)發現,廣泛的人工智能和自主系統可能導致無意中的沖突升級和危機不穩定。這部分是由于人工智能支持的決策速度提高了。升級也可能是由自動系統的非預期行為造成的。
還有人擔心,由于自動化和基于人工智能的技術變得更便宜和更豐富,非國家行為者更容易獲得這種技術。這些團體也可能獲得廉價的商業無人機,并使用開放源碼的人工智能對其進行改造,以創建 "自制 "武器系統。關于非國家行為者使用自主系統的報告是有限的和有爭議的。然而,非國家團體確實使用了武裝無人機,而且人們擔心人工智能會使這種系統更加有效。
正在進行的包括機器人和人工智能在內的技術研究,主要是由商業驅動的,預計將增加自動化系統的應用范圍和采用程度。該領域的一些關鍵技術挑戰概述如下。一個更普遍的挑戰是,相對于數字技術的快速發展,軍事技術的發展速度緩慢,有可能在部署前或部署后不久組件就會過時。
無人駕駛的車輛和機器人經常需要向人員傳輸數據或從人員那里接收數據。這可以讓人類監督和指導它們的運作或接收它們收集的數據。在某些情況下,系統也可能需要相互通信,如在無人機群中(方框3)。軍方通常使用無線電波在陸地上傳輸數據,其帶寬(頻率的可用性)可能有限。在傳輸大量數據,如高分辨率圖像時,這可能是個問題。5G技術(POSTbrief 32)可能會促進野外更有效的無線通信。系統之間的無線電通信可以被檢測到,提醒對手注意秘密行動。對手也可能試圖阻止或破壞系統的通信數據傳輸。目前正在研究如何最大限度地減少所需的數據傳輸和優化數據傳輸的方法。更多的 "板載 "或 "邊緣 "處理(POSTnote 631)可以減少傳輸數據的需要。然而,減少通信需要系統在沒有監控的情況下表現得像預期的那樣。
具有更高水平的自主性的更復雜的系統通常在運行時在船上進行更多的數據處理和分析。這要求系統有足夠的計算能力。一般來說,一個系統能做多少嵌入式數據處理是有限制的,因為硬件會占用空間并需要額外的電力來運行。這可能會限制需要電池供電運行的系統的敏捷性和范圍。然而,人工智能的進步也可能使系統更有效地運行,減少計算要求。由于未來軟件、算法和計算機芯片技術的進步,計算機的處理能力也有望提高。
創建和整理與軍事應用相關的大型數據集,對生產可靠的人工智能自主系統非常重要。機器學習(ML,方框1)依賴于大型數據集來訓練其基礎算法,這些數據可以從現實世界中收集,或者在某些情況下,使用模擬生成。一般來說,用于訓練ML系統的數據越有代表性、越準確、越完整,它就越有可能按要求發揮作用。準備訓練數據(分類并確保其格式一致)通常需要手動完成,并且是資源密集型的。
數據隱私:
一些人工智能系統可能會在民用數據上進行訓練。人們普遍認為,如果使用與個人有關的數據,他們的隱私必須得到保護。這可以通過對個人數據進行匿名化處理或只分享經過訓練的人工智能系統來實現。
由計算機軟件支撐的系統數量的增加增加了網絡攻擊的機會。網絡攻擊者可能試圖控制一個系統,破壞其運作,或收集機密信息。基于人工智能的系統也可以通過篡改用于開發這些系統的數據而遭到破壞。英國防部在2016年成立了網絡安全行動中心,專注于網絡防御。在英國,2021年成立的國防人工智能中心,有助于促進行業伙伴或其他合作者對高度機密數據的訪問。
重要的是,軍事系統要可靠、安全地運行,并符合法律和法規的規定。人工智能和自動化給傳統軟件系統帶來了不同的測試和保證挑戰。 進一步的挑戰來自于ML的形式,它可能不可能完全理解輸出是如何產生的(POSTnote 633)。人工智能軟件可能還需要持續監測和維護。利益相關者已經強調缺乏適合的測試工具和流程,并正在開發新的工具和指南。英國政府的國防人工智能戰略致力于建立創新的測試、保證、認證和監管方法。
目前還沒有專門針對將自動化或人工智能用于軍事應用的立法。雖然它們在戰爭中的使用受現有的國際人道主義法的約束,但這與新技術的關系是有爭議的。在國家和國際層面上有許多關于人工智能更普遍使用的準則,這些準則可以適用于自動化系統。然而,2021年數據倫理與創新中心(CDEI)的人工智能晴雨表研究發現,工業界很難將一般的法規適應于特定的環境。2022年,英國防部與CDEI合作發布了在國防中使用人工智能的道德原則。
一些利益相關者強調,如果自主系統的行為不合法或不符合預期,那么它的責任是不明確的。這可能導致系統及其決定與設計或操作它的人類之間出現 "責任差距",使法律和道德責任變得復雜。英國防部的原則說,在人工智能系統的整個設計和實施過程中,應該有明確的責任。國防人工智能戰略為供應商設定了類似的期望。
這一領域的大部分法律和道德辯論都集中在武器系統上。然而,某些非武裝系統(例如,基于軟件的決策支持工具)可能在識別目標方面發揮關鍵作用,因此提出了許多與那些同時部署武器的系統相同的道德問題。
國際上對 "致命性自主武器系統"(LAWS)的使用存在著具體的爭論。這個術語沒有普遍認同的定義,它被用來指代具有不同自主能力的廣泛的武器。關于使用致命性自主武器系統的報告存在很大爭議,例如,由于系統使用模式的不確定性。 聯合國《特定常規武器公約》(CCW)自2014年以來一直在討論致命性自主武器系統的可能立法。它在2019年發布了指導原則,但這些原則沒有約束力,也沒有達成進一步的共識。雖然大多數參加《特定常規武器公約》的國家支持對致命性自主武器進行新的監管,但包括英國、美國和俄羅斯在內的其他國家認為,現有的國際人道主義法已經足夠。根據運動組織 "阻止殺手機器人"(SKR)的說法,83個國家支持關于自主武器系統的具有法律約束力的文書,12個國家不支持。
許多利益相關者認為,必須保持人類對武器和瞄準系統的某種形式的控制,才能在法律和道德上被接受。某些組織,如SKR,呼吁禁止不能由 "有意義的人類控制 "的自主武器系統,并禁止所有以人類為目標的系統。他們還呼吁制定法規,確保在實踐中保持足夠的人為控制。在其2022年國防人工智能戰略中,英國政府表示,識別、選擇和攻擊目標的武器必須有 "適當的人類參與"。作為回應,一些呼吁監管的非政府組織表示,需要更加明確如何評估或理解 "適當的人類參與"。包括英國政府在內的利益相關者建議的維持人類控制的潛在措施包括限制部署的時間和地理范圍。被認為會破壞人類控制的因素包括人類做出決定的有限時間和 "自動化偏見",即個人可能會過度依賴自動化系統,而不太可能考慮其他信息。
大多數關于軍事自動化的公眾意見調查都集中在自主武器系統上。SKR委托對28個國家的19,000人進行了民意調查。62%的受訪者反對使用致命性武器系統;這一數字在英國是56%。關于公眾對人工智能、數據和更廣泛的自動化的態度的研究發現,公眾關注的主要問題包括數據安全、隱私和失業。然而,公眾的觀點會因系統的功能和使用環境的不同而有很大差異。
在過去的幾十年里,人工智能(AI)在軍隊中的迅速普及伴隨著緩慢但逐步的積累,人們試圖了解這些AI系統如何工作,以便在軍事行動中取得更好的結果。所謂的 "可解釋人工智能"(XAI)背后的想法,以及驅動它的技術,是這種趨勢的體現。然而,問題是,目前形式的XAI是否是人們期望的解決方案。本簡報以范圍界定工作為模式,試圖涵蓋這些方面的每一個問題,并探討在軍隊中使用XAI的廣泛影響,包括其發展、部署和治理。
軍事用途的潛力往往是世界各地技術創新的驅動力。近年來,用于國防目的的高度先進的顛覆性技術開發和部署顯著增加,而人工智能(AI)已成為這一趨勢的典型代表。僅僅在幾年前,目前人工智能在軍事行動中的應用范圍會被視為虛構的素材。今天,隨著致命性自主武器系統(LAWS)領域新興技術的進步,以及人工智能和機器學習(ML)不斷融入現有軍事計算系統的后端,世界各地人工智能系統的軍事應用只會在數量和強度上有所增加。 伴隨著這種激增的是確保所部署的軍事人工智能系統與人類的使用更加兼容,并具有更小的錯誤幅度的新想法。其中一個想法是開發所謂的可解釋人工智能(XAI),即人工智能和ML系統,使人類用戶有可能理解、適當信任并有效管理人工智能。
本簡報解釋了為什么這種系統在軍事上是必要的,什么是XAI,它是如何運作的,到目前為止它在哪里和如何被應用的例子,并評估了它的使用和監管。本簡報使用了主要和次要的研究資料,包括采訪來自不同地域和學科的專家利益相關者,他們目前或曾經來自政府、國防部門、民間社會和學術界。它旨在分析XAI在軍隊中的現狀,并為更有針對性的研究鋪平道路。
人工智能的雙重用途特性確保了其開發和部署中用于民用目的的任何升級也可以應用于其軍事對應物,反之亦然。例如,以色列軍隊使用面部識別軟件來解鎖手機并幫助自動標記社交媒體上發布的圖片中的朋友,以尋找和跟蹤巴勒斯坦的軍事目標。烏克蘭國防部也在使用同樣的軟件來識別潛在的臥底或死亡的俄羅斯士兵。在其他地方,阿塞拜疆在納戈爾諾-卡拉巴赫沖突中使用基于人工智能的計算機視覺程序為特斯拉這樣的自動駕駛汽車導航,為自主無人駕駛飛行器(UAV)導航。 在美國,像那些為流媒體平臺上的個人用戶定制觀看清單的算法,預計將成為武裝部隊認知設備的一部分,在通信受阻或資源有限的環境中為士兵提供建議。
事實上,從法國等擁有完善的軍事人工智能生態系統的國家,到印度等在這一領域新興的國家,全球各國都在投資數百萬美元用于人工智能。這些國家認識到,人工智能是軍事行動中的力量倍增器,通過上下文處理大量數據,識別趨勢、模式、感興趣的人和物體,在關鍵和非關鍵的軍事功能中試行系統和程序,以及預測和建議行動方案,這可能有助于在高風險、時間敏感的情況下協助,或在某些情況下甚至取代人類決策。
人工智能也有可能用于防御性軍事用途,并且可以被訓練來識別、標記和消除惡意軟件。在操作上,人工智能可以使軍事團隊保持或擴大作戰能力,而不需要增加或提高人員力量,這兩者都需要時間和額外的經常性費用,而軍隊可能無法或不愿抽出時間。
盡管有所謂的優勢,然而,人工智能的軍事用途并非沒有重大挑戰。人工智能系統可以被有目的地規劃以造成死亡或破壞,無論是由用戶本身還是通過對手對系統的攻擊。即使根據適用的準則對人工智能系統進行了嚴格的測試和驗證,也可能存在或發生不可避免的誤差,從而造成意外傷害。事實上,即使是已部署的人工智能系統的 "常規"操作,也存在著只有在輸出階段才能發現的故障。在這一點上,這種疏忽的結果可能已經是不可逆轉的,并可能在損害人員、設備和/或信息方面對軍事行動造成不可彌補的損害。
此類故障的一個主要原因是有缺陷的訓練數據集和命令,這可能導致關鍵信息的錯誤表述以及意外的偏見。另一個也許更具挑戰性的原因是系統內的算法問題,這些問題對用戶來說是無法檢測和解釋的。因此,眾所周知,人工智能產生的輸出是基于虛假的關聯和不遵循預期規則的信息處理,類似于心理學中所說的 "聰明的漢斯效應"。
一項跟蹤1988年至2021年各行業133個人工智能系統中公開可用的偏見實例的研究發現,44.2%(59個系統)表現出性別偏見,25.7%(34個系統)同時表現出性別和種族偏見,這是由于用于訓練這些系統的數據集的質量以及它們的算法。移植到沖突環境中,部署這樣的人工智能系統可能意味著,例如,一個屬于該程序有偏見的種族的婦女,因此屬于被偏見雙重困擾的種族和性別的交叉人口,可能被自主武器系統(AWS)的計算機視覺或面部識別軟件誤認為是一個非人類物體。因此,即使自主武器系統被設計為不與人類打交道,該系統也會認為與她打交道是符合其編程規則的,并可能導致她受傷或死亡,因為它不認為她是人類。這種不準確的結果是被稱為人工智能的 "黑盒",即人工智能和ML系統內的算法處理,人類操作員無法解釋或理解。
為了應對黑盒問題以及在軍事行動中應用黑盒可能造成的意外傷害,美國國防部下屬的國防高級研究計劃局(DARPA)在2016年開始了一項多項目計劃,開發 "白盒"或 "玻璃盒"XAI,以確保AI系統的可解釋性和可理解性,并帶來有效的人機互動(見圖1)。雖然'XAI'這個術語相對較新,但這個想法卻不是:自1970年代中期技術研究人員研究專家系統的解釋時,'可解釋性'問題就已經存在了。在DARPA宣布之后,圍繞XAI的興趣越來越大,一個利基研究生態系統開始出現,以了解如何使雙重用途的人工智能應用更加可解釋和可理解。
雖然對XAI是什么沒有統一的定義或定性--計算模型、人工智能應用的最佳實踐或兩者的混合,但來自技術和非技術領域的研究人員都潛心開發或以他們自己的方式解釋XAI。軟件專業人士試圖設計基于人工智能和ML的系統,以測試系統對人類終端用戶的可解釋性,并觀察到大多數實現XAI的方法往往屬于兩大類之一:事前和事后。
前期方法包括使用能夠執行低級人工智能功能的基本模型。它們確保了人工智能系統在整個信息處理過程中具有內在的可解釋性,因為它們的處理和決策都很簡單。同時,事后方法是指在自己獨立的處理模型中,將從另一個底層黑盒模型中收到的輸出賦予透明度。這些方法可以是模型不可知的,即適用于任何類型的被視為黑盒的模型;也可以是模型特定的,即僅限于在某些類型的模型上操作,與某種模型邏輯相對應。
雖然這兩種方法都確保了可解釋性的閾值,但發現前述方法在現實世界的應用潛力和可擴展性方面受到很大限制。據觀察,性能較高的人工智能系統由于產生其輸出的更復雜的處理過程,其可解釋性和可理解性仍然較低,而性能較高的系統由于其簡單的參數和信息處理,默認為性能較低。
然而,假設性能較高的人工智能系統會比性能低的系統做出更準確或無偏見的決定,這是不正確的。衡量人工智能系統的性能水平與發現其缺陷和理解其以某種方式處理信息背后的原因有多難成正比。這種性能-可解釋性的權衡仍然是XAI的一個主要問題,而較新的模型和方法的開發仍然面臨著解開它的挑戰。
XAI的持續發展被設想為引領 "第三波 "人工智能系統的到來,在這種情況下,人工智能機器能夠理解它們所處的背景和環境,并建立自己的基礎解釋模型來描述真實世界的現象。雖然圍繞人工智能的研究最初是由于美國的軍事利益而出現的,而且美國一直是這一領域的先驅,但在過去的五年里,世界其他地區也出現了人工智能的民用用途。這些都為可解釋和可理解的人工智能系統是各方面的優勢創新這一想法提供了全球的合法性。
到2019年,谷歌、微軟和IBM等大科技公司已經推出了各自的XAI工具包。富士通實驗室和日本北海道大學等醫療服務提供商宣布開發一項基于XAI的新技術,通過識別患者過去醫療數據的相互聯系,為他們的健康提供定制化建議。在金融服務領域,由中國第一家數字銀行WeBank牽頭的XAI標準開發項目于2020年獲得電氣和電子工程師協會(IEEE)的批準,這標志著世界上第一個專門解決人工智能在銀行應用中的黑匣子問題的行業標準。
XAI的這種應用證明了人工智能系統及其相關功能的普遍性,并強調了主要為軍事目的引入的技術如何能夠具有跨領域的民用效用。此外,XAI的民用應用的相對低風險功能可以使其在民用架構中的應用比軍用架構更快,最終在潛在的軍事部署之前為其某些用例特征提供了一個無意中的測試場。
鑒于今天的國防形勢,一些國家已經啟動了將人工智能納入其國防架構的項目。例如,美國計劃在2022年花費近10億美元開發數百個新的軍事人工智能項目,中國的目標是利用人工智能積極實現戰爭戰術的 "智能化",俄羅斯正在逐步開發150個支持人工智能的軍事系統,以色列正在努力系統地將人工智能納入其軍隊的所有系統中。印度政府今年也表示,它計劃在2024年前開發出25種國防專用人工智能產品。雖然開發和部署人工智能似乎是一個最近的問題,需要對國防技術和人工智能倫理之間的交叉點進行更深入的分析,但一些國家已經公開宣布他們打算這樣做。
2020年,瑞典國防研究局啟動了關于XAI在軍事中使用的研究,其多管齊下的目標如下:a)支持軍事終端用戶創建人工智能系統如何運作的心理模型;b)允許專家從人工智能系統的隱藏戰術和戰略行為中獲得洞察力和提取知識;c)幫助開發人員識別缺陷或錯誤,并在系統部署前解決這些問題;以及d)更有效地遵守戰爭規則。
同年,印度海軍在INS Valsura號上開始通過征集論文探索在海上行動中開發和應用XAI的可能性。他們的理由是,在使用人工智能技術時,由于黑盒的存在,往往存在信任上的差距,如果決策者不信任人工智能在國防部門推薦的決策,高層就不愿意采用這種技術。
美國國防部今年也進一步涉足XAI,并征集開發XAI模型用于指揮和控制決策輔助工具的申請,以用于多域作戰(MDO)的戰爭游戲。最近,在2022年6月,英國國防部(MoD)結合他們的《2022年國防人工智能戰略》發布了一份政策文件,強調了國防中人工智能的道德使用原則。其中一項原則名為 "理解",強調了黑匣子問題如何使與國防有關的人工智能系統難以解釋,但解釋和理解系統的機制必須是系統設計的關鍵和明確的一部分,貫穿其整個生命周期。本文考慮了英國信息專員辦公室(ICO)和艾倫-圖靈研究所與Project ExplAIn合作的先前工作--三人早些時候在2020年發布了一份關于XAI的文件,以符合法律要求以及技術和治理最佳實踐的方式,為解釋人工智能系統做出的決定提供實用建議。
很明顯,許多國家已經開始為國防目的更具體地參與XAI,但至今還沒有監測和分析任何進展指標的例子。它們對XAI的承諾和在軍隊中的運作的有效性,只能在幾年的較長時期內確定下來。
XAI顯然是人工智能范式中一個備受關注的主題,但圍繞它的迷戀是合理的嗎?
雖然XAI無疑有其優勢,但它的發展和部署也引起了合理的關注。其中最重要的是它的性能與可解釋性之間的權衡:如果可解釋性--這是XAI的主要屬性,也是其他道德AI方法的基礎--與AI/ML系統的性能相反,政治家和立法者會認為繼續研究和投資XAI有好處嗎?對XAI的重新研發可能最終會帶來突破,即有效的XAI模型可以被整合到高性能的人工智能系統中,但目前還沒有跡象表明這種發展的時間安排。
即使出現了這樣的突破,它是否足夠?一些專家認為,在XAI系統中可能總是存在可解釋的缺陷,因為系統提供的每一個解釋都會掩蓋另一個潛在的解釋。因此,我們的愿望不應該是用有效的XAI模型來全面完成高性能的人工智能系統,而應該是一個更簡單的,盡管也更難實現的XAI模型,它提供了關于人工智能系統信息處理的背景清晰度--誰需要知道什么,以及XAI模型應該如何向他們展示這些。一個建議的方法是通過設計來確保這一點:設計一個所需解釋的框架,由XAI模型沿著這個框架生成解釋,并由機器學習支持的終端用戶對輸出進行評估,以確保未來更好地遵守該框架。
除了試圖修復XAI模型中的性能-可解釋性權衡之外,還必須考慮操作中的人類部分,因為他們往往成為科技化的指揮鏈中最薄弱的環節。對原始DARPA項目的監測和評估表明,用戶解釋XAI模型提供的解釋的認知負荷會阻礙用戶的表現。這意味著,即使XAI模型向人類操作者解釋他們的過程,后者也需要精通動態的、往往是不統一的模型。通過適當的培訓,必須確保XAI模型的終端用戶對人工智能功能的可理解性,否則,系統的可解釋性將毫無意義。由于即使是人類也不能證明自己的所有行為,因此需要制定具體的原則來規范用戶對XAI所提供的解釋的接受程度。
還應通過對XAI系統的研究來制定原則,最終導致制定人工智能在其獨立領域使用的標準和許可。例如,歐盟(EU)在2019年批準了一個為期六年的項目,研究XAI的民用應用前景和細節,重點是如何設計ML模型的透明度,產生可控的黑箱解釋,并制定人工智能的倫理和法律標準。民間社會也渴望開發可解釋的負責任的人工智能解決方案,盡管這只是為民事應用打下基礎。
在應用診斷框架方面,來自谷歌、微軟和IBM的研究人員在2019年創建了兩個負責任的人工智能許可證(RAIL),這構成了世界上第一個獨立、認可的負責任的人工智能認證計劃。許可證在可解釋性、公平性、問責制、穩健性和數據質量這五個方面對人工智能/ML系統進行測試,以確定其作為負責任的人工智能應用的地位。在類似的行動中,責任人工智能研究所在2022年發布了他們的RAII認證的測試版,該認證是在世界經濟論壇(WEF)的全球人工智能行動聯盟(GAIA)下開發的。RAII認證是通過風險效益分析、校準評估框架、與專家驗證結果、以及由獨立委員會測試和評估結果的強大過程來最終確定的。
軍事XAI的支持者應該推動復制類似的標準和許可,以便在軍事AI架構中進行整合,確保其AI系統內的可解釋性、可靠性和偏見問題在制度上得到解決,無論在個別情況下是否有政治意愿這樣做。例如,一些國家不愿意承擔對致命性自主武器系統進行標準化法律審查的義務,而傾向于采用更加自愿和/或依靠自身參數的內部審查。雖然軍事XAI標準或認證將是重要的第一步,也是同期的解決方案,但從長遠來看是不夠的。私營公司和軍事承包商等單一的利益相關者零散地開發XAI和相關的負責任的人工智能框架,可能包括潛在的既得利益和后續標準化的問題。軍隊中的XAI需要有獨立的監督和有效的治理機制,而不是把它當作軍事AI開發的另一個勾選框。
XAI的開發和使用,特別是在軍事應用中,仍然是新生事物,既沒有明確它是如何被全面開發的,也沒有一個標準化的方法來規范已經開發或正在開發和部署的內容。在對軍事領域的XAI進行分析時,有兩個關鍵啟示。
現在,技術超越法律的情況越來越普遍,在軍事人工智能等領域更是如此,這些領域是激勵技術革新的先鋒。雖然XAI通常會被看作是一種具有積極價值的技術,但歸根結底,它只是軍隊使用的另一種工具,和其他工具一樣有其固有的優點和缺點。因此,它需要在一個治理框架內發展,以指導其有效和道德的使用,并防止其容易被潛在的濫用、無效或多余。
對XAI的研究似乎仍然是零散的、部門性的,而且大多集中在某些地緣政治空間,這造成了知識孤島,限制了新思想的傳播。此外,具體到軍事領域,圍繞XAI有很多理想主義,因此需要進行批判性的分析和平衡的研究,以便對其前景提供一個整體的視角。未來對這一問題領域的研究應尋求彌合這些差距,進行更多跨學科和跨部門的分析,同時嘗試收集和納入來自不同背景的觀點。